
Succinct Data Structures

Lecture Notes

1 Overview

Topics covered:

� Survey of succinct data structures

� Succinct binary tree (level order representation)

� Via balanced parentheses

� Succinct Rank & Select

Goal: “Small” space (often static)
Easy to do in linear space. But linear space is not optimal!

1.1 Three Senses of Small Space

1. Implicit: OPT+O(1) bits

� OPT = information theoretic optimum

� O(1) is for rounding

� Typically, the data structure is “just the data” permuted in some order

� Examples: sorted array, heap

2. Succinct: OPT+ o(OPT) bits

� Leading constant is 1

3. Compact: O(OPT) bits

� Often a factor w smaller than “linear space” data structures

� “Linear space” DS use O(n) words for n-bit strings

� Example: Suffix trees use O(n) words for n-bit strings

1

2 Mini Survey

� Implicit dynamic search tree: O(lg n) worst case insert/delete/predecessor

� Succinct dictionary:

lg

(
u

n

)
+O

(
n · (lg lg n)

2

lg n

)
bits

� Succinct binary trie:

Cn =

(
2n

n

)
1

n+ 1
∼ 4n such tries

lgCn + o(lgCn) = 2n+ o(n) bits

� Succinct k-ary trie:

Ck =

(
kn+ 1

n

)
1

kn+ 1
tries

3 Level Order Representation of Binary Tries

For each node in level order:

� Write 0/1 for whether it has a left child

� Write 0/1 for whether it has a right child

⇒ 2n bits

3.1 Example

Consider the following binary trie:

A

B

D

G

C

E F

Level order traversal: A, B, C, D, E, F, G
Bit string (with external nodes, 2n+ 1 bits):

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit (1) 1 1 0 1 1 1 0 1 0 0 0 0 0 0
Node A B C • D E F • G • • • • • •

2

The first bit (1) in parentheses represents the root node A. Internal nodes are marked with 1,
external nodes (•) with 0.

B = 111011101000000
Equivalent formulation:

� Append external node • for each missing child

� For each node in level order: write 0 if external, 1 if internal

� ⇒ extra leading 1 (2n+ 1) bits

4 Navigation

Theorem 1. Left and right children of the i-th internal node are at positions 2i and 2i+ 1 in the
array.

Proof. By induction on i:
The children of node i appear just after (i− 1) internal nodes’ children, as external nodes have

no children.
Consider two cases: either node i is on the same level as node i− 1, or on a new level.

Case 1: i−1 · · · i

Case 2:

i−1

i

Before node i’s children, we have:

� i− 1 internal nodes

� j external nodes

Remaining children of internal nodes before position of i’s left child:

= 2(i− 1)− (i− 1)− j = i− j − 1

where 2(i − 1) counts all children, (i − 1) subtracts internal nodes already seen, and j subtracts
external nodes.

Position of left child: = i− j − 1 + (i+ j) + 1 = 2i
Position of right child: = 2i+ 1

3

5 Rank-Select in Bit Strings

Definition 1. For a bit string B:

� rank1(i) = number of 1s at or before position i

� select1(j) = position of the j-th 1 bit

Navigation using Rank-Select:

left child(i) = 2 · rank1(i)
right child(i) = 2 · rank1(i) + 1

parent(i) = select1(⌊i/2⌋)

Note: Subtree size is not possible in level order representation.

6 Rank: Jacobson (FOCS 1989)

Step 1: Use lookup table for substrings of length 1
2 lg n

The lookup table has the following structure:

0000

0001

0010

...

0

0

0

0

0

0

0

1

1√
n
ro
w
s

1
2 lg n columns

each cell: lg lg n bits

each row = one possible
bit string of length 1

2 lg n

� Rows: 2
1
2
lgn =

√
n possible bit strings of length 1

2 lg n

� Columns: 1
2 lg n possible query positions within each bit string

� Cell size: Each answer is at most 1
2 lg n, requiring lg(12 lg n) = O(lg lg n) bits

Total space for lookup table:

√
n︸︷︷︸

rows

× 1

2
lg n︸ ︷︷ ︸

columns

×O(lg lg n)︸ ︷︷ ︸
bits per cell

= O(
√
n · lg n · lg lgn) = o(n) bits

Step 2: Split into (lg2 n)-bit chunks

lg2 n

Store cumulative rank: lg n bits

4

Space:

O

(
n

lg2 n
· lg n

)
= O

(
n

lg n

)
bits

Step 3: Split each chunk into 1
2 lg n-bit subchunks

1
2
lgn

lg2 n total

Store cumulative rank within chunk: lg lg n bits

Space:

O

(
n

lg n
· lg lgn

)
= o(n) bits

Step 4: Query

rank(i) = rank of chunk︸ ︷︷ ︸
Step 2

+relative rank of subchunk within chunk︸ ︷︷ ︸
Step 3

+relative rank of element within subchunk︸ ︷︷ ︸
lookup table

Result: O(1) time, O
(
n · lg lgn

lgn

)
bits

⇒ O
(

n
lgk n

)
bits possible for any k = O(1)

⇒ O
(

lgn
lg lgn

)
insert/delete/rank/select

7 Select: Clark-Munro (1996)

Step 1: Store array of indices of every (lg n · lg lgn)-th 1 bit
Space:

O

(
n

lg n · lg lgn
· lg n

)
= O

(
n

lg lg n

)
bits

Step 2: Within group of lg n · lg lgn 1-bits, say r bits total.
If r ≥ (lg n · lg lgn)2, then store array of indices of 1 bits in group.
Space:

O

(
n

(lg n · lg lgn)2
· lg n · lg lg n · lg n

)
= O

(
n

lg lg n

)
bits

n

(lg n · lg lg n)2︸ ︷︷ ︸
such groups

× lg n · lg lgn︸ ︷︷ ︸
1 bits

× lg n︸︷︷︸
index size

Step 3: Repeat (1) & (2) on all reduced bit strings to reduce to bit strings of length (lg lg n)O(1)

(3.1) Store relative index (using lg lg n bits) of (lg lg n)2-th 1 bit

Space:

O

(
n

(lg lg n)2
· lg lgn

)
= O

(
n

lg lgn

)
bits

5

(3.2) Within group of (lg lg n)2 1-bits, say r bits.

If r ≥ (lg lgn)4, then store relative indices of 1 bits.

Space:

O

(
n

(lg lg n)4
· (lg lg n)2 · lg lg n

)
= O

(
n

lg lg n

)
bits

Else reduce to bit strings of length r ≤ (lg lg n)4.

Step 4: Use lookup table for bit strings of length ≤ 1
2 lg n

Space:
O(

√
n · lg n · lg lgn)

√
n︸︷︷︸

bit strings

× lg n︸︷︷︸
queries

× lg lgn︸ ︷︷ ︸
answer size

Result: O(1) query, O
(

n
lg lgn

)
bits

⇒ O
(

n
lgk n

)
bits for any k = O(1)

8 Binary Trees as Balanced Parentheses

Reference: Munro & Raman 2001

8.1 Bijection: Binary Trie ↔ Rooted Ordered Tree

Binary Trie

A

B

C E

F G

D

D

Rooted Ordered Tree

∗

A

B C D

E

F

G

Query correspondence:

Binary Trie −→ Rooted Ordered Tree

node → node
left child → first child
right child → next sibling
parent → prev. sibling or parent

Subtree size:

subtree size(binary trie) = size(node) + size(right sibling)

6

8.2 Balanced Parentheses

DFS traversal with open parenthesis on first visit, close parenthesis on second visit (Euler tour).
Example:

((() () ()) (()) ())

* A B B C C D D A E F F E G G *

Bit encoding:

� Open parenthesis = 0

� Closed parenthesis = 1

Subtree size:

=
1

2
× distance to matching closing parenthesis

9 References

1. G. Jacobson. Succinct Static Data Structures. PhD Thesis, Carnegie Mellon University, 1989.

2. D. Clark and J. I. Munro. Efficient Suffix Trees on Secondary Storage. SODA, 383–391, 1996.

3. J. I. Munro and V. Raman. Succinct Representation of Balanced Parentheses and Static
Trees. SIAM J. Computing, 31(3):762–776, 2001.

7

	Overview
	Three Senses of Small Space

	Mini Survey
	Level Order Representation of Binary Tries
	Example

	Navigation
	Rank-Select in Bit Strings
	Rank: Jacobson (FOCS 1989)
	Select: Clark-Munro (1996)
	Binary Trees as Balanced Parentheses
	Bijection: Binary Trie Rooted Ordered Tree
	Balanced Parentheses

	References

