Boolean Identities to Know - CSU290

(You don't need to know the names on the right.)

Simplifications (always replace instances of the left formula with the right)

¬¬р	=	p	(Double negation)
p /\ p	=	p	(Contraction of AND)
$p \lor p$	=	p	(Contraction of OR)
p ∕\ true	=	p	(AND identity)
p ∨ false	=	p	(OR identity)
p ∕\ false	=	false	(AND preclusion)
p∨ true	=	true	(OR satisfaction)
p /\ ¬p	=	false	(AND contradiction)
$p \lor \neg p$	=	true	(OR tautology)
true → p	=	p	(Unconditional statement)
false → p	=	true	(Inapplicable statement)
p → true	=	true	(Foregone conclusion)
p → false	=	¬р	(Reductio ad absurdum)
p ↔ true	=	р	(Equivalent to true)
p ↔ false	=	¬р	(Equivalent to false)
$p \leftrightarrow p$	=	true	(Reflexivity of IFF)
p ↔ ¬p	=	false	(IFF contradiction)
-			

Other identities (these could be used in either direction depending on the context)

p /\ q	=	q ∕\ p	(Commutativity of AND)
$p \lor q$	=	$q \lor p$	(Commutativity of OR)
p /\ (q /\ r)	=	$(p \land q) \land r$	(Associativity of AND)
$p \lor (q \lor r)$	=	$(p \lor q) \lor r$	(Associativity of OR)
¬(p /\ q)	=	¬p \/ ¬q	(De Morgan's law 1)
$\neg(p \lor q)$	=	¬p /\ ¬q	(De Morgan's law 2)
p /\ (q ∨ r)	=	$(p \land q) \lor (p \land r)$	(Distribute AND over OR)
p ∨ (q /\ r)	=	$(p \lor q) \land (p \lor r)$	(Distribute OR over AND)
$p \rightarrow q$	=	¬p∨q	(Disjunctive form of implication)
$p \rightarrow q$	=	$\neg q \rightarrow \neg p$	(Contrapositive)
$\neg (p \rightarrow q)$	=	p /\ ¬q	(Case of false implication)
$p \rightarrow (q \rightarrow r)$	=	$(p \land q) \rightarrow r$	(Implication (un)chaining)
$(p \to q) / (\neg p \to q)$	=	q	(Case analysis)
$p \leftrightarrow q$	=	$(p \land q) \lor (\neg p \land \neg q)$	լ) (Cases of equivalence)
$p \leftrightarrow q$	=	q ↔ p	(Commutativity of IFF)
$p \leftrightarrow (q \leftrightarrow r)$	=	$(p \leftrightarrow q) \leftrightarrow r$	(Associativity of IFF)
			·

Inferences (the formula on the left implies the formula on the right)

p	\rightarrow	$p \vee q$	(Expansion)
p /\ q	\rightarrow	p	(Assumption)
$p \land (p \rightarrow q)$	\rightarrow	q	(Modus ponens)
$(p \to q) / \backslash (q \to r)$	\rightarrow	$p \rightarrow r$	(Hypothetical syllogism)
$\neg q / (p \rightarrow q)$	\rightarrow	¬р	(Modus tollens)
$\neg p \wedge (p \vee q)$	\rightarrow	q	(Disjunctive syllogism)