CSU290 Lecture Notes Lecture 5 18 Sept 2008

Peter Dillinger & Pete Manoli os

Announcenent s

* First homework due 23rd (Tuesday)

* First examon 24th (Wdnesday)

Desi gn Reci pe: ACL2 version

Probl em anal ysis and data definition

Contract and purpose (no effects in ACL2)

* Exanpl es as tests (no need to wite exanples in coments. just
(use CHECK=) wite tests, which serve as exanples.)
Function tenpl ate (this will be inserted before the tests.)
Function definition
Make it total (but "keep it sinple")

1. "Elimnate unintended recursion"
Find all parameters that affect how many recursive calls are nmade
For each one:
If contract expects only atom c data,
Make sure all inputs outside of contract go to a base case, using

an idiomsuch as ZP where appropriate
If contract all ows cons data,
<To be studied/revealed in |ater |ectures>

2. "Mnimze |IFs"
Don’t use nore I Fs than needed. They are only needed for
* Solving the problemon contract inputs
* Elimnting unintended recursion (#1).

* Add tests of the function outside the contract/intended input, to check

for totality (use CHECK or CHECK=)

Not es/ Di scussi on

Basically, #1, #2 are to make | ogi cal reasoning about functions easier
when we get to that, and those nunbers are their respective priorities.
#1 is nore inmportant than #2

If a function does not make any recursive calls--if it never calls
itself--there are no paraneters that affect how many recursive calls
it makes. In this case, just follow #2.

Consi der the SI MPLE-I NTEREST function
(defun sinple-interest (p r)

(* p(+171)))

There was nothing to do for #1. #2 tells us that we don't need to
add checks and do sonething special for out-of-contract cases. Just
using the arithnetic functions is fine.

Tests outside the contract/intended domain nmight include:
(check= (sinple-interest nil nil) 0)
(check= (sinmple-interest 5 "hi") 5)

Consi der a definition of the COMPOUND | NTEREST functi on before naking
it total,

(defun conpound-interest (pr i)
(if (=i 0
p
(conmpound-interest (sinple-interest pr) r (- i 1))))

In this function, i is the only paranmeter that determ nes how many
recursive calls are nade. W can tell this fromthe test (zp i) and
the replacenent for i, (- i 1). Thus, p and r only affect the val ue
that is returned, not the recursion itself.

In accordance with #1, we nake sure everything that is outside the
i ntended dommi n goes to the base case, p. One way to do this would be
(defun conpound-interest (pr i)
(if (not (natp i))
0
(if (=1 0)
p
(compound-interest (sinple-interest pr) r (- i 1)))))

But that would violate #2 because it uses nore |Fs than needed. W
can use ZP and not increase the nunmber of |Fs:

(defun conpound-interest (pr i)

(if (zp i)
p
(conmpound-interest (sinple-interest pr) r (- i 1))))

Cons and lists

Conses are ordered pairs of objects. They are used
commonl y used objects in ACL2.

Conses are sonetines called lists, cons pairs,’’ ‘‘dotted

pairs,’”’ or ‘‘binary trees.’

There are many ways to wite a given list. This should not be
surprising. Consider the fact that 123, 000123, and 246/2

are all ways to wite down the sane nuneric constant, and
stylistic considerations deternine which formyou use. So too
with list constants.

Any two objects may be put together into a cons pair. The
cons pair containing the integer 1 and the integer 2
m ght be witen as <1, 2> or drawn as foll ows.

A
1 2

In ACL2 it is witten as (1 . 2) and is created with (cons 1 2).

Quoting (a brief digression)

We | earned before that if we type sonmething like

(1. 2
into ACL2 it will throw an error, because it expects ‘*1'’ to nanme a
function to call. But if you do type this, you get that result:

ACL2 >(cons 1 2)

(1. 2)
ACL2 >

What gi ves?

The key is evaluation. (1 . 2) describes a cons pair, but if we try

to evaluate it, it tries to treat it as code, which fails. (cons 1 2)

is valid code that evaluates to (1 . 2).

If we put a quote mark before an object, it will evaluate to that object.
So instead of witing (cons 1 2) to use the object (1 . 2) in sone code,
we can wite ' (1 . 2).

ACL2 > (1 . 2)

(1. 2
ACL2 >(equal (cons 1 2) '(1. 2))
T
ACL2 >
W will try to use a quote whenever we are describing an object--so that

there’s no anmbiguity as to whether we are describing an object or code
that produces it.

It’s OK not to conpletely understand quoting at this point. Notice
how we use it and you'll start to understand it.

Back to ‘‘Cons and |ists’

"(1 . 2) is a single cons object in ACL2 with two integer objects as
constituents. The left-hand constituent is called the CAR of the

pair. The right-hand constituent is called the CDR These are functions
for accessing those constituents:

(car "(1 . 2))
(cdr "(3 . 4))
(car (cons 5 6))

1
4
5

Recal |l that CONSP is the predicate for cons pairs. All other
data are atons. Thus, every ACL2 either satisfies CONSP or ATOM but
not bot h.

(consp "(1 . 2))
(consp nil)
(consp 5/ 4)

mnoaon
2

Let’s | ook at nested conses. <1, <2, 3>> may be drawn as:
I\
1/\
2 3
and can be witten in ACL2 as "(1 . (2 . 3))
VWhat about (1 . (2. (3. nil)))?
What tree corresponds to this?
Does every binary tree correspond to a cons? Yes.
The notation we are using to wite list constants is called *dot

notation*. It is a straightforward translation of the famliar
Cartesi an coordinate notation in which parentheses replace the

brackets and a dot (which nust be surrounded by whitespace)
repl aces the comma

ACL2 has two syntactic rules that allowus to wite cons pairs in
a variety of ways. The first rule provides a special way to
wite trees like (1. nil). This tree may be witten as (1).

That is, if a cons pair has the synmbol nil as its cdr, you

can drop the ‘‘dot’’ and the nil when you wite it.

Exanpl es:

(equal " (1 . ((2. nil) . (3. nil)))
(1. ((2) . (3)))

t

The second rule provides a special way to wite a cons pair that
contai ns another cons pair in the cdr: you may drop the dot and
the bal anced pair of parentheses following it. Thus

(x . (...)) my be witten as (x ...). For

example, (1 . ((2) . (3))) sinplifies to (1 (2) 3).

Anot her exanple: "(1 . (2. (3. nil))) may be witten as:

- (1. (2. (3))

- (1. (2 3))
(1 2 3)

- (12 .7(3 . nil))

- etc.

Binary trees that terminate in nil on the right-nost branch, such
as the tree above are called *true lists*. By extension, the
synmbol nil is also called a (true) list or, in particular, the
enpty list, and is sonetines witten (). Note that the enpty
list is equal to nil.

(equal nil ()) =1t

The *el ements* of a list are the successive cars along the *'*cdr
chain.’’ That is, the elenents are the car, the car of the cdr
the car of the cdr of the cdr, etc. The elenents of the list (1
23 =(1. (2. (3. nil))) are 1, 2, and 3, in that order
There are no elenments in the enpty list.

O course, the elements of a list may be conses. Consider the
tree:

I
A A
1nil /\ nil
2 ni

This is equivalent to
nil) nil) . nil))
))) (got rid of three “*. nil’’5s)
)) (got rid of “*. ()'")

Thi s happens to be a true list containing two elenments. The first
elenent is a (true) list with one elenent, the nunber 1. The second
elenent is also a single-element |ist, containing the nunber 2.

—~~

T((1 (2
((1) (2
(1) (2

How about

I\

[\ i
nil ni
This is
C((niloonil) Lonil)
=" ((nil))
Bewar e:
(equal nil " ((nil))) = ni
(consp " ((nil))) =t
(equal "(nil) "((nil))) = ni
Cons structures with nils are not the same as nil! And addi ng parent heses
around sonething changes its neaning. '(nil) is '(nil . nil), whichis
I\
nil ni
So the nil list is different fromthe list containing nil, which is

different fromthe list containing the Ilist containing nil

Finally, lets return to

A
1/\
2 3

VWhy not use this to represent the list containing 1, 2, and 3, rather than

A

1/\

2 /\
3 ni

After all, the first uses only two Cons pairs, while the second uses three!

Consider a two-element list using the first nethod:

A
1 2

What would a 1-elenent list be? The elenent itself? Wat would an enpty
list be? nil? How would you represent the list with nil as its only
el emrent ?

In addition to providing an unabi guous way of representing any list, the
second met hod, the standard met hod, has each el enent of the list as the
CAR of a CONS--the first elenent of a sublist. This gives it a nice
recursive structure.

Finally finally, note that CAR and CDR are ACL2 functions and, thus,
must return a value even if their parameter is not a cons. In that
case, they return nil

(car 54) = ni
(cdr "hi"™) = ni
(car t) = ni
(cdr (cdr (1. 2))) = ni

But CAR or CDR returning nil does not necessarily inply the paraneter is

not a cons:

(cdr " (1))
(car " (nil

. 3)

