Van Emde Boas Tree

Lecture Notes

1 Introduction

Goal: Maintain n elements among {0,1,...,U — 1} subject to:
Operation Definitions:

e Insert(z): S« SU{z}
e Successor(z): Return min{y € S:y >z}, orc0if {y€ S:y>a} =10
e Delete(z): S« S\ {z}
Space: O(U)
Time: O(lglgU)
1.1 When is O(lglgU) useful?
If U =nPW or U = nlgo(l)”, then 1glgU = O(lglgn).

Application: Networking — IP address ranges.

1.2 Where might O(lglgn) come from?

Binary search on the levels of the tree.

lgU| lgU,

For binary search on k levels:
T(k)=T(k/2)+0O(1) = O(lgk)
For the Van Emde Boas recurrence:
T(U) =T(VU) +0(1) = O(lglgU)

Example: lg % =VU. If U = 26, then 1g2'6 = ? =8, and (2'6)1/2 = 216/2 — 28,

2 Version 1: Bit Vector

Insert /Delete: O(1)
Successor: O(U)
Bit vector = array of size U

e 0 = absent
e 1 = present

Example: U =16, n =4

[0]1]ofofofojofof1[t]ofof0f0]1]

3 Version 2: Split Universe into Clusters
Split the universe into VU clusters, each of size vU.

3.1 Structure

Summary vector: A bit vector of size U where each bit indicates whether the corresponding
cluster is non-empty.

Summary | 1 0 1 1]

Operations:
e Insert: O(1)
e Delete: 77
e Successor(x):

1. Look in z’s cluster
2. Look for next 1 bit in summary

3. Look for first 1 in that cluster

e Time: O(\V/U)

4 Version 3: Recursive Structure

If = iVU + j where 0 < j < VU:
Ifng,thenx:%/U—I—l(forUzlG,\/ﬁzél).

Definitions:
high(z) = |z/VU |
low(z) =2 mod VU
index(i, 7) = iVU + j
Example: 9 =|1001 | where high bits give cluster index, low bits give position within cluster.

4.1 VEB Structure
V = size U VEB tree

e V.cluster[i] = size vU VEB tree, for 0 <i < U

e V.summary = size \/U VEB tree

4.2 Insert(V,x)
T(U) =2T(VU)+ 0(1) = O(1gU)

1. procedure INSERT(V, x)

2 Insert(V.cluster[high(z)], low(z))
3: Insert(V.summary, high(z))

4: end procedure

4.3 Successor(V, z)

T(U) =0((gU)?)
1. procedure SUCCESSOR(V, x)
2 i < high(x)
3 J < Succ(V.cluster|i], low(z))
4 if j = oo then
5: i < Succ(V.summary, 1)
6 J Succ(V.cluster[i], —o0)
7 end if
8
9:

return index(7, j)
end procedure

5 Version 4: Store Min and Max

5.1 Insert(V,z)

Time: O(lgU)
1: procedure INSERT(V, z)

2: if x < V.min then
3: V.min < x

4: end if

5: if z > V. max then
6: V.max + x

7: end if

8: Insert(V.cluster[high(z)], low(z))
9: Insert(V.summary, high(z))
10: end procedure

5.2 Successor(V, x)

Time: O(lglgU)
1: procedure Succ(V,)

2: if z < V.min then

3: return V. min

4: end if

5: 14 high(x)

6: if low(x) < V.cluster[i]. max then
7: J Succ(V.cluster[i], low(x))
8: else

9: i < Succ(V.summary, 1)

10: J < V.cluster[i]. min

11: end if

12: return index(i, j)

13: end procedure

6 Version 5: Don’t Store Min Recursively

6.1 Insert(V,z)

Time: O(lglgU)
1. procedure INSERT(V, x)
2: if V. min = () then

3: V.min «+ V.max + x

4 return

5: end if

6: if x < V.min then

T: swap(x, V. min)

8: end if

9: if z > V. max then

10: V.max + x

11: end if

12: if V.cluster|high(z)]. min = () then
13: Insert(V.summary, high(x))

14: end if
15: Insert(V.cluster|high(x)], low(x))
16: end procedure

6.2 Delete(V,)

1: procedure DELETE(V, x)
2: if x = V.min then

1 < V.summary. min
if i = () then
V.min < V.max <« ()
return
end if
x < V.min < index(4, V.cluster[i]. min)
end if
10: Delete(V.cluster|high(x)], low(x))
11: if V.cluster|high(z)]. min = () then

12: Delete(V.summary, high(z))

13: end if

14: if x = V.max then

15: if V.summary. max = () then

16: V.max < V.min

17: else

18: 1 < V.summary. max

19: V. max < index(i, V.cluster[i]. max)
20: end if

21: end if

22: end procedure

7 Lower Bound
Q(lglgU)

for U = n'e”"' " and space = O(n - polylgn).

8 Space Optimization
How to get O(n) space:
e Only store non-empty clusters
e Make V.cluster a hash table

e Space: O(n-1glgU)

