CSU290 Lecture Notes Lecture 28 1 Dec 2008

Peter Dillinger

More proofs in ACL2

Today we will guide ACL2 in sone proofs regarding set theory, a branch of
mat hemat i cs concerned with coll ections of values. Here are two definitions
to start off wth:

(defun nem (e x)
(if (endp x)
ni
(if (equal e (car x))
t

(meme (cdr x)))))

(defun subset (x y)
(if (endp x)
t

(and (mem (car X) vy)
(subset (cdr x) vy))))
MEM of course checks whether e, an "elenent,"” is a menber of a list x. |If
we represent a set of objects as just a list of all the elenents, then MEM
can be thought of as checking set nenbership

SUBSET checks if x is a subset of y--if all the elenents of x are elenents
of y. Note that any set is a subset of itself: any set contains all its own
elements. Let’s try to prove that:

(defthm subset -refl exi ve
(subset x x))

but it fails. The key checkpoint under induction is

(I MPLI ES (SUBSET X2 X2)
(SUBSET X2 (CONS X1 X2)))

If we ask ACL2 to prove that, it fails. Can we nake this | emma nore general ?
If so, it could be easier to prove, by setting up the correct induction, and
woul d be nmore reusable as a rewite rule.

Conceptually, it’s not inmportant that the second paraneter to SUBSET be the
sane as the first for this to be true

(defthm subset - cons
(inplies (subset x vy)
(subset x (cons e y))))

That is proven automatically and allows ACL2 to prove subset-reflexive

Anot her property we want to hold of SUBSET is that it is transitive:

(defthm subset-transitive
(inplies (and (subset x y)
(subset y 2))

(subset x 2)))

That fails, with the follow ng key checkpoi nt under induction



(I MPLI ES (AND (NOT (MEM X1 Z))
(MEM X1 Y)
(SUBSET X2 Y))
(NOT (SUBSET Y 2)))

ACL2 does not prove that automatically, and it turns out a very sinple
general i zation enables the proof to go through: the hypothesis (SUBSET X2 Y)
is conpletely irrelevant. X2 is not even nentioned el sewhere in the
conjecture, but if that hypothesis is included, ACL2 choses the w ong

i nduction schene. Here is a version wthout that hypothesis and with sone
vari abl es renamed, etc.:

(defthm not - subset
(inplies (and (neme x)
(not (meme y)))
(not (subset x y))))

And that allows the transitivity proof to go through

Anot her operation perforned on sets is intersection, which is to find al
el ements that are menbers/elenents of both of two given sets

(defun int (x vy)
(if (endp x)
ni
(if (mem(car x) vy)
(cons (car x) (int (cdr x) y))
(int (cdr x) y))))

One thing that should be true is that the intersection should be a subset of
ei ther paranmeter. Both of these proofs are automatic for ACL2:

(defthmint-subset
(subset (int x y) x))

(defthm i nt-subset 2
(subset (int xvy) y))

But for sonething nore sohpisticated, observe that the order of the argunents
to an intersection operation should not matter. The sane set should be
returned regardl ess of order. W conjecture

(defthmint-symetric
(equal (!nt X Y)
(int 'y x)))

And that fails to prove. In this case, it fails because it is not a theoremn
Here' s a count erexanpl e:

(int "(123) '(432))
(int "(432) "(123))

(2 3)
(3 2)

These are not equal in the ACL2 sense, but they represent the sane set.
Conceptual ly, elenents of a set don’t have an order, but they do when
representing themas lists.

Can we cone up with a notion of set equality and use that? O course.
Two ACL2 objects represent equivalent sets if they contain the sanme el enents.
The easiest way to define that in terns of what we have defined is

(defun set= (x vy)
(and (subset x y)
(subset y x)))



--- BEG N M scel | aneous mathematics that will not be specifically tested. ---

W want to be sure this is what nathenmaticians call an Equival ence Rel ation
whi ch divides the universe of values in to groups called Equival ence O asses.
Wthin each class, all the values are "equivalent" according to the relation
and no values in different classes are "equivalent."

Mat hemati cians tell us there are three properties that must hold for something
to be an equivalence relation: reflexivity, symetry, and transitivity.

(defthm set=-refl exi ve
(set= x x))

(defthm set =-synmetric
(inplies (set= x vy)
(set=y x)))

(defthm set=-transitive
(inplies (and (set= x vy)
(set=y 7))

(set= x z2)))

ACL2 proves these automatically, and once we have done so, we can tell ACL2
that it can use SET= in special ways as an equival ence rel ation

(def equiv set=)

--- END M scel |l aneous mat hematics that will not be specifically tested. ---

So what we want to prove about intersection is actually

(defthmint-comutative
(set= (!nt X Y)
(int y x)))

As we nmight expect, this fails. |If we follow our usual method of just

| ooki ng at checkpoi nts under induction, generalizing, and proving those as
l emmas, we do a lot of work. Notice, however, that ACL2 was able to do
some work before reverting to induction

By the sinple :definition SET= we reduce the conjecture to the follow ng
two conj ect ures.

Subgoal 2
(SUBSET (INT X Y) (INT Y X)).

Narme the formul a above *1

Subgoal 1
(SUBSET (INT Y X) (INT X Y)).
ANN - Checkpoi nt Subgoal 1 ~Ann

Normal |y we would attenpt to prove Subgoal 1 by induction. However,

we prefer in this instance to focus on the original input conjecture
rather than this sinplified special case. W therefore abandon our
previous work on this conjecture and reassign the nane *1 to the origina
conj ecture.

Now there is sonething interesting about these two subgoals. Suppose

we are able to prove just one of themas a lemma. Then the other is just an
instantiation of with X replacing Y and Y replacing X' Thus, if we

prove



(defthmint-com| ema
(subset (int x vy)

(int y x)))
then ACL2 will be able to prove | NT- COWUTATI VE.

The proof fails and there are three checkpoints under induction. Two of them
are quite simlar:

Subgoal *1/3' 4’
(I MPLIES (AND (NOT (MEM X1 Y))
(SUBSET (INT X2 Y) (INT Y X2)))
(SUBSET (INT X2 Y)
(INT Y (CONS X1 X2))))

Subgoal *1/2.1'’
(I MPLIES (AND (MEM X1 Y)
(SUBSET (INT X2 Y) (INT Y X2)))
(SUBSET (INT X2 Y)
(INT Y (CONS X1 X2))))

In this case, | can save nyself sonme work if | really think about what |

need to prove for ACL2 to be able to prove these. |In particular, | know

that SUBSET is transitive. Thus, if | prove that (INT Y X2) is a subset

of (INT Y (CONS X1 X2)), then both of these will be proven by the transitivity
of SUBSET. | have renaned sone variabl es for el egance:

(defthm subset-int-cons
(subset (int x vy)
(int x (cons e y))))

That is proven automatically, and it just |eaves the other checkpoi nt under
i nducti on:

Subgoal *1/2.2'’
(1 MPLIES (AND (MEM X1 Y)
(SUBSET (INT X2 Y) (INT Y X2)))
(MEM X1 (INT Y (CONS X1 X2))))

If you think about it, the second hypothesis is irrelevant. This gives us the
| emma

(defthm memint-cons
(inmplies (meme x)
(meme (int x (cons e y)))))

which is proven autonmatically and enabl es the proof of | NT-COMM LEMVA and
| NT- COWUTATI VE.

But we could be nore general with that |emm, and it would be a nore useful
rul e:

(defthm mem i nt
(inplies (and (neme Xx)
(meme y))
(meme (int xvy))))

That is also automatic and enabl es proof of | NT-COVW LEMVA and | NT- COVMUTATI VE.



