
CS 4810: Advanced Algorithms Spring 2026

Lecture 3 — January 14, 2026

Prof. Prashant Pandey Scribe: Michael Pimble

1 Summary and Review

In the last lecture, we discussed the Van Emde Boas (vEB) tree, which allowed for all operations
in O(log logU) time while taking up O(U) space. For further context, see [1]

In this lecture, we discuss X-fast and Y-fast tries. Our goal is to maintain n elements in universe
U , completing all operations in O(log logU) time while taking up O(n) space. This use of X-fast
and Y-fast tries originates from [2].

1.1 Recap From Lecture 2

The vEB tree is a recursive data structure which stores n elements from U , as well as the following
attributes:

•
√
U clusters, which are all vEB trees

• A summary vEB tree of length
√
U , which stores the minimum and maximum values of each

cluster.

– Note: Only the maximum value is stored recursively in a vEB tree.

The vEB tree supports two types of operations, which X-fast and Y-fast tries will also support:

1. Insert and Delete operations

2. Find, Predecessor (find the largest value that is at most n), and Successor (find the small
value that is at least n) operations

For time complexity purposes, these operations can be grouped together for vEB, X-fast, and Y-fast
trees.

2 X-fast Tries

2.1 Preliminary Terms

Word – A w-bit integer within U = {0, 1, 2, . . . , 2w−1}
Trie – A tree in which every node is labeled according to the path which goes from the root to
that node.

• For U items, a binary trie has logU layers with a width of U on the bottom layer.

1

2.2 The Idea of an X-fast Trie

• For each layer of the trie, we make a hashtable

– This allows for constant lookup on each layer while using O(n logU) space total.

• Since any root-to-leaf path is monotone, we can do a binary search for 0-1 translation, achiev-
ing O(log logU) time for the successor operation.

2.3 X-fast Trie Example

U = 16, n = 4
{3, 9, 12, 14} → {0011, 1001, 1100, 1110}
1 0, 1

2 00, 10, 11

3 001, 100, 110, 111

4 0011, 1001, 1100, 1110

Each oval represents the hashmap in each layer

In summary, we make a hashtable for each level, binary search each hashtable to perform successor
in O(log logU) time.
Insert takes O(logU) time, and the tree takes up O(n logU) space.

2.4 Auxiliary Pointer

Let N be some internal node such that N contains an auxiliary pointer to a leaf of the tree.

if N → rightchild = ∅:
N → rightchild = Aux Points

then N → rightchild = Rightmost descendant

2.5 Search Path

Let T be the trie of an X-fast tree such that T has l + 1 levels
For any y ∈ U , there is in T some ordered list of nodes which would be followed if we were doing
a tree search for element y
Each level of nodes in the trie is also entered in the hashtableof the same level. We can query the
existence of any node in O(1) time

Succ(x, Trie):
N = Lowest node on the search path to x
if N.leftchild:

SuccNode = N.AuxPointer
else:

2

PredNode = N.AuxPointer
Return SuccNode.value

To find the lowest node on the search path, we will do a binary search on the full search path of
element y
At each level, we query in O(1) time using a hashmap

3 Y-fast Trie

3.1 Time and Space Comparison

Insert Pred/Succ Space

vEB log logU log logU U
X-fast logU log logU n logU
Y-fast log logU log logU n

3.2 Idea of a Y-fast Trie: Big/Little Universe

• Divide n items into O(n
logU) pieces, each of size O(logU)

• In practice, each piece will be between size logU and 4 logU

• Little Universe – Balanced BST

– Time: O(log logU)

– Space: O(logU)

• Big Universe – X-fast trie

– Time: O(log logU)

– Space: O(n
logU logU) = O(n)

Big Universe

Little Universe

3

References

[1] Peter van Emde Boas. Preserving order in a forest in less than logarithmic time. In 16th Annual
Symposium on Foundations of Computer Science, Berkeley, California, USA, October 13-15,
1975, pages 75–84. IEEE Computer Society, 1975.

[2] Dan E. Willard. Log-logarithmic worst-case range queries are possible in space theta(n). Inf.
Process. Lett., 17(2):81–84, 1983.

4

