
Succinct Data Structures

Lecture Notes

1 Overview

Topics covered:

� Survey of succinct data structures

� Succinct binary tree (level order representation)

� Via balanced parentheses

� Succinct Rank & Select

Goal: “Small” space (often static)
Easy to do in linear space. But linear space is not optimal!

1.1 Three Senses of Small Space

1. Implicit: OPT+O(1) bits

� OPT = information theoretic optimum

� O(1) is for rounding

� Typically, the data structure is “just the data” permuted in some order

� Examples: sorted array, heap

2. Succinct: OPT+ o(OPT) bits

� Leading constant is 1

3. Compact: O(OPT) bits

� Often a factor w smaller than “linear space” data structures

� “Linear space” DS use O(n) words for n-bit strings

� Example: Suffix trees use O(n) words for n-bit strings
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2 Mini Survey

� Implicit dynamic search tree: O(lg n) worst case insert/delete/predecessor

� Succinct dictionary:

lg

(
u

n

)
+O

(
n · (lg lg n)

2

lg n

)
bits

� Succinct binary trie:

Cn =

(
2n

n

)
1

n+ 1
∼ 4n such tries

lgCn + o(lgCn) = 2n+ o(n) bits

� Succinct k-ary trie:

Ck =

(
kn+ 1

n

)
1

kn+ 1
tries

3 Level Order Representation of Binary Tries

For each node in level order:

� Write 0/1 for whether it has a left child

� Write 0/1 for whether it has a right child

⇒ 2n bits

3.1 Example

Consider the following binary trie:

A

B

D

G

C

E F

Level order traversal: A, B, C, D, E, F, G
Bit string (with external nodes, 2n+ 1 bits):

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit (1) 1 1 0 1 1 1 0 1 0 0 0 0 0 0
Node A B C • D E F • G • • • • • •
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The first bit (1) in parentheses represents the root node A. Internal nodes are marked with 1,
external nodes (•) with 0.

B = 111011101000000
Equivalent formulation:

� Append external node • for each missing child

� For each node in level order: write 0 if external, 1 if internal

� ⇒ extra leading 1 (2n+ 1) bits

4 Navigation

Theorem 1. Left and right children of the i-th internal node are at positions 2i and 2i+ 1 in the
array.

Proof. By induction on i:
The children of node i appear just after (i− 1) internal nodes’ children, as external nodes have

no children.
Consider two cases: either node i is on the same level as node i− 1, or on a new level.

Case 1: i−1 · · · i

Case 2:

i−1

i

Before node i’s children, we have:

� i− 1 internal nodes

� j external nodes

Remaining children of internal nodes before position of i’s left child:

= 2(i− 1)− (i− 1)− j = i− j − 1

where 2(i − 1) counts all children, (i − 1) subtracts internal nodes already seen, and j subtracts
external nodes.

Position of left child: = i− j − 1 + (i+ j) + 1 = 2i
Position of right child: = 2i+ 1
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5 Rank-Select in Bit Strings

Definition 1. For a bit string B:

� rank1(i) = number of 1s at or before position i

� select1(j) = position of the j-th 1 bit

Navigation using Rank-Select:

left child(i) = 2 · rank1(i)
right child(i) = 2 · rank1(i) + 1

parent(i) = select1(⌊i/2⌋)

Note: Subtree size is not possible in level order representation.

6 Rank: Jacobson (FOCS 1989)

Step 1: Use lookup table for substrings of length 1
2 lg n

The lookup table has the following structure:

0000

0001

0010

...

0

0

0

0

0

0

0

1

1√
n
ro
w
s

1
2 lg n columns

each cell: lg lg n bits

each row = one possible
bit string of length 1

2 lg n

� Rows: 2
1
2
lgn =

√
n possible bit strings of length 1

2 lg n

� Columns: 1
2 lg n possible query positions within each bit string

� Cell size: Each answer is at most 1
2 lg n, requiring lg(12 lg n) = O(lg lg n) bits

Total space for lookup table:

√
n︸︷︷︸

# rows

× 1

2
lg n︸ ︷︷ ︸

# columns

×O(lg lg n)︸ ︷︷ ︸
bits per cell

= O(
√
n · lg n · lg lgn) = o(n) bits

Step 2: Split into (lg2 n)-bit chunks

lg2 n

Store cumulative rank: lg n bits
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Space:

O

(
n

lg2 n
· lg n

)
= O

(
n

lg n

)
bits

Step 3: Split each chunk into 1
2 lg n-bit subchunks

1
2
lgn

lg2 n total

Store cumulative rank within chunk: lg lg n bits

Space:

O

(
n

lg n
· lg lgn

)
= o(n) bits

Step 4: Query

rank(i) = rank of chunk︸ ︷︷ ︸
Step 2

+relative rank of subchunk within chunk︸ ︷︷ ︸
Step 3

+relative rank of element within subchunk︸ ︷︷ ︸
lookup table

Result: O(1) time, O
(
n · lg lgn

lgn

)
bits

⇒ O
(

n
lgk n

)
bits possible for any k = O(1)

⇒ O
(

lgn
lg lgn

)
insert/delete/rank/select

7 Select: Clark-Munro (1996)

Step 1: Store array of indices of every (lg n · lg lgn)-th 1 bit
Space:

O

(
n

lg n · lg lgn
· lg n

)
= O

(
n

lg lg n

)
bits

Step 2: Within group of lg n · lg lgn 1-bits, say r bits total.
If r ≥ (lg n · lg lgn)2, then store array of indices of 1 bits in group.
Space:

O

(
n

(lg n · lg lgn)2
· lg n · lg lg n · lg n

)
= O

(
n

lg lg n

)
bits

n

(lg n · lg lg n)2︸ ︷︷ ︸
# such groups

× lg n · lg lgn︸ ︷︷ ︸
# 1 bits

× lg n︸︷︷︸
index size

Step 3: Repeat (1) & (2) on all reduced bit strings to reduce to bit strings of length (lg lg n)O(1)

(3.1) Store relative index (using lg lg n bits) of (lg lg n)2-th 1 bit

Space:

O

(
n

(lg lg n)2
· lg lgn

)
= O

(
n

lg lgn

)
bits
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(3.2) Within group of (lg lg n)2 1-bits, say r bits.

If r ≥ (lg lgn)4, then store relative indices of 1 bits.

Space:

O

(
n

(lg lg n)4
· (lg lg n)2 · lg lg n

)
= O

(
n

lg lg n

)
bits

Else reduce to bit strings of length r ≤ (lg lg n)4.

Step 4: Use lookup table for bit strings of length ≤ 1
2 lg n

Space:
O(

√
n · lg n · lg lgn)

√
n︸︷︷︸

# bit strings

× lg n︸︷︷︸
# queries

× lg lgn︸ ︷︷ ︸
answer size

Result: O(1) query, O
(

n
lg lgn

)
bits

⇒ O
(

n
lgk n

)
bits for any k = O(1)

8 Binary Trees as Balanced Parentheses

Reference: Munro & Raman 2001

8.1 Bijection: Binary Trie ↔ Rooted Ordered Tree

Binary Trie

A

B

C E

F G

D

D

Rooted Ordered Tree

∗

A

B C D

E

F

G

Query correspondence:

Binary Trie −→ Rooted Ordered Tree

node → node
left child → first child
right child → next sibling
parent → prev. sibling or parent

Subtree size:

subtree size(binary trie) = size(node) + size(right sibling)
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8.2 Balanced Parentheses

DFS traversal with open parenthesis on first visit, close parenthesis on second visit (Euler tour).
Example:

( ( ( ) ( ) ( ) ) ( ( ) ) ( ) )

* A B B C C D D A E F F E G G *

Bit encoding:

� Open parenthesis = 0

� Closed parenthesis = 1

Subtree size:

=
1

2
× distance to matching closing parenthesis
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