Succinet Data Structures

Lecture Notes

1 Overview

Topics covered:

Survey of succinct data structures

Succinct binary tree (level order representation)

Via balanced parentheses

Succinct Rank & Select

Goal: “Small” space (often static)
Easy to do in linear space. But linear space is not optimal!
1.1 Three Senses of Small Space
1. Implicit: OPT + O(1) bits
e OPT = information theoretic optimum
e O(1) is for rounding

e Typically, the data structure is “just the data” permuted in some order

o Examples: sorted array, heap
2. Succinct: OPT + o(OPT) bits

e Leading constant is 1
3. Compact: O(OPT) bits

e Often a factor w smaller than “linear space” data structures
e ‘“Linear space” DS use O(n) words for n-bit strings

e Example: Suffix trees use O(n) words for n-bit strings



2 Mini Survey

e Implicit dynamic search tree: O(lgn) worst case insert/delete/predecessor

e Succinct dictionary:
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e Succinct binary trie:

e Succinct k-ary trie:
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3 Level Order Representation of Binary Tries
For each node in level order:

e Write 0/1 for whether it has a left child

e Write 0/1 for whether it has a right child

= 2n bits

3.1 Example

Consider the following binary trie:

Level order traversal: A, B, C,D, E, F, G
Bit string (with external nodes, 2n + 1 bits):

Position ‘ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Bit () 1.1 0 1. 1. 1.0 1 0 O O O O O
Node A B C ¢ D E F o G o ° ° ° ° °



The first bit (1) in parentheses represents the root node A. Internal nodes are marked with 1,

external nodes (o) with 0.
B =111011101000000
Equivalent formulation:

e Append external node e for each missing child
e For each node in level order: write 0 if external, 1 if internal

e = extra leading 1 (2n + 1) bits

4 Navigation

Theorem 1. Left and right children of the i-th internal node are at positions 2i and 2i + 1 in the
array.

Proof. By induction on i:
The children of node ¢ appear just after (¢ — 1) internal nodes’ children, as external nodes have

no children.
Consider two cases: either node 7 is on the same level as node i — 1, or on a new level.

Case 1: @ Q
Case 2: Q

Before node i’s children, we have:

e ¢ — 1 internal nodes

e j external nodes

Remaining children of internal nodes before position of i’s left child:
=20—-1)—(i—-1)—j=i—j—1

where 2(i — 1) counts all children, (i — 1) subtracts internal nodes already seen, and j subtracts
external nodes.

Position of left child: =i —j -1+ (i+7)+1=2i

Position of right child: = 2i + 1 O



5 Rank-Select in Bit Strings

Definition 1. For a bit string B:
e ranki (i) = number of 1s at or before position i
e selecti(j) = position of the j-th 1 bit
Navigation using Rank-Select:

left_child (i) = 2 - rank; (i)
right_child(i) = 2 - rank; (¢) + 1
parent(i) = selecty(|i/2])

Note: Subtree size is not possible in level order representation.

6 Rank: Jacobson (FOCS 1989)

Step 1: Use lookup table for substrings of length %lgn
The lookup table has the following structure:

1
5 lgn columns

0000 0 0 0

n

2 0001 0 0 1

= T~ each cell: lglgn bits

Sl o000 | o 0 1
each row = one possible
bit string of length %lgn

e Rows: 238" — \/n possible bit strings of length %lgn

e Columns: % lg n possible query positions within each bit string
e Cell size: Each answer is at most % lgn, requiring 1g(3 lgn) = O(lglgn) bits

Total space for lookup table:
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Step 2: Split into (Ig? n)-bit chunks

Store cumulative rank: lgn bits




Space:

0] <Z . lgn) =0 <n> bits
lg“n lgn

Step 3: Split each chunk into %lg n-bit subchunks

’ Lign ‘ ‘ ‘ ‘ Store cumulative rank within chunk: lglgn bits

1g? n total

Space:

) <n : lglgn) = o(n) bits
lgn

Step 4: Query

rank(i) = rank of chunk + relative rank of subchunk within chunk + relative rank of element within subchunk

Step 2 Step 3 lookup table

Result: O(1) time, O (n lgfglgjl") bits
=0 (lgﬁn) bits possible for any k = O(1)

= O( lgn ) insert/delete /rank/select

lglgn

7 Select: Clark-Munro (1996)

Step 1: Store array of indices of every (Ign - lglgn)-th 1 bit

Space:
n n
— 1 = bit
O(lgn-lglgn gn) O<lglgn> e

Step 2: Within group of lgn - lglgn 1-bits, say r bits total.
If » > (Ign - lglgn)?, then store array of indices of 1 bits in group.

Space:
n n
Ol ——————=-lgn-lglgn -1 =0 bit
((lgn-lglgn)2 B R gn) <lglgn> e

.
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—_——
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Step 3: Repeat (1) & (2) on all reduced bit strings to reduce to bit strings of length (Iglgn)°™®)

(3.1) Store relative index (using lglgn bits) of (Iglgn)?-th 1 bit

n n .
© (g ) = (i)

Space:




(3.2) Within group of (Iglgn)? 1-bits, say r bits.
If r > (Iglgn)*, then store relative indices of 1 bits.
Space:

n n
—— - (lglgn)? - 1gl = i
O((lglgn)4 lglgn)”-le gn) O<lglgn> bits

Else reduce to bit strings of length r < (Iglgn)?.

Step 4: Use lookup table for bit strings of length < %lgn
Space:
O(v/n-lgn-lglgn)

NG X len x lIglgn
~— ~—~— ~——
# bit strings # queries answer size

Result: O(1) query, O <1gﬁgn) bits

=0 (lg%n) bits for any k = O(1)

8 Binary Trees as Balanced Parentheses

Reference: Munro & Raman 2001

8.1 Bijection: Binary Trie <+ Rooted Ordered Tree

Binary Trie Rooted Ordered Tree

Query correspondence:

Binary Trie — Rooted Ordered Tree
node —  node

left child —  first child

right child —  next sibling

parent —  prev. sibling or parent

Subtree size:

subtree_size(binary trie) = size(node) + size(right sibling)



8.2 Balanced Parentheses

DFS traversal with open parenthesis on first visit, close parenthesis on second visit (Euler tour).
Example:

CCCY )Yy )Yy cCHr ) CH))
* ABBCCDDAEFFEGG *

Bit encoding:
e Open parenthesis = 0
e (Closed parenthesis = 1

Subtree size:
1 . . . .
= — x distance to matching closing parenthesis
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