
Van Emde Boas Tree

Lecture Notes

1 Introduction

Goal: Maintain n elements among {0, 1, . . . , U − 1} subject to:
Operation Definitions:

• Insert(x): S ← S ∪ {x}

• Successor(x): Return min{y ∈ S : y ≥ x}, or ∞ if {y ∈ S : y ≥ x} = ∅

• Delete(x): S ← S \ {x}

Space: O(U)
Time: O(lg lgU)

1.1 When is O(lg lgU) useful?

If U = nO(1) or U = nlgO(1) n, then lg lgU = O(lg lg n).
Application: Networking — IP address ranges.

1.2 Where might O(lg lg n) come from?

Binary search on the levels of the tree.

lgU
↙

←
lgU

U

For binary search on k levels:

T (k) = T (k/2) +O(1) = O(lg k)

For the Van Emde Boas recurrence:

T (U) = T (
√
U) +O(1) = O(lg lgU)

Example: lg U
2 =
√
U . If U = 216, then lg 216 = 16

2 = 8, and (216)1/2 = 216/2 = 28.

1



2 Version 1: Bit Vector

Insert/Delete: O(1)
Successor: O(U)
Bit vector = array of size U

• 0 = absent

• 1 = present

Example: U = 16, n = 4

0 1 0 0 0 0 0 0 1 1 0 0 0 0 1

3 Version 2: Split Universe into Clusters

Split the universe into
√
U clusters, each of size

√
U .

3.1 Structure

Summary vector: A bit vector of size
√
U where each bit indicates whether the corresponding

cluster is non-empty.

1 0 1 1Summary

√
U

√
U

Operations:

• Insert: O(1)

• Delete: ??

• Successor(x):

1. Look in x’s cluster

2. Look for next 1 bit in summary

3. Look for first 1 in that cluster

• Time: O(
√
U)

4 Version 3: Recursive Structure

If x = i
√
U + j where 0 ≤ j <

√
U :

If x = 9, then x = 2
√
U + 1 (for U = 16,

√
U = 4).

2



Definitions:

high(x) = ⌊x/
√
U⌋

low(x) = x mod
√
U

index(i, j) = i
√
U + j

Example: 9 = 1001 where high bits give cluster index, low bits give position within cluster.

4.1 VEB Structure

V = size U VEB tree

• V.cluster[i] = size
√
U VEB tree, for 0 ≤ i <

√
U

• V.summary = size
√
U VEB tree

4.2 Insert(V, x)

T (U) = 2T (
√
U) +O(1) = O(lgU)

1: procedure Insert(V, x)
2: Insert(V.cluster[high(x)], low(x))
3: Insert(V.summary,high(x))
4: end procedure

4.3 Successor(V, x)

T (U) = O((lgU)3)

1: procedure Successor(V, x)
2: i← high(x)
3: j ← Succ(V.cluster[i], low(x))
4: if j =∞ then
5: i← Succ(V.summary, i)
6: j ← Succ(V.cluster[i],−∞)
7: end if
8: return index(i, j)
9: end procedure

5 Version 4: Store Min and Max

5.1 Insert(V, x)

Time: O(lgU)

1: procedure Insert(V, x)
2: if x < V.min then
3: V.min← x
4: end if
5: if x > V.max then
6: V.max← x

3



7: end if
8: Insert(V.cluster[high(x)], low(x))
9: Insert(V.summary,high(x))

10: end procedure

5.2 Successor(V, x)

Time: O(lg lgU)

1: procedure Succ(V, x)
2: if x < V.min then
3: return V.min
4: end if
5: i← high(x)
6: if low(x) < V.cluster[i].max then
7: j ← Succ(V.cluster[i], low(x))
8: else
9: i← Succ(V.summary, i)

10: j ← V.cluster[i].min
11: end if
12: return index(i, j)
13: end procedure

6 Version 5: Don’t Store Min Recursively

6.1 Insert(V, x)

Time: O(lg lgU)

1: procedure Insert(V, x)
2: if V.min = ∅ then
3: V.min← V.max← x
4: return
5: end if
6: if x < V.min then
7: swap(x, V.min)
8: end if
9: if x > V.max then

10: V.max← x
11: end if
12: if V.cluster[high(x)].min = ∅ then
13: Insert(V.summary, high(x))
14: end if
15: Insert(V.cluster[high(x)], low(x))
16: end procedure

6.2 Delete(V, x)

1: procedure Delete(V, x)
2: if x = V.min then

4



3: i← V.summary.min
4: if i = ∅ then
5: V.min← V.max← ∅
6: return
7: end if
8: x← V.min← index(i, V.cluster[i].min)
9: end if

10: Delete(V.cluster[high(x)], low(x))
11: if V.cluster[high(x)].min = ∅ then
12: Delete(V.summary, high(x))
13: end if
14: if x = V.max then
15: if V.summary.max = ∅ then
16: V.max← V.min
17: else
18: i← V.summary.max
19: V.max← index(i, V.cluster[i].max)
20: end if
21: end if
22: end procedure

7 Lower Bound

Ω(lg lgU)

for U = nlgO(1) n and space = O(n · poly lg n).

8 Space Optimization

How to get O(n) space:

• Only store non-empty clusters

• Make V.cluster a hash table

• Space: O(n · lg lgU)

5


