CSU290 Lecture Notes Lecture 16 23 Cct 2008

Peter Dillinger
Today, | will introduce a higher-level proof notation so that we don't
get bogged down in the details of conplete fornmal proofs, but we should
be sure that each step we nmake could be filled in with a formal proof.

We will consider an exanple problemand use this definition

(defun app (x vy)
(if (endp x)

(cons (car x)
(app (cdr x) y))))

whi ch introduces the axi om

(equal (app X )
(if (endp x)

(cons (car x)
(app (cdr x) y))))

W will al so use these axi ons:

;  Consp- ni
(equal (consp nil)
nil)

; Consp-cons
(equal (consp (cons a b))

t)
; Car-cons
(equal (car (cons a b))
a)
; Cdr-cons
(equal (cdr (cons a b))
b)
. If-true
(inplies x
(equal (if x vy z)
y))
. If-fal se
(equal (if nil y z)
z)

Prove
(equal (app (cons a b) c)
(cons a (app b ¢)))

We will prove this by working backwards--starting with the original conjecture
and iteratively reduce the conjecture to sinpler and sinpler fornmulas. Wen

Il wite

<=

| amindicating that we can conclude the top fornmula fromthe bottom one by
some axi ons and rules of inference. | describe with ones |I used in the

curly braces. However, instantiation and equals for equals are going to be
used so often, that they don’t really need to be nentioned, except when the
particular instantiation m ght be unclear



(equal (app (cons a b) c)
(cons a (app b ¢)))
<= { Defn of APP}
(equal (if (endp (cons a b))
c
(cons (car (cons a b))
(app (cdr (cons a b)) c)))
(cons a (app b ¢)))
<= { Defn of ENDP, Car-cons, Cdr-cons }
(equal (if (not (consp (cons a b)))
c
(cons a (app b ¢)))
(cons a (app b ¢)))
<= { Consp-cons }
(equal (if (not t)
o
(cons a (app b ¢)))
(cons a (app b ¢)))
<= { Evaluate (not t) }
(equal (if ni
o
(cons a (app b ¢)))
(cons a (app b ¢)))
<={ If axiom}
(equal (cons a (app b c))
(cons a (app b ¢)))
<= { Equality axiom}
t

So now we have shown that in the current theory, T inplies our origina
conjecture. Recall fromboolean logic that true -> p is the sane as p
Thus, if true -> p is true, pis true.

Note that in there, | appealed to a new rule of inference we can use:
Execution (or Evaluation). Suppose we want to prove that 1999 is a prinme
nunber. |If we have defined a predicate for prinme nunbers, PRI MEP, that
woul d be

(prinmep 1999)
But this conjecture has no free variables, we could determ ne whet her
it is always true or not by just evaluating it. |In fact, if we give
ACL2

(thm (prinmep 1999))
then it will prove it by evaluation. So if we encounter part of a

formula with no free variables, we can evaluate it to get it inits
sinplest form For exanple, we can evaluate (not t) to get nil

It turns out we can adopt another strategy to prove the sane theorem
above,

(equal (app (cons a b) c)
(cons a (app b ¢)))

by utilizing sonething we know about equality. ACL2 has axi oms
(inplies (and (equal a b) (Transitivity of equality)

(equal b ¢))
(equal a c))



(inplies (equal a b) (Symmetry of equality)
(equal b a))

So in fact, if we showthat (app (cons a b) c) is equal sonething,
which is equal to sonmething, ..., which is equal to (cons a (app b ¢)),
then we know that (app (cons a b) c¢) equals (cons a (app b c)).

Here’ s how t hat proof would go:

(app (cons a b) c¢)
= { Defn of APP }
(if (endp (cons a b))
c
(cons (car (cons a b))
(app (cdr (cons a b)) ¢)))
= { Defn of ENDP, Car-cons, Cdr-cons }
(if (not (consp (cons a bh)))
c
(cons a (app b ¢)))
= { Consp-cons }
(if (not t)
o
(cons a (app b ¢)))
= { BEvaluate (not t) }
(if nil
c
(cons a (app b ¢)))
={ If axiom}
(cons a (app b ¢))

That allows us to conclude (app (cons a b) c) equals (cons a (app b c)).

Now | et us prove

(inplies (endp x)
(equal (app (app x y) 2z)
(app x (app y 2))))

You might recogni ze the

(equal (app (app x y) 2z)
(app x (app y 2)))

part as an associativity property. So we are proving a special case of the
associativity of APP.

Notice we are proving an equality, but an equality that is within an
inmplication (inmplies). The way we will typically prove an inplies is to
nmake t he hypot heses of the inplication assunptions and use those in proving
the conclusion. Since in this case the conclusion is an equality, we wll
foll ow our nmethod of proving equalities. But first, let’s wite our
assunpti ons:

Assunpt i ons: (endp x)
Then we would start by figuring out what
(app (app x y) 2)

is equal to, etc. But let’'s talk alittle nore about assunptions & | emmas
first.



Lemma: a theorem (which might be an axiom) that is used in another proof.

Assunmption: a formula that we assune is true in proving sonething concerning
the same vari abl es.

The key difference is that when an assunption refers to a variable such as
X, that must refer to the same x as in the formula we're proving--if it has
an x. For exanmple, in the proof we’'re about to work on, the (endp x)
assunption is clearly not a theorem-because it’'s not true for all x--but we
can use it as an assunption in show ng

(equal (app (app x y) 2z)
(app x (app y 2)))

so that we can overall conclude that that fornmula is true under the assunption

(inplies (endp Xx)
(equal (app (app x y) z)
(app x (app y z))))
On the other hand, a | emmm such as

(equal (endp x)
(not (consp x)))

holds for all x. Thus,

THE PRACTI CAL DI FFERENCE BETWEEN ASSUMPTI ONS AND LEMVAS IS THAT WE CAN
| NSTANTI ATE LEMVAS BUT NOT ASSUMPTI ONS

So we can use an instantiation of the ENDP definitions, such as

(equal (endp (cons a b))
(not (consp (cons a b))))

but we cannot instantiate the assunption (endp x) to concl ude
(endp (cons a b))
because that would allow us to conclude NIL, which (if you know your
bool ean I ogic well enough) would allow us to use propositional deduction to
concl ude anything! (false -> anything is true. Thus, it’s valid to
deduce anything fromNIL.)
Let’s end the digression and get back to solving the problem
Assunpti ons: (endp x)
(app (app x y) 2)

{ Defn of APP }
(app (if (endp x)

y
(cons (car x) (app (cdr x) y)))
z)
{ Assunption (endp x) & IF axiom}
(app y 2)

At this point, there doesn’'t seemto be much to do, because if we open up the
definition of this APP, we would need to know sonethi ng about y to nake

progress. It turns out it’'s possible for us to conplete the proof from here,
but it would invol ve going fromsonething sinple to sonething nore
conplicated, which is unnatural. Let us now work fromthe other side of the

conjectured equality, with the sane assunption:



(app x (app y z))
= { Defn of APP }
(if (endp x)
(app y z)
(cons (car x)
(app (cdr
= { Assunption (endp
(app y z)

k. To conplete the

(inplies (endp x)
(and (equa

(equal

=> { Equality }
(inplies (endp x)
(equal (app
(app

Be sure you use the right

x) (appy 2))))
x) & IF axiom}

instanti ati on!

proof, | will connect the dots:

(app (app x y) z)
(app y 2))

(app x (app y 2))
(app y 2))))

(app x y) z)
x (app y 2))))

first equality proof above

second equal ity proof above

Now for another proof:

(inmplies (and (consp
(equal

(equal (app
(app

Assunptions: (consp
(equal

Start with left side

(app (app x y) z)

= { Defn APP }
(app (if (endp x)

y
(cons (car
(app
z)
= { Defn endp }

X)

(app (app (cdr x) y) z)
(app (cdr x) (app y 2))))
(app x y) z)

X (app y 2))))

X)
(app (app (cdr x) y) z)
(app (cdr x) (app y 2))))

of equality:

X)
(cdr x) y)))

(app (if (not (consp x))

(cons (car
(app
z)

X)
(cdr x) y)))

= { Assunption (consp x), Not, |IF axiom}

(app (cons (car x)

(app (cdr x) y))

z)

Now we will |eave that as is and work on the right side of the equality:

(app x (app y 2))
= { Defn APP}
(if (endp x)
(app y 2)



(cons (car x)

(app (cdr x) (app y 2))))
= { Defn endp }

(if (not (consp x))

(app y z)
(cons (car x)

(app (cdr x) (appy z))))
= { Assunption (consp x), Not, |IF axiom}
(cons (car x)

(app (cdr x) (app y z)))
= { Assunption (equal (app (app ...)) (app (cdr ...))) }
(cons (car x)

(app (app (cdr x) y) z))

Now how to we show t hat

(app (cons (car x)
(app (cdr x) y)) 2)

is equal to

(cons (car x)
(app (app (cdr x) y) z))

thus making (app x (app y z)) equal to (app (app x y) z) under the assunptions?
Do you recall us proving that

(equal (app (cons a b) c)
(cons a (app b ¢)))

? Let us call this theoremLemma 1. W can use an instance of this to
finish:

(cons (car x)

(app (app (cdr x) y) 2))
={ Lemma 1}
(app (cons (car x)
(app (cdr x) y)) z)

Now under the assunptions, we have shown

(equal (app (app x y) 2z)
(app (cons (car x)

(app (cdr x) y)) 2))

and

(equal (app x (app y z))
(app (cons (car x)

(app (cdr x) y)) 2))

Ther ef or e,

(inplies (and (consp x)
(equal (app (app (cdr x) y) z)
(app (cdr x) (app y 2))))
(equal (app (app x y) z)
(app x (app y 2))))



