CSU290 Lecture Notes Lecture 27 Part B 24 Nov 2008
Peter Dillinger

Theorens as Rules in ACL2

VWen you prove a theoremwi th DEFTHM ACL2 by default will create a
"rewite rule” for use in future proofs. Let’s exam ne the anatony
of rewite rules with exanples fromPart A of the |lecture notes:

(defthmlen--insert
(equal (len (insert x y))
(+ 1 (leny))))

When you prove sonething of the form

(equal <l hs>
<r hs>)

Then ACL2 creates a rewite rule to rewite instances of <l hs> into <rhs>.

<l hs> stands for Left Hand Side and <rhs> for Right Hand Side. Variables

in <l hs> can natch anything, because we can use instantiation to replace each

variabl e with any expression.

So the theorem nanmed LEN--I NSERT above tells ACL2 to | ook for instances of
(len (insert x vy))

in what it is proving (where x and y can be anything), and rewite those into
(+ 1 (leny))

where y is replaced with what matched it in the |left hand side. Conceptually,

this is desirable because the right hand side, (+ 1 (leny)) is sinpler to

work with. |In fact, we' ve conpletely renoved x fromexpression; it turns
out to be irrelevant to what (len (insert x y)) is equal to.

The next exanple is
(defthmlen--isort

(equal (len (isort x))

(len x)))

This of course searches for instances of
(len (isort x))

where x can be anything, and rewites theminto
(len x)

This is obviously sinpler, even though we weren’'t able to elimnate
any variables in the left hand side fromthe right hand side.

This brings up an interesting point. If we had witten

(defthmlen--isort2
(equal (len x)
(len (isort x))))

that is an equival ent proposition (because of the symetry of equality), so
it is also a theorem But when given to ACL2, the rewite rule created is
different fromLEN -1 SORT because the right and | eft hand sides are switched.



This new one will ook for instances of
(len x)
and rewite themto
(len (isort x))
That is not at all useful. |In fact, if ACL2 encounters
(len (blah x))
it would rewite that to
(len (isort (blah x)))
That too is an instance of (len x), so it would rewite that to
(len (isort (isort (blah x))))
and that to
(len (isort (isort (isort (blah x)))))
etc.
The lesson is that the order of the equality matters when it is used to create

arewiterule. It is best torewite nore conplicated things into sinpler
ones but it is not always clear which is sinpler

The next exanple is

(defthmtrue-listp--isort
(true-listp (isort x)))

This is not an equality and not an inplication (see below), so basically the
whole thing is the left hand side and the right hand side is T.

There is a subtle linmtation though: just because (true-listp (isort x)) is
a theoremdoes not nmean it is always equal to T. It just nmeans it is always
non-nil. There are many places in theorens where it only matters whet her
something is nil or not; the actual value does not matter. These places are
cal l ed "bool ean context" and these are where ACL2 rewites fornulas like this
to T. For exanple

(if (true-listp (isort y))
a
b)
is equal to
(if T
a
b)
by the rewite rule, because the test of an IF is bool ean context.
Al so,

(inplies <sonething>
(true-listp (isort z)))



is equivalent to

(inplies <sonething>

)

whi ch, by propositional reasoning, is equivalent to

T
However, in

(integerp (true-listp (isort x)))
the rewrite rule does not apply because the argument to integerp is not
a bool ean context. It usually works to think of ACL2 as rewiting fornul as
like (true-listp (isort x)) to True only if it nmakes sense for themto be
only True or Fal se.
The next example is

(defthmtrue-listp--insert

(inplies (true-listp y)
(true-listp (insert x vy))))

VWen the forrmula is an inplication, the first part are hypotheses:

(inplies <hyp>
<conc>)

(inmplies (and <hypl>
<hyp2>

<hypn>)
<conc>)
And <conc> can be just a <lhs>to rewite to T or (equal <lhs> <rhs>).
Hypot hesis identify the conditions under which a rewite rule can be used.
Wen a rewite rule matches, ACL2 quietly attenpts a m niature proof of
the hypotheses of the rewite rule. That short proof attenpt is called

Backchaining. |If it succeeds, the rule is applied, but if it fails, ACL2
proceeds with the original proof w thout applying the rule.

(inplies (true-listp y)
(true-listp (insert x vy)))

means that ACL2 will search for instances of

(true-listp (insert x vy))
where x and y can be anything. Wwen it finds that, it will attenpt to prove
(true-listp y), where y is what was natched for y in (true-listp (insert x y)).
For exanple, if | were to ask ACL2 to prove

(true-listp (insert e (isort x)))

It will see that the rule TRUE-LI STP--1 NSERT nmatches (x is e, y is (isort X)),
but there is a hypothesis to prove. Backchaining will call for proof of

(true-listp (isort x))

This rewites to T by the rewite rule TRUE-LI STP--1SORT, so the rule
TRUE- LI STP- -1 NSERT can be applied, which rewites the conjecture to T.



