String Matching: Tries, Suffix Trees, and Suffix Arrays

CS 7800/4810 Lecture Notes

1 Introduction to String Matching
1.1 Topics Covered

e Tries

e Compressed Tries

e Suffix Trees and Arrays

1.2 The String Matching Problem

Given:
o Text T and Pattern P
e Both are strings over alphabet 3

Goal: Find some or all occurrences of P in T as substrings.

1.3 Classical Approaches
One-shot algorithms achieve O(T") time:

e Knuth-Morris-Pratt (SICOMP 1977)
e Boyer-Moore (CACM 1977)

e Karp-Rabin (IBM JRD 1987)

Static Data Structure approach:

e Preprocess T', then query with P

e Goal: O(|P]) query time, O(|T'|) space

Other data structures consider cases when P has wildcards or when P need not match as
an exact substring (Hamming/edit distance). See:

e Cole, Gottlieb, Levenstein (STOC 2004)

e Maafl and Nowak (CPM 2005)

2 Tries

2.1 Warm Up: Pred Among Strings
Given a collection of strings {71, ..., Tk}, support predecessor queries (e.g., library search).
Definition 1 (Trie). A trie is a rooted tree with child branches labeled with letters in X.

Key properties:

e Strings are represented as root-to-leaf paths in the trie

e Add a new letter $ to the end of each string (otherwise cannot distinguish prefixes as absent

or present)

2.2 Example

For the set {Ana, ann, anna, anne}:

3 'Trie Representation

Let T = #nodes in trie < Zle T3
Each node stores its children. The following table summarizes different representation options:

Representation Query Time Space
1) Awmay o(P)) o - I))
(2) Balanced BST O(|P| - log |X]) o(T)
(3) Hash table O(|P]) o(T)
(no predecessor)
(3.5) VvEB / Y-fast O(|P| - loglog|X|) o(T)
(3.75) Trays [Koplowitz & Levenstein 2006] O(|P| + log |X]) o(T)
(4) Weight-balanced BST O(|P| + log k) o(T)
(5) Leaf trimming O(|P| + log |2)) o(T)
(*) vEB only when you fall off O(|P| + loglog|X]) o(T)

4 Weight-Balanced BST Representation
Achieves (|P| + log k) query time with O(T') space.
Definition 2. Weight each node by the number of descendant leaves.

The goal is to get big subtrees closer to the root.

o[« [< | [> ¢

Big subtrees are
placed closer to the
BST root

large

small small

Key insight: Every 2 edges follow either:
e Advance 1 letter in P, or

e Reduce # candidate T; to %

5 Leaf Trimming

Cut below maximally deep nodes with > || descendant nodes.

o # leaves < % = method (1)
e # branching nodes < % = method (2)
e # non-branching top nodes: k < |3| = method (4)

This achieves O(|P| + log |X|) query time.

5.1 String Sorting
Sorting strings: O(T + k - log |X]) via integer sorting, or O(T - klog k) via comparison.

6 Compressed Tries

Definition 3 (Compressed Trie). Contract non-branching paths into a single edge.

The same representations apply, with 7" = #compressed nodes = O(k) nodes.

7 Suffix Trees

Definition 4 (Suffix Tree). A suffix tree of teaxt T is a compressed trie of all |T| suffizes T[i :] of
T (with § appended).

7.1 Example: “banana$”

The suffixes are:

banana$
anana$
nana$
ana$

a$

$

=

S O s W~ O
o

L

Properties:

e |T|+1 leaves

e Edge labels are substrings T'[i : j]
e Store as two indices (i, j)

e = O(|T]) space

8 Applications of Suffix Trees

e Pattern search: Search for P gives subtree whose leaves correspond to all occurrences of P

— O(|P]) time via hash (+vEB)
— O(|P| +1log|X|) via trays = leaves stored in T'

List first £ occurrences: O(k) additional time

— Every node points to leftmost descendant leaf

— Leaves connected via linked list

Count occurrences: O(1) additional time (subtree sizes)

Longest repeated substring in 7: O(|T]) time

— = branching node of maximum “letter depth”

Longest common substring: 7'[i :] vs T[j :] in O(1) via LCA query

9 Suffix Arrays

Definition 5 (Suffix Array). The suffix array SA of text T stores the indices of suffixes sorted
lexicographically.

9.1 Example: “banana$”

SA Suffix

$

a$

ana$
anana$
banana$
na$
nana$

N O = WOt

Note: § <a<b<...
Space: O(|T)
Construction: O(|T| + sort(|X]))

9.2 LCP Array

Definition 6 (LCP Array). LCP[i] = length of longest common prefiz of it" and (i + 1)t suffiz in
sorted order.

For “banana$”:
LCP =10,1,3,0,0,2]

9.3 Searching with Suffix Arrays

Searchable in O(|P| -log |T|) via binary search.
When binary searching in interval SA[i : j|: only need to compare from letter RMQp,cp (i, —1).
This uses Range Minimum Queries on the LCP array.

9.4 Cartesian Tree of LCP
The Cartesian tree of the LCP array provides efficient range minimum queries.

Definition 7 (Cartesian Tree). Given an array A[0..n — 1], the Cartesian tree is a binary tree
where:

e Heap property: Fach node contains the minimum value in its subtree’s range
e BST property: Inorder traversal yields elements in original array order
Construction: For array Ali..j]:

1. Find the minimum element A[m| in the range (leftmost if ties)

2. Make A[m] the root

3. Recursively build left subtree from Afi..m — 1]

4. Recursively build right subtree from A[m + 1..j]

Example: For LCP = [0,1,3,0,0, 2]:

LCP: Lol o] o]

0,0,0

1 2 0 = LCP values
(O = SA indices

Key property: RMQ(i,7) = LCA of nodes ¢ and j in the Cartesian tree.

10 Summary

Data Structure Query Time Space
Suffix Tree (hash) O(|P]) o(|T)
Suffix Tree (trays) O(|P|+1log|X]) O(|T))

Suffix Array + LCP + RMQ O(|P| +log|T|) O(|T])

	Introduction to String Matching
	Topics Covered
	The String Matching Problem
	Classical Approaches

	Tries
	Warm Up: Pred Among Strings
	Example

	Trie Representation
	Weight-Balanced BST Representation
	Leaf Trimming
	String Sorting

	Compressed Tries
	Suffix Trees
	Example: ``banana$''

	Applications of Suffix Trees
	Suffix Arrays
	Example: ``banana$''
	LCP Array
	Searching with Suffix Arrays
	Cartesian Tree of LCP

	Summary

