
String Matching: Tries, Suffix Trees, and Suffix Arrays

CS 7800/4810 Lecture Notes

1 Introduction to String Matching

1.1 Topics Covered

� Tries

� Compressed Tries

� Suffix Trees and Arrays

1.2 The String Matching Problem

Given:

� Text T and Pattern P

� Both are strings over alphabet Σ

Goal: Find some or all occurrences of P in T as substrings.

1.3 Classical Approaches

One-shot algorithms achieve O(T ) time:

� Knuth-Morris-Pratt (SICOMP 1977)

� Boyer-Moore (CACM 1977)

� Karp-Rabin (IBM JRD 1987)

Static Data Structure approach:

� Preprocess T , then query with P

� Goal: O(|P |) query time, O(|T |) space

Other data structures consider cases when P has wildcards or when P need not match as
an exact substring (Hamming/edit distance). See:

� Cole, Gottlieb, Levenstein (STOC 2004)

� Maaß and Nowak (CPM 2005)
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2 Tries

2.1 Warm Up: Pred Among Strings

Given a collection of strings {T1, . . . , Tk}, support predecessor queries (e.g., library search).

Definition 1 (Trie). A trie is a rooted tree with child branches labeled with letters in Σ.

Key properties:

� Strings are represented as root-to-leaf paths in the trie

� Add a new letter $ to the end of each string (otherwise cannot distinguish prefixes as absent
or present)

2.2 Example

For the set {Ana, ann, anna, anne}:

$

a

$

$

a

$

e

n
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a

Ana$ ann$

anna$ anne$

3 Trie Representation

Let T = #nodes in trie ≤
∑k

i=1 |Ti|.
Each node stores its children. The following table summarizes different representation options:
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# Representation Query Time Space

(1) Array O(|P |) O(T · |Σ|)
(2) Balanced BST O(|P | · log |Σ|) O(T )
(3) Hash table O(|P |) O(T )

(no predecessor)
(3.5) vEB / Y-fast O(|P | · log log |Σ|) O(T )
(3.75) Trays [Koplowitz & Levenstein 2006] O(|P |+ log |Σ|) O(T )
(4) Weight-balanced BST O(|P |+ log k) O(T )
(5) Leaf trimming O(|P |+ log |Σ|) O(T )
(*) vEB only when you fall off O(|P |+ log log |Σ|) O(T )

4 Weight-Balanced BST Representation

Achieves (|P |+ log k) query time with O(T ) space.

Definition 2. Weight each node by the number of descendant leaves.

The goal is to get big subtrees closer to the root.

← ↔ →0 ℓ

large

small small

Big subtrees are
placed closer to the
BST root

Key insight: Every 2 edges follow either:

� Advance 1 letter in P , or

� Reduce # candidate Ti to
2
3

5 Leaf Trimming

Cut below maximally deep nodes with ≥ |Σ| descendant nodes.

� # leaves ≤ |T |
|Σ| ⇒ method (1)

� # branching nodes < |T |
|Σ| ⇒ method (2)

� # non-branching top nodes: k < |Σ| ⇒ method (4)

This achieves O(|P |+ log |Σ|) query time.
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5.1 String Sorting

Sorting strings: O(T + k · log |Σ|) via integer sorting, or O(T · k log k) via comparison.

6 Compressed Tries

Definition 3 (Compressed Trie). Contract non-branching paths into a single edge.

The same representations apply, with T = #compressed nodes = O(k) nodes.

a$

$

a$
e$

n

an

Ana

ann anna anne

7 Suffix Trees

Definition 4 (Suffix Tree). A suffix tree of text T is a compressed trie of all |T | suffixes T [i :] of
T (with $ appended).

7.1 Example: “banana$”

The suffixes are:

0 : banana$

1 : anana$

2 : nana$

3 : ana$

4 : na$

5 : a$

6 : $

Properties:

� |T |+ 1 leaves

� Edge labels are substrings T [i : j]

� Store as two indices (i, j)

� ⇒ O(|T |) space
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8 Applications of Suffix Trees

� Pattern search: Search for P gives subtree whose leaves correspond to all occurrences of P

– O(|P |) time via hash (+vEB)

– O(|P |+ log |Σ|) via trays ⇒ leaves stored in T

� List first k occurrences: O(k) additional time

– Every node points to leftmost descendant leaf

– Leaves connected via linked list

� Count occurrences: O(1) additional time (subtree sizes)

� Longest repeated substring in T : O(|T |) time

– = branching node of maximum “letter depth”

� Longest common substring: T [i :] vs T [j :] in O(1) via LCA query

9 Suffix Arrays

Definition 5 (Suffix Array). The suffix array SA of text T stores the indices of suffixes sorted
lexicographically.

9.1 Example: “banana$”

SA Suffix

6 $

5 a$
3 ana$
1 anana$
0 banana$
4 na$
2 nana$

Note: $ < a < b < . . .
Space: O(|T |)
Construction: O(|T |+ sort(|Σ|))

9.2 LCP Array

Definition 6 (LCP Array). LCP[i] = length of longest common prefix of ith and (i+1)st suffix in
sorted order.

For “banana$”:
LCP = [0, 1, 3, 0, 0, 2]
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9.3 Searching with Suffix Arrays

Searchable in O(|P | · log |T |) via binary search.
When binary searching in interval SA[i : j]: only need to compare from letter RMQLCP(i, j−1).
This uses Range Minimum Queries on the LCP array.

9.4 Cartesian Tree of LCP

The Cartesian tree of the LCP array provides efficient range minimum queries.

Definition 7 (Cartesian Tree). Given an array A[0..n − 1], the Cartesian tree is a binary tree
where:

� Heap property: Each node contains the minimum value in its subtree’s range

� BST property: Inorder traversal yields elements in original array order

Construction: For array A[i..j]:

1. Find the minimum element A[m] in the range (leftmost if ties)

2. Make A[m] the root

3. Recursively build left subtree from A[i..m− 1]

4. Recursively build right subtree from A[m+ 1..j]

Example: For LCP = [0, 1, 3, 0, 0, 2]:

LCP: 0 0 0

0,0,0

6 1 0 2

5 3 4 2

3 1

□ = LCP values

⃝ = SA indices

Key property: RMQ(i, j) = LCA of nodes i and j in the Cartesian tree.

10 Summary

Data Structure Query Time Space

Suffix Tree (hash) O(|P |) O(|T |)
Suffix Tree (trays) O(|P |+ log |Σ|) O(|T |)
Suffix Array + LCP + RMQ O(|P |+ log |T |) O(|T |)
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