ACL2 Language Constructs to Know - CSU290

Special expression forms

These are evaluated in special ways, unlike functions or function-like shorthand.

(IF test
true-part
false-part)

If test evaluates to nil, false-part; otherwise,
true-part. (Other partis not evaluated.)

(COND (testl exprl)
(test2 expr2)

(t final-expr))

Same as (IF testl exprl
(IF test2 expr2

final-expr))

(LET ((varl exprl)
(var2 expr2)
)
expr-body)

Each exprk is evaluated and the result is bound to
variable symbol vark in evaluation of expr-body.

(LET* ((varl exprl)
(var2 expr2)

)
expr-body)

Similar to LET, except that previous bindings in the
same LET* can be used in later binding expressions in
the same LET*.

(QUOTE value)

Evaluates to the literal value value. In other words,
value is not evaluated as code.

'value

Shorthand for (QUOTE value)

Primitive functions

These are not defined in terms of other functions, and most of them cannot be. Thus, they are
“primitive.” (All functions described as “predicates” or “relations” return either £ or nil).

(EQUAL a b) Predicate for equality

(CONS a b) Constructs a cons pair with CAR a and CDR b
(CONSP x) Predicate for cons pairs

(CAR c) The CAR of the cons ¢ (or nil).

(CDR c¢) The CDR of the cons ¢ (or nil).

(RATIONALP x)

Predicate for rational numbers

(NUMERATOR r)

“Lowest terms” numerator of rational r

(DENOMINATOR r)

“Lowest terms” denominator of rational r

(< xy)

“Less than” relation on rationals

(BINARY-* X y)

use * instead

Multiplies two numbers

(BINARY-+ X y)

use + instead

Adds two numbers

(UNARY-- Xx)

use - instead

Negates a number, as in “zero minus ...

(UNARY-/ Xx)

()
()
()
()

use / instead

Inverts a number, as in “one over ..."”

(INTEGERP x)

Predicate for integer numbers

(STRINGP x)

Predicate for strings

(SYMBOLP Xx)

Predicate for symbols

(CHARACTERP x)

Predicate for characters

Built-in Shorthand

These are used extensively in ACL2 and behave much like functions. You can pretend they are functions
that, in many cases, take a variable number of arguments.

Arith

metic

(+ .)

Sum of all the parameters

(*)

Product of all the parameters

(- x)

Negates a number, as in “zero minus ...

(- x y) Subtracts number y from number x
(/ x) Inverts a number, as in “one over ...”
(/ x y) Divides number x by number y
(<= xY) (not (< y x))
(> xy) (< y x)
(>=x y) (not (< x y))

Booleans
(AND ...) Conjunction of all the parameters
(OR ...) Disjunction of all the parameters

Lists

(LIST ...) Constructs a list of all the parameters

(APPEND a b ...)

Appends all of the parameter lists together

Built-in Derived Functions

These are defined in terms of primitive functions, special forms, and shorthand. You can use :PE name

to display the actual definition.

Arithmetic
(NATP x) Predicate for natural numbers (integers >= 0)
(ZP x) Predicate for [x = 0 or x is not a natural]
(ZIP x) Predicate for [x = 0 or x is not an integer]
(= x y) Same as equal; intended for numbers

Booleans
(IMPLIES p q) Logical/boolean implication
(NOT p) Logical/boolean negation
(IFF p q) Logical/boolean equivalence

Lists

(ATOM x) Predicate for non-conses
(ENDP x) Same as atom; intended for lists
(TRUE-LISTP x) Predicate for nil-terminated lists
(LEN x) Length of a list

(BINARY-APPEND x y)

(use append instead)

Returns the list with x appended before y

Peter C. Dillinger - 29 Sept 2008

	Special expression forms
	Primitive functions
	Built-in Shorthand
	Built-in Derived Functions

