IPsec (AH, ESP), IKE

Guevara Noubir

CSG254: Network Security

noubir@ccs.neu.edu

Securing Networks

Control/Management (configuration)

Applications Layer

telnet/ftp: ssh, http: https, mail: PGP

(SSL/TLS)

Transport Layer (TCP)

(IPSec, IKE)

Network Layer (IP)

Link Layer

(IEEE802.1x/IEEE802.10)

Physical Layer

(spread-Spectrum, quantum crypto, etc.)

Network Security Tools:

Monitoring/Logging/Intrusion Detection

SSL vs. IPsec

'SSL:

- Avoids modifying "TCP stack" and requires minimum changes to the application
- Mostly used to authenticate servers

IPsec

- Transparent to the application and requires modification of the network stack
- Authenticates network nodes and establishes a secure channel between nodes
- Application still needs to authenticate the users

IPsec Protocol Suite (IETF Standard)

- Provides inter-operable crypto-based security services:
 - Services: confidentiality, authentication, integrity, and key management
 - Protocols:
 - Authentication Header (AH): RFC2402
 - Encapsulated Security Payload (ESP): 2406
 - Internet Key Exchange (IKE)
 - Environments: IPv4 and IPv6
 - Modes:
 - Transport (between two hosts)
 - Tunnel (between hosts/firewalls)

Assumption:

- End nodes already established a shared session key:
 - Manually or IKE

Security Association:

- Each secure connection is called a security association (SA)
- For each SA: key, end-node, sequence number, services, algorithms
- SA is unidirectional and identified by:
 - (destination-address, SPI = Security Parameter Index)

Protocols:

- Authentication Header: integrity protection
- Encapsulated Security Payload: encryption and/or integrity

IP Packets

AH Formatting

AH Protocol Number = 51

Transport mode

Tunnel mode

Next Header	Length (8)	Reserved (16)
Security Parameters Index (32)		
Sequence Number Field (32)		
Authentication Data (N*32)		

SN: for replay detection

IPsec - IKE

ESP Formatting

Tunnel mode

ESP Header

- NAT boxes:
 - IPsec tunnel mode doesn't easily work
- Firewalls
 - IPsec encrypts information used by firewalls to filter traffic (e.g., port number)
- AH mutable/immutable/predictable fields:
 - Some fields get modified by the intermediate routers and can't be protected by the AH
 - Mutable: type of service, flags, fragment offset, TTL, header checksum
 - Why is PAYLOAD-LENGTH considered immutable (even if packets can be fragmented)? Why not fragment offset. Inconsistency!
 - Mutable but predictable fields are included in the AH computation using their expected value at the destination (e.g., destination address even when using source routing)

IPsec: Internet Key Exchange

Goal:

- Mutual authentication and establishment of a shared secret session key using:
 - Pre-shared secret key or public signature-only key, or public encryption key
- Negotiation of features and cryptographic algorithms

Specification documents:

- ISAKMP (Internet Security Association and Key Management Protocol): RFC 2408
- IKE: RFC 2409
- DOI (Domain Of Interpretation): RFC 2407

Photuris

Photuris goal: signed Diffie-Hellman exchange

- 1. $A \rightarrow B$: C_A
- 2. $B \rightarrow A$: $C_{A'}$ $C_{B'}$ crypto offered
- 3 $A \rightarrow B$: $C_{A'}$ $C_{B'}$ $g^a \mod p$, crypto selected
- 4. $B \rightarrow A$: C_{A} , C_{B} , $g^b \mod p$
- 5. $A \rightarrow B$: $C_{A'}$ $C_{B'}$ g^{ab} mod $p\{A, \text{ signature on previous messages}\}$
- 6. $B \rightarrow A$: $C_{A'}$ $C_{B'}$, g^{ab} mod $p\{B, \text{ signature on previous messages}\}$
- Role of C_A, C_B, and messages
- Additional features: SPI selection
- Why not sign messages 3 & 4...?

Simple Key-Management for Internet Protocol (SKIP)

- Uses long term Diffie-Hellman keys
- Parties assumed to know each other public keys (i.e., g^a mod p) or exchange certificates
- Session key $X = g^{ab} \mod p$ is established in 0 messages
- Each packet is encrypted using data key S and each packet contains: X(S)
 - Same S can be used for several packets
- Later on PFS was added by periodically forgetting the keys and doing a new DH

ISAKMP (RFC2408)

- Proposed by NSA as a framework and accepted by IETF
 - Runs over UDP and allows to exchange fields to create a protocol
- IKE (RFC2409) based on OAKLEY & SKEME using ISAKMP syntax
- IKE phases:
 - Mutual authentication and session key establishment (also called ISAKMP SA or IKE SA)
 - 2. AH/ESP SAs establishment
- Each source/destination/port has its own SA/keys otherwise ESP traffic not using integrity could be decrypted...

Phase 1 IKE

- Two modes:
 - Aggressive mode: mutual authentication and session key establishment in three messages
 - $A \rightarrow B$: $g^a \mod p$, A, crypto proposal
 - $B \rightarrow A$: $g^b \mod p$, crypto choice, proof I'm B
 - A -> B: proof I'm A
 - Main: additional features such as hiding end-points identities and negotiating crypto DH algorithm
 - A -> B: crypto suite I support
 - *B* -> *A*: crypto suite I choose
 - $A \rightarrow B$: $g^a \mod p$
 - $B \rightarrow A$: $g^b \mod p$
 - $A \rightarrow B$: $g^{ab} \mod p$ {A, proof I'm A}
 - $B \rightarrow A$: $g^{ab} \mod p$ {B, proof I'm B}

CSG254: Network Security

IPsec - IKE

Phase 1 IKE

- Key types:
 - Pre-shared secret key
 - Public encryption key: fields are separately encrypted using the public key
 - Optimized public encryption key: used to encrypt a random symmetric key, and then data is encrypted using the symmetric key
 - Public signature key: used only for signature purpose
- ⇒ 8 variants of IKE phase 1: 2 modes x 4 key types
- Proof of Identity:
 - Required in messages 2-3 aggressive mode and 5-6 main mode
 - Proves the sender knows the key associated with the identity
 - Depends on the key type
 - Hash of identity key, DH values, nonces, crypto choices, cookies
 - Alternative: MAC of previous messages

Phase 1 IKE

- Negotiating cryptographic parameters
 - A specifies suites of acceptable algorithms:
 - {(3DES, MD5, RSA public key encryption, DH), (AES, SHA-1, pre-shared key, elliptic curve), ...}
 - The standard specifies a MUST be implemented set of algorithms:
 - Encryption=DES, hash=MD5/SHA-1, authentication=pre-shared key/DH
 - The lifetime of the SA can also be negotiated
- Session keys:
 - Key seed: SKEYID
 - Signature public keys: SKEYID = prf(nonces, g^{xy}mod p)
 - Encryption public keys: prf(hash(nonces), cookies)
 - Pre-shared secret key: prf(pre-shared secret key, nonces)
 - Secret to generate other keys: SKEYID_d = prf(SKEYID, (g^{xy}, cookies, 0))
 - Integrity key: SKEYID_a = prf(SKEYID, (SKEYID_d, (gxy, cookies, 1)))
 - Encryption key: SKEYID_e = prf(SKEYID, (SKEYID_a, (gxy, cookies, 2))
- Message IDs:
 - Random 32-bits serves the purpose of a SN but in an inefficient manner because they have to be remembered

IKE Phase 1: Public Signature Keys, Main Mode

Description:

- Both parties have public keys for signatures
- Hidden endpoint identity (except for ...?)

Protocol:

- A -> B: CP
- B -> A: CPA
- A -> B: g^a mod p, nonce_A
- $B \rightarrow A$: $g^b \mod p$, nonce

 $K = f(g^{ab} \mod p, \text{ nonce}_A, \text{ nonce}_B)$

- A -> B: K{A, proof I'm A, [certificate]}
- B -> A: K{B, proof I'm B, [certificate]}

Questions:

- What is the purpose of the nonces?
- Can we make to protocol shorter (5 messages)? At what expense?

CSG254: Network Security

IPsec - IKE

IKE Phase 1: Public Signature Keys, Aggressive Mode

Protocol:

- $A \rightarrow B$: CP, $g^a \mod p$, $nonce_A$, A
- $B \rightarrow A$: CPA, $g^b \mod p$, nonce_B, B, proof I'm B, [certificate]
- A -> B: proof I'm A, [certificate]

IKE Phase 1: Public Encryption Keys, Main Mode, Original

Protocol:

- A -> B: CP
- B -> A: CPA
- $A \rightarrow B$: $g^a \mod p$, $\{\text{nonce}_A\}_{B'}$ $\{A\}_B$
- $B \rightarrow A$: $g^b \mod p$, $\{\text{nonce}_B\}_{A}$, $\{B\}_A$
- $K = f(g^{ab} \mod p, \text{ nonce}_A, \text{ nonce}_B)$
- *A* -> *B*: *K*{proof I'm *A*}
- *B* -> *A*: *K*{proof I'm *B*}

IKE Phase 1: Public Encryption Keys, Aggressive Mode, Original

Protocol:

- $A \rightarrow B$: CP, $g^a \mod p$, $\{nonce_A\}_{B}$, $\{A\}_B$
- $B \rightarrow A$: CPA, $g^b \mod p$, $\{nonce_B\}_A$, $\{B\}_A$, proof I'm B
- *A* -> *B*: proof I'm *A*

IKE Phase 1: Public Encryption Keys, Main Mode, Revised

Protocol:

- A -> B: CP
- - $K_A = \text{hash(nonce}_A, \text{cookie}_A)$
- $A \rightarrow B$: {nonce_A}_B, K_A { $g^a \mod p$ }, K_A {A}, [K_A {A\$ cert}] $K_B = \text{hash(nonce}_{B^i} \text{cookie}_{B}$)
- $B \rightarrow A$: {nonce_B}_{A'} $K_B \{g^b \mod p\}$, $K_B \{B\}$
- $K = f(g^{ab} \mod p, \text{ nonce}_{A'}, \text{ nonce}_{B'}, \text{ cookie}_{A'}, \text{ cookie}_{B})$
- *A* -> *B*: *K*{proof I'm *A*}
- B -> A: K{proof I'm B}

IKE Phase 1: Public Encryption Keys, Aggressive Mode, Revised

Protocol:

```
K_A = \text{hash(nonce}_A, \text{cookie}_A)
```

- $A \rightarrow B$: CP, {nonce_A}_B, K_A { $g^a \mod p$ }, K_A {A}, [K_A {A\$ cert}] $K_B = \text{hash(nonce}_{B}, \text{cookie}_{B})$
- $B \rightarrow A$: CPA, {nonce_B}_A, $K_B \{g^b \bmod p\}$, $K_B \{B\}$, proof I'm B $K = f(g^{ab} \bmod p, nonce_A, nonce_B, cookie_A, cookie_B)$
- A -> B: K{proof I'm A}

IKE Phase 1: Shared Secret Keys, Main Mode

- Assumption A and B share a secret J
- Protocol:
 - A -> B: CP
 - B -> A: CPA
 - $A \rightarrow B$: $g^a \mod p$, nonce_A
 - $B \rightarrow A$: $g^b \mod p$, nonce

 $K = f(J, g^{ab} \mod p, \text{nonce}_A, \text{nonce}_B, \text{cookie}_A, \text{cookie}_B)$

- *A* -> *B*: *K*{proof I'm *A*}
- *B* -> *A*: *K*{proof I′m *B*}

IKE Phase 1: Shared Secret Keys, Aggressive Mode

Protocol:

- $A \rightarrow B$: $CP_{A} g^{a} \mod p_{A}$, nonce_A, A
- $B \rightarrow A$: CPA, $g^b \mod p$, $nonce_{B_t} B$, proof I'm B
- *A* -> *B*: proof I'm *A*

IKE: Phase 2

- Also known as "Quick Mode": 3- messages protocol
 - $A \rightarrow B: X, Y, CP, traffic, SPI_{A'}, nonce_{A'}, [g^a \mod p]_{optional}$
 - $B \rightarrow A: X, Y, CPA, traffic, SPI_{B'}, nonce_{B'} [g^b \mod p]_{optional}$
 - A -> B: X, Y, ack
- All messages are encrypted using SKEYID_e, and integrity protected using SKEYID_a (except X, Y)
- Parameters:
 - X: pair of cookies generated during phase 1
 - Y: 32-bit number unique to this phase 2 session chosen by the initiator
 - CP: Crypto Proposal, CPA: Crypto Proposal Accepted
 - DH is optional and could be used to provide PFS
 - Nonces and cookies get shuffled into SKEYID to produce the SA encryption and integrity keys