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ABSTRACT General Terms

Event processing systems have wide applications rangimg fr  Theory
managing events from RFID readers to monitoring RSS feeds. K d

Consequently, there exists much work on them in the liteeaflihe eywords

prevalent use of these systems is on-line recognition oépet that Axiomatization, Events, Temporal Models
are sequences of correlated events in event streams. (araans

tics and implementation efficiency are inherently deteadiby the 1. INTRODUCTION
underlyingtemporal modelhow events are sequenced (what is the
“next” event), and how the time stamp of an event is represent
Many competing temporal models for event systems have been p
posed, with no consensus on which approach is best.

We take a foundational approach to this problem. We create a
formal framework and present event system design choicez-as
ioms. The axioms are grouped irgtandard axiomsinddesirable
axioms Standard axioms are common to the design of all event
system_s. _DeS|_rabIe axioms are not always satisfied, butsafelu Starting with early work on monitoring of computing systems
for achieving high performance. , _ many designs have been proposed for event processing system

Given these axioms, we prove several mportant (esults_st,Fw [2, 6, 7, 9, 14, 15, 18]. The input to a CEP system is a stream
we show that there is a unique model up to isomorphism th&tsat o eyents, generated by external processes. Users relgiater
fies the standard axioms and supports associativity, soxoma running queries — also called subscriptions — to detectésting
are a sound and complete axiomatization of associativesia!eps o\ ent patternswhich are typically sequences of correlated events.
in event systems. This model requires time stamps with untbed One particularly important class of query issafety conditiona
representations. We present a slightly weakened versiassufcia- query meant to detect when “something bad” happens between t
tivity that permits a temporal model with bounded repreaots. o ents. For example, the event system SASE [18] is motivaged
We show that adding the boundedness condition also resulis i e following safety condition for RFID tracking in a retatore.

unique model, so again our axiomatization is sound and cetewpl e ) )
We believe this model is ideally suited to be the standarcbtesd Query 1. Post a natification if an item, after being removed from
the shelf, exits the store before being checked out at theteou

model for complex event processing.
To process such queries, all event systems have, as pasiof th

; ; ; pattern language, sequencingor immediate concatenation) op-
Categorlesand SUbJ ect D&crlptors erator. This operator is typically denotdd;; F». It finds any

H.2.3 [Database Management]: Logical Design—Data Models event matching the subpatteffy, and then finds théirst match
afterwards to the subpatteff,. For example, assume our pattern

*This material is based upon work supported by the National Sc !anguage has an “orfYoperator. To process the above safety con-
ence Foundation under Grants 0621438 and 0121175, by the Xe-dition, we can search for the pattern

Complex event processing (CEP) systems are an important com

ponent of today’s information system infrastructures. magkes

of the broad application space for CEP include supply chan-m
agement for RFID (Radio Frequency ldentification) taggestpr
ucts, real-time stock trading, monitoring of large compgtsys-
tems to detect malfunctioning or attacks, and monitoringesfsor
networks (e.g. for surveillance). A growing number of comipa

are developing products in this space [1].

rox Foundation, and by a Sloan Foundation Fellowship. Arig-op LEAVE SHELF; (CHECKOUT|EXIT STORE) 1)
ions, findings, and conclusions or recommendations expdeiss ] ’

this material are those of the authors and do not necessaflict and then filter out all matches that do not go through the ahgick
the views of the sponsors. This example is in some ways deceptively simple. It imgicit

relies on an assumption that events are instantaneous tally to
ordered, an assumption which may not be true. Many, if notmos
CEP systems amompositional— the outputs of a query are them-
selves events, which can be posted to the event stream athéhuse
other queries. Such events are referred twoaspositgor complex
events, as they are composed of several smaller eventsgjedher
(©OACM 2007. This is the author’s version of the work. It is pasteere satisfy the query. For example, in a more realistic formatabf

by permission of ACM for your personal use. Not for redisitibn. The ; ; _
definitive version was published in tHeroceedings of the 26th ACM Query 1, the GEckouT event might be a complex event involy

SIGMOD-SIGACT-SIGART Symposium on Principles of Database 9 Several steps, such as scanning an item, reading thiegsencs
Systems credit card, and receiving validation from the credit casthpany.



Figure 1. Possible Successorsto Announcement A

Since it consists of multiple smaller events, a complex elias
duration; it does not exist at a single point in time, but eatbc-
cupies an interval with distinct start and end times. Thaeef
complex events can, and often do, overlap with each otheis Th
can cause some difficulty in processing the sequencing tmpera
for events with duration the definition of “next” is not obuiy
unique.

To illustrate this, we present a slightly more subtle exampl
Consider an Internet retailer that uses an event systemeiostare
that its website properly follows its business workflow msges.
The retailer holds periodic giveaways to its customers.hkge-

A thorough survey of temporal models in the CEP literature
shows that there is no unique answer for choosing a succtssor
A in Figure 1. Existing systems use many different kinds oftim
stamp, with different semantics and different implicatidor im-
plementation efficiency. The purpose of this paper is togrea
formal framework for the study of sequencing in event pretes
systems. From this framework we show how semantic and imple-
mentation concerns limit the possible definitions of “next”

1.1 Outlineof Contributions

In Section 2 we present several existing systems and show how
they differ in their definition of sequencing. From these raxa
ples we identify real-world implementation concerns that use
to guide the development of our formal framework.

We present this formal framework in Section 3 with the defini-
tion of a temporal model. This definition is capable of ddsog
sequencing irall event systems we are aware of, and captures the
subtle distinctions between event systems that have the §aen-
tial) order on time stamps, but different successor defingi This

away isthannounced on the website, and then the first (or equiva gjyes us a uniform framework in which to discuss existingigies
lently »™") customer to make a purchase after the announcement cpgices.

wins the prize. A purchase is itself a complex event compmgisi
two other events: adding a item to the shopping cart and gdwgin
the items in the cart. Therefore, the contest consists offatfmv-
ing event system query.

Query 2. After a giveaway is announced on the main website,
identify the first new purchase (i.e. adding an object to trepping
cart and then paying for it).

Assuming that an announcement is an instantaneous event, pr
cessing Query 2 involves determining which of a number adrint
vals (the purchases) is the immediate successor of eacliarso
ment. But it is not obvious what the correct definition of s&sor
should be in this case.

Consider the intervals shown in Figure 1. Heterepresents
an announcement, and the remaining intervals represechasgs
(starting when an object is added to the cart, ending at the ¢if
payment). If we choose successor only according to the emal ti
of the interval, then intervaB is the successor td. However,

B properly contains4, and so it makes sense to disqualify it as a
possible successor té (i.e. the retailer does not want customers
“jumping the gun”). We should instead choose inteabr D as
the next event, but it is unclear which.

A plausible choice might be to define the successord tf in-
clude every interval that does not have another intervatistibe-
tween itandA, i.e., the natural definition of successor on the partial
order of intervals. However, as we show in Section 2, thigltesn
a nonassociative definition of sequencing. An associatgesnc-
ing operator is desirable for more than just aesthetic reasd
is important for query optimization as well. To see this,entitat
Query 2 is naturally written as a right-associated querthefform
Ey; (E1; E2). To process this query, we first match the purchase
eventsFE.; E», and then match them to the giveaway announce-
mentEy. If giveaways are relatively infrequent, this approach can
be inefficient, as it can generate many purchase events tHat w
never be matched to giveaway announcements. If sequenerey w
associative, we could rewrite the query as the left-astetiaer-
sion (Eo; E1); E2. In this case the system would first match an-
nouncement and shopping cart pairs, limiting the numberuof p
chases under consideration. This transformation is anabd¢o
constructing a join plan in relational algebra by considgithe se-
lectivities of the joins. Hence associativity in the unglary tem-
poral model is an important enabler for query optimizatioran
event system implementation.

In order to chose the right temporal model, we takegiomatic
approach. In Section 4, we present event system designeshasc
axioms, algebraic properties that the temporal model magt in
order to meet the associated system design goals. We diisting
betweenstandard axioms&nddesirable axioms The standard ax-
ioms are common to the design of all event systems, repiiagent
system behavior that a user would intuitively expect. Therdble
axioms are useful for improving the performance.

Given these axioms, we prove in Section 5.1 that there is only
one model up to isomorphism that satisfies all of the standasrd
ioms and supports associativity. This resolves the debastrated
in Figure 1. It also demonstrates that our axioms are a sondd a
complete axiomatization of associative time stamps in esgs-
tems.

The unique model in Section 5.1 requires time stamps with un-
bounded representation. In Section 5.2 we present a gliglethk-
ened version of associativity that permits a temporal mudil a
bounded representation of time stamps. We show that, bygddi
the boundedness condition, this temporal model is agaiquerntio
isomorphism, so again our axioms are sound and completee Mor
importantly, we give arguments for adopting this model asstian-
dard temporal model for CEP.

We end the paper with a discussion of related work (Sectipn 6)
concluding remarks and a discussion of future work (Sectjon

2. SUCCESSOR IN EXISTING SYSTEMS

To illustrate the importance of an event system’s successbr
inition, we examine the behavior of Query 2 in several repnés
tive event systems taken from the literature.

Consider the sequence of events represented in Figure BeIn t
figure, A represents the giveaway announcement. Ha¢lky; and
R; represents a purchase step by a customer. Dashed horizontal
lines connect the shopping cart step with the payment. tinély,
only purchas&); Q- satisfies the query. PurchaBeP is disqual-
ified because the shopping cart was filled (ev@rtbefore the an-
nouncement (The retailer wants the contest to be fair, ard dot
want customers "lying in wait” for the next giveaway). Puask
R1 R» is disqualified becaus@ Q- clearly finished before it, and
hence it cannot reasonably be considered “first”.

Now consider the event stream of Figure 3. Intuitively, pases
@1Q2 and Ry R, both satisfy the query: each is a purchase after
the announcement and they start and firighultaneously Thus,
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Figure 2: Overlapping Purchases
the query result should be a notification for both events.réfoee,

the event system must be able to support multiple successmth
Q1Q2 and R1 R2> must be successors df.

Figure 3: Simultaneous Purchases

- .| Q,
- .| R,
Figure 4: Associating Sequencing

We know of no existing system whose temporal model supports

associative sequencing. As we show in Section 5.1, there is a
good reason for this: up to isomorphism, tirdy temporal model

Given this query and these data streams, we now examine howthat supports associative sequencing iscibraplete-historynodel.

they would be processed in several existing event systemsini
ber of systems such as Snoop [6] or EPL [14] psit time stamps
taken from a discrete, totally ordered domain. In theseesyst the
composite evenP; P, has only a single time stamp — that Bf.
Hence the information that the item was added to the shopgairtg
before the announcementis lost, andP; P incorrectly appears to
satisfy the query. A similar criticism applies to the weakaessors
used in Active Office [15]. In order to express this query eotly,
the successor relation must prohibit overlap betweenititeevals
Event systems such as SnooplB [2] and ODE [9] use interval
time stamps. These systems orden-overlappingntervals in the
natural way. They also use the standard definition of imniedia
successor for partially ordered sets: interval time stajmip a suc-
cessor of if to < ¢1 and there is n@; with to < t2 < ;1. In this
model both the); Q2 and Ry R, purchases from Figure 2 qualify
as successors of thé event. In general, these systems allow an

This model, as its hame suggests, requires a system to bre t
time stamps of all the primitive events that make up a contposi
event. Since it has no upper bound on the size of a time stamp
representation, complete-history can be prohibitivelyensive.

3. THE FRAMEWORK

In Section 2, we saw how successor was defined differently in
three event systems: SnooplB, Active Office, and Cayugathbdie
use intervals as time stamps, and they have the same padiggian
these intervalsso, s1] < [to,t1] if and only if s1 < to. However,
the three systems differ in how they choose a successor.

Because all of these systems have the same time stamps with
the same partial order, to study their differences, we havext
tend previous work on temporal models [16] to include a sseoe
operation that exists explicitly in the model. To be as gehas
possible, we define successor functioauccto be a function that

event to have multiple successors — even an unbounded setl— an takes as input a time stantfiogether with a set of time stam(#

not all the successors are required to finish at the same figeen,
this definition of successor does not accurately reflectrthétive
meaning of the query.

The strong successor used in Active Office captures theatorre
intuitive meaning of our example query on the event streafigf
ure 2. But even this model fails on the stream of Figure 3, beea
the strong successor rules of Active Office select only onthef
two simultaneous events. It uses a tie-breaking schemel lmase
arbitrarily assigned, totally ordered unique identifiers.

The Cayuga system [7] uses interval time stamps like SnqopIB
but has a different successor definition. Specifically, [to, t1] is
a successor of = [so, s1] if to > s1 and there is no event with
time stampp = [po, p1] such thatsy < po < p1 < t1. In other
words,t is a successor of if ¢ follows s without overlap, and no
p that follows s without overlap finishes before This definition
deals correctly with our motivating example query in allessand
also avoids unbounded successor sets with their assoamapbe-
mentation difficulties.

As discussed in Section 1, associativity of sequencing @&n b
viewed as an important enabler for query optimization in\né
system implementation. Unfortunately, associativity Basous
implications for the definition of successor. Consider then¢
stream of Figure 4. HerE is an event matching some event expres-
sion Ep, Q1 and @2 are events matchin@o, andR is an event
matching Er. Using any of the event systems discussed above,
the expressiotEp; Fq yields a single composite eveRQ, and
thus the left-associated expressidir; Eq); Er Yields only the
event PQ1R. However, expressioitg; Er producestwo com-
posite events@Q; R andQ2R. Therefore, the right-associated ex-
pressionEp; (Eq; Er) yields the event$ @1 R and PQ2 R using
any of systems above except Active Office (which eliminates o
of the composite events due to its tie-breaking rule). WAhAite
tive Office handles this particular expression correctlfgils to be
associative in general, as we show in Section 5.2.

and produces the ssucq(t, F) of immediate successors ofin
F. The intuition for this model is thatandidate setF represents
the set of time stamps from which the immediate successdris ¢
sen. Given an event expressiéh; E-, an event system matches
this expression by doing the following:

(a) Determine the set of candidate time stardpdor events
matchingFs.

(b) For each event matching; at timet, compose it with any
event matching®, at atime insucd(t, F).

These three event systems definec{[so, s1], F) as follows.
SnooplB:

{[to, t1]€.7: | s1<to and—a[To, T1]€.7: Stsi<ro<r; <t0}
Cayuga:

{[to,t1]€.7‘- | s1<toand—I[rg,r1]e€F s.t.s1<ro<ri < tl}

}

The successor operation is not the only way that event models
may differ. When we compute the result of a query like Query 2,
we need to assign the composite event (the output of the paery
new time stamp. In SnooplB, Cayuga, and Active Office, the-com
posite event is timestamped with the smallest interval aiairtg
the intervals of all events that make up the query result.eikam-
ple, Query 2 is made up of three events. If these events hagipen
times 1 (giveaway announcement), 2 (product added to caud)4
(payment received), then all three systems asdig] as the result
time stamp. However, the event system ODE is different. dipse
the history of all of the time stamps in the component evdntthe
example, it would stor¢l, 2, 4] as the time stamp. Nevertheless,

Active Office (strong successor):

s1 <to A ﬁfl[To, 7‘1] € Fs.t
s1<roA(r1 <t1V(ri=t1 Aro <to))

{[to,m]ef




ODE still only uses thdoundariesof this history when determin-
ing the immediate successor, treating the history like &eral;
hence it is not appreciably different from SnooplB.

For the remainder of the paper, our approach is more formal.
Traditionally atemporal models defined ag7’, <) where< is a
partial order on the set of time stamp5[16]. The elements of
T can be points, intervals, sets of points, sets of intereats]
so on; there are no restrictions on the types of acceptatve ti

in which two time stamps are successors of each other, such as
to € sucdty, F), t1 € sucdto, F)). As in any algebraic model,
we prevent such aberrant behavior by adding axioms thaesesgpr
properties of “reasonable” temporal models. Since addiignas
restricts the class of valid models, we want to be sure thatwu
ioms are all properly motivated.

We distinguish betweestandard axiomsnddesirable axioms
The standard axioms are non-controversial; they are satisly

stamps. To study both immediate successor and event composithe temporal models in all of the major event systems. The-des

tion, we extend this definition of a temporal model to a quadru
pleT = (T, <,succ®). In this model, T and < are the same
as in the traditional model. In addition, the successor tionc
succ: T x 27 — 27 takes a time stamp together with a set
of candidates? and produces the set of immediate successors. Fi-
nally, thecomposition operatior® takes the time stampsandt of
two events and produces the time stasnp ¢ for the correspond-
ing composite event. The time stamps ¢ are also inT’, since
composite events may be added to the event stream for udeein ot
queries. For convenience, we will identiyandT" when the con-
text is clear (e.g. a time stantpe T).

While @ behaves like a monoid operation, we do not always
want it to be defined. For example, in an interval model like
SnooplB, we never want to compose two overlapping events. To
avoid the use of partial operations, we introduce a speciat “
defined” time stamplL to T such that for anyt, 7, (&) L &
sucdt, F), (b)ysuca L, F) =0, and (e}t ®@ L = L @t = L.

We say thak ® ¢ is definedwvhenevers ® t # L.

3.1 Some Concrete Examples

We have already outlined how to express SnooplB, Active Of-
fice, and Cayuga in our framework. As an illustrative exampie
give a complete formalization of ODE. In ODE, all time stamps
are monotonically increasing finite sequences over theeatisdn-
ear orderZ. In other words, the time stamps are sequences
0(0)o(1)...0(k—1)whereo(i) < o(i+1) forall i < £(c) —1,
with ¢(o) = k thelengthof the sequence. The partial order is de-
fined ass < 7 exactly whens(¢(c) — 1) < 7(0), (i.e. when the
largest element of is less then the smallest elementgf The
successor operation is defined as

suco,F)={re€Flo<rand-Ip e F,0 <p<1}
Finally, for two events < 7, the compositiow ® 7 is the standard
sequence composition (concatenation of sequences).

An interesting variation of the ODE temporal model is the
complete-history modelln this model, T, < and ® are exactly
the same as in ODE. However, the successor function is éiffer
We define a linear ordering on time stamp histories by letting
be the lexicographical ordering from the end of the sequente
other wordsg C 7 if either

o o(l(o)—1i) < T(¢(T)—1),ando (¢(o) — k)
fork < 1, or
e (o) < L(r)ando(L(c) —1) = T(£(T) —1)foralli < £(o).
We use this linear order to break ties, and thus define
suco,F)={r€Flo<rtand-3Ipec F,o <pLC 7}

Notice that this model is a generalization of the definitibsuxces-
sor in Active Office from intervals to complete histories.wver,
it does not use data elements (identifiers) to break tiesiyt ases
time stamp ordering.

4. AXIOMATIZING TEMPORAL MODELS

Our framework puts no restrictions on the definitionssofcc

T(£(o) = k)

able axioms, on the other hand, are each violated by at le&st o
major event system. However, as we shall demonstrate, rere
compelling reasons for wanting our temporal models to fattie
desirable axioms.

41 Standard Axioms

Many of the accepted axioms have already been implicitly-men
tioned in our discussion of temporal models. For the sakenf-c
pleteness, in this section we will make all of these assuwmpti
explicit. As we have several axioms, we organize them adaegrd
to their defining featurex, sucg or ®.

4.1.1 The< Axioms

As in traditional temporal modelss should be a partial order.
The following two axioms capture this property.

AXIOM 1 (TRANSITIVITY). If tg < t1,t1 < t2, thenty < to.

AXIOM 2 (IRREFLEXIVITY). Foranyt € T, ¢ 4 t.

4.1.2 ThesuccAxioms

Another implicit assumption of our discussion has been et
always chose the successor time stamp from the candidaf€. set
This assumption is expressed by the following axiom.

AXIoM 3 (CANDIDATE PRESENCH. Forall t € T andF C
T, sucdt, F) C F

Additionally, the idea of successor is tightly-coupled wthe
partial order<. For example, ib is a successor af, we generally
assume that “happens beforeb. We capture this idea with the
following axiom.

AXIOM 4 (RESPECTINGORDER). Foranyt,s € T, t < s if
and only if there is somé& such thats € sucq(t, F)

In all the major event systems, the elementsotdt, F) are
natural <-successorsf ¢. That is,sucq(t, F) contains only el-
ements ofF that follow ¢ and have no<-intermediate elements.

In fact, the existing event systems differ only in how theypase
from these<-successors; SnooplB and ODE take them all, while
Cayuga and Active Office are more selective and “break tige”.
ensure this type of behavior, we need two axioms on the usage o
candidate sets. The first axiom ensures the following intutbe-
havior: removing any time stamps other than a successortiiem
candidate set should have no effect on the current successor

AXIOM 5 (THINNING). Suppose; € sucdto, F). Then for
anyT C Fwitht, € T,t1 € sucdto, 7).

This axiom also addresses another important issue. We know
from Axiom 4 (RESPECTINGORDER) thatto < ¢1 whenever there
is someF C T such thatt; € sucqte, F). But this means we
could have a temporal model that permits only singleton ickatel
sets (i.e.sucq(t, F) = @ if |F| > 1). This would correspond to
an event system that shuts down if it ever receives more than o
future event. Clearly this is undesirable behavior. To pre\RES-

and® yet. As a result, there can be aberrant behavior (e.g. a model PECTINGORDERfrom degenerating as such, we need to be able to
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Figure5: Adding Elementsto a Candidate Set

add and remove elements from the candidate sets in limitgd.wa
THINNING addresses this problem of removal.

To relatesuccto <-successors, we need an axiom for adding
to a candidate set; this is much more subtle. Consider teevais
illustrated in Figure 5. Suppose we are trying to pick thecessors
of ¢, and start with the candidate st = { s} (so trivially, s is
the unique successor). If we exteffdto the candidate set’ =
{r1, s}, then the successor depends on our choice of event system
In early event systems such as EPL and the original Snootintbe
of an event is identified with the end of its interval, andrsais
the successor in this model. However, in all event systentis wi
interval time stamps, the successor is stilsince the intervat;
started before the end of Similarly, the effect of adding- to
F = { s} is also system dependent. In Active Office and Cayuga,
the addition has no effect on the successor, as the intardallater
thans. However, in SnooplBy: is also a successor, and hence this
addition changes the contentsafcd(t, F).

Fortunately, all event systems agree that the additionroé ti
stamps likep; or p; to F = {s} does not effect the value of
sucqt, F). These are time stamps that are either far in the past or
far in the future, in that they do not overlap the time betweand
any of its successors. Thus, in all event systems, we areifpedm
to add to a candidate set via the following axiom.

AXIOM 6 (THICKENING). Let.A be such that, for any € A,
eithers < t or p < s for somep € sucdt, F). Then
sucdt, F) = sucdt, F U A).

THICKENING is important for two reasons. First of all, in an
event system the candidate gets effectively infinite. It represents
the time stamps of all the events that appear in the streamt afin
event system therefore never knows the full contentg ahead of
time; it only learns the values of these time stamps as theyear
Hence, if we expect to have a real-time event processingisyst
the definition of successor cannot rely on such future events

Additionally, as the following propositions demonstratex-
ioms 1-6 are enough to guarantee tsatcq(t, F) only chooses
elements fromF that are the<-successors of. For reasons of
space, we omit all but a few important proofs in this papee th
proofs of all results may be found in [17].

PROPOSITION 1. For any tg,t1 € T, to < t1 if and only if
t1 € sucdto, {t1}).

PrROPOSITION 2. If t1 € suc(to, F), thenty < ¢1 and there
isnos € Fwithtyg < s < t1.

A related but subtly different issue is the problembidcking
By Axiom 4 (RESPECTINGORDER), we know that; in Figure 5
can never be a successortoHowever, there is nothing to prevent
us from saying that, since; ends beforss, it “blocks” s from be-
ing the successor df and hencesucd(t, { s,71 }) = (. In this
case we have an elementthat is not the successor, but prevents
other events from being successors as well. Such semasiticy i
intuitive and is not found in any of the existing event system

AXIOM 7 (NON-BLOCKING). If sucqt, F) N A = @, then
sucdt, F) = sucdt, F \ A).

4.1.3 They Axioms

The ® operator is used to combine time stamps from sequenced
events. Hence our first axiom for it is concerned with when se-
guencing is defined. In particulag ® t1 should only be defined if
thet; are the time stamps to two events that can be sequenced.

AXIOM 8 (CONSERVATIVE COMPOSITION). to®t; is defined
if and only ifty < t1.

Because event systems must process events in real-timg, eve
sequencing should happen in a “timely” manner. In other word
the sequenced event should have a time stamp that allows us to
add it to the output stream immediately. For example, suppas
compose two events with time stamps= [0, 1] andt; = [2, 3].

We should not allow, ®¢1 = [0, 5] as the interval4, 4] follows ¢4,

but notto®t1; hence we could not add ®t¢; to the stream until we

are sure that all events with tinj, 4] have passed. This constraint
is implemented in all event systems by ensuring thab ¢, andt,
always share the same successors.

AXIOM 9 (®-ELIMINATION ). Suppose, < ti. Thents €
sucdto ® t1,F) if and only iftz € sucdt,, F).

4.1.4 There Axioms

The operatior® is used to construct time stamps created by the
sequencing operation. Intuitively all time stamps shollinately
be derived viag from some universe of “base” time stamps (e.g. the
universe of clock ticks that define some event occurrenchisé
are the time stamps assigned to primitive events; the tiemesfor
a composite event is constructed by applyido the base time
stamps of the primitive events making up this composite ew4fe
refer to this set of base time stampsl&s

AXxiom 10 (PRIMITIVE REPRESENTATION. There is a set
T° C T such that

e foranys € T°, there is noty,t1 € T withs = tg ® 1.
e foranyt € T, there ares; € T° such that = so® - - - ® sn.

PROPOSITION 3. The sefl® in PRIMITIVE REPRESENTATION
is unique. That is, ifTf° and S° both satisfy the conditions above,
thenT® = S°.

In essence, RIMITIVE REPRESENTATIONasserts that is a
free monoid with respect t® over T°. Note that this axiom
only says that base time stamps exist, and does not reqeine th
to be points, intervals, or anything in particular. Furthere,
the decomposition in RMITIVE REPRESENTATIONNneed not be
unique. For example, in Active Officél, 3] = [1,1] ® [3,3] =
1,1]®[2,2] ® 3,3

All existing event systems have a global clock and all time
stamps of primitive events are defined in terms of values isf th
clock. Thus there is an implicit linear order on the base time
stamps. Notice that this does not imply tleaenttime stamps are
linearly ordered. For example, even though the natural musb
are linearly ordered, intervals of natural numbers canlapeand
hence are only partially ordered (as pointed out earligng dnder-
lying assumption of a global clock is formalized by assertinat
T° is isomorphic to the linear ordé.

Axiom 11 (LINEARITY). Let T° be the unique set identified
in PRIMITIVE REPRESENTATION The ordering=< is an infinite
discrete linear ordering off'°.

From this axiom it may appear that we cannot handle real-
valued time stamps. However, we can remove the discretéreequ
ment from LNEARITY provided that we stipulate that all candi-
date sets are well-founded. If we had a non-well-foundedliean
date setF with an infinite descending sequence converging, to



thensucd(t, F) would not be well-defined, even though there are
elements i aftert. As F corresponds to a set of time stamps for
incoming events, well-foundedness is a realistic assumptiFur-
thermore, as all event expressions are finite, there is tiogissh-
able difference between requiring tfigt be discrete and requiring
that all 7 be well-founded. Therefore, for simplicity, we keep the
discreteness assumption.

4.2 Desirable Axioms

All of the axioms in the previous section are satisfied by the e
isting event systems. However, there are several axionmismba
would like our models to satisfy for implementation reasoihs
this section we introduce these axioms.

4.2.1 The “Time-Out” Axiom

In Section 2, we saw an important problem that occurs in the
SnooplB system. In SnooplB, overlapping pairs of events in

Query 2 can result in an unbounded number of matches for each

purchase. All we need is for each customer to add their itetineto
shopping cart immediately, and then pay sometime in therdutu
The payment can be received in an hour, a day, or even yeans fro
now; as all these event pairs overlap, they are all successahe
giveaway announcement.

For a more formal illustration of this problem, in SnooplB,

sucq[0,0], {[L,z] [1 <z })={[Lz][1<z} (2
Hence this definition of successor is very difficult to impkmhin

fact, this is the reason for the observation from [3, 8] that tivo
sequencings

E1; (E2; E3) and Es; (E1; Es) (3)

are equivalent for event systems with point time stamps. Bitew
®-ASSOCIATIVITY does not give us sequencing associativity, it is
important in that it prevents us from sequencing eventsshaiild
not be sequenced. In fact, we can express this observatitre as
following proposition.

PROPOSITION 4. (to ® t1) ® t2 is defined if and only ify <
t1 < to.

In order to find the correct axiom for associativity, we firsed
to formally understand what it means for sequencing to be-ass
ciative. An event system processes expressions on a st¥eafim
events. Events in a data stream consist of both data fieldskwh
define the type of the event) and a time stamp. We typicallptien
these element&:, t) € D x T wherea € D is the data and € T
is the time stamp. As it is not relevant to our discussion, veden
no stipulation on the nature of the data domain In traditional
event system® is the finite set of all event symbols, while in pa-
rameterized event systems such as Cayiigean be an infinite set
of data tuples.

Given an event expressidn, an event system returfi&] s, the

an event system. Even though the time stamps may be partially [Ey; Eq]s =

ordered, the events necessarily arrive real-time in aifaeshion.

In models with interval time stamps, they typically arrivethe
stream at the time corresponding to the end of the intervighis(

is the time when the event “happens”.) Hence for the candislett
F={[1,1],[2,2],[1,3] }, [2, 2] will arrive before an event with
time stamp[1, 3], even thoughl, 3] is a successor time stamp to
[0,0] and[2, 2] is not. In general, there could always be an event
with interval [1, ] arriving at some future time. Hence for every
match toE;, the system might have to keep looking for successors
indefinitely. As a result, old query state cannot be garbadeated

and memory usage grows without bound. Therefore, we would
like an axiom that limits the effect that events with arbigréong
duration can have on the system.

AXIOM 12 (STRONGTHICKENING). Lett € sucd(s, A).
Foranyu,v € T, if ¢t < v, thensucc(s, A) = sucds, AU
{u@v}).

In essence, BRONG THICKENING is a “time-out” axiom. It

guarantees that once we see at least one successor, we g ign
any events that happen afterwards.

4.2.2 Associativity

In Section 2 we saw that it would be advantageous for us te asso
ciate event sequencing. Our next desirable axiom is oneytraat
antees associativity. Naively, it would seem to be enouglu$ao
require thaty is associative.

AXIOM 13 (®-ASSOCIATIVITY). (to®t1)Rts =to® (t1®t2),
forall ¢; € T.

However, this axiom is satisfied by both SnooplIB and Cayuga,
which we have already seen are not associative. In fact,rihe o
systems that violate this axiom are the point models of Srzomp
EPL. Recall that we denotig ® t1 = L if tg ® ¢1 is undefined.

So ®-ASSOCIATIVITY implicitly guarantees thafty ® t1) ® t2
is defined exactly whety ® (t1 ® t2) is. In Snoop and EPL, the
time stam® ® (1 ® 3) = 3 is defined, bu{2 ® 1) ® 3 is not. In

set of all events ir5 that matchE. For the sequencing operator,
this set is defined as

(a1,t1) €[E1]s, (a2, t2) €[E2]s, 4
ta €sucdty, {s|{b, s) € [E2]s})

Note that the data domain of the complex evéht E- is the set
{a @ bla€ D1,be Dy}, wherea & b is some data composition of
data values: andb. We give no semantics for this operation as it
will not be relevant to the discussion; in practice it is usutuple
concatenation.

From (4), we see that there are actually two parts to ensthaty
sequencing is associative. The first is that the data coniposh
is associative; the second is the associativity of the titamps.
Because the definition of successor only uses time stampeaind
data elements, we can safely separate these two compoSents.
event systems do use data elements in their definition oessoc.
For example, Active Office uses the element ID of an eventealor
ties when determining successors. However, we can stilraép
data from the time stamps in these systems by assuming #hat th
relevant ID information is added as part of the time stamp. As
data can be real-valued, this assumption does require odelso
to support real-valued time stamps. However, as we disdusse
Section 4.1.4, this is not a problem.

From the definition of sequencing in (4), associativity fliegg
that for any event expressioii%, F1, F» and streant,

[(Eo; Ev); E2]s

_ (a0®a1)Daz,
N (to®t1)®t2
. ao®(a1®az),
T N\ te®(t1®t2)

= [Eo; (E1; E2)]s

{<a1 Daz, t1®t2)

(ai7ti> S [[Ei]]s7 t1 € SUCC(t07.7:E]),}

to € SUCto®t1, Fr,)
(5)

(asts) €[Ei]s t2 € sSUCAt1,FEy),
t1®t2 € SUCdt(),fEl; E2)

whereFr = {t|{a,t) € [E]s}. Note that this equation entails a
relationship betweet g, and F&,; r,. For candidate set&o, F1,
we define



Fo; F1 ={to®t1 |to € Fo,t1 € sucdto, F1) }  (6)

From this observation it is obvious that the data elementmomant

of associativity is trivial; we only need to ensure that tbenposi-
tion operatord is itself associative. Therefore we can focus on the
time stamp component of associativity. It should be cleanthat

(5) implies the following axiom.

AXioM 14 (R-DECOMPOSITION. Supposeto,ti,te € T,
with t1 < t2, and Fi,F» C T. Also suppose thaty €
sucdti, F2). Thent: € sucdto, F1) if and only ift; ® ¢2 €
sucdto, Fi; Fa).

It is apparent from (5) that bott®-ASSOCIATIVITY and ®-
DecomPoOSITIONare necessary for associativity. The following
proposition establishes that they are sufficient as well.

PROPOSITION 5. Suppos€T is a temporal model satisfying Ax-
iom 9 (®-ELIMINATION ), Axiom 13 &-ASSOCIATIVITY), and
Axiom 14 ®-DECOMPOSITION. Let E4, E», E3 be event expres-
sions, and suppos@ is associative over the data elements of the
event strean$. Then[(Eo; E1); E2]s = [Eo; (E1; E2)]s.

5. ANALYSISOF TEMPORAL MODELS

Now that we have stated our axioms, we would like to find the
“best” model that satisfies all of these axioms. Note thatenoh
the definitions of successor in Section 1 satisfy all axioB@esyuga
and Active Office violatep-DeEcomMpPOsITION and hence do not
support associativity. SnooplB and ODE also violate thi®ax
and in addition violate BRONG THICKENING. Systems with point
time stamps even violate-ASSOCIATIVITY. Hence to satisfy all
of the axioms, we need to find a new temporal model for event
systems.

In this section we characterize the models that satisfyfailo
axioms up to isomorphism. We also identify the trade-oftt the
systems in Section 2 make by violating one or more of the delsr
axioms.

5.1 Satisfying All Axioms

There is at least one model that satisfies all of the axiomat iSh
the complete-history model from Section 3.1; we leave \eaifon
of this fact as an exercise for the reader. Unfortunatelyg, par-
ticular model is impractical because of its memory requests.
In any event system, each base time stamp (i.e. an elemétif) of
requires a memory word. A complete history of time stampsafor
composite event would require as many words as there aré-prim
tive events that form the composite event. This is partitylaad
for queries in which the history can grow without bound. Imdliad
tion to regular sequencing, all of the major event systerve ha
iterated sequencing operator, similar to Kleene-*. Thisrafor is
illustrated by the following stock monitoring query.

Query 3. Notify me when a stock price has been monotonically
increasing for at least 30 minutes.

This sequence can be composed of any number of stock quotes.

In the complete-history model, we have to store and remeihiger
time stamps for all of the quotes in the sequence.

To get a model that uses bounded memory for time stamps, we
need to compress the time stamp representation. For exaimple
terval time stamp models have bounded representation feeal
can drop any intermediate information. For example,

0,1l ®[2,3] ®[4,5] = [0,1] ® [4,5] = [1, 5]

Formally, we want some fixed such that every € T can be
writtent = po ® --- Q@ p,, for p; € T°. Unfortunately, as the
following theorem demonstrates, this is impossible.

THEOREM 1. AssumeT is a temporal model satisfying Ax-
ioms 1-14. For eacht € T, there is a unique sequence
Do, .., pn € T°Witht = po ® - - - ® py, Wheren depends upon

From this theorem we see that any temporal model that satisfie
all of the axioms must keep a complete history of the time pam
Intuitively this is the case because any time stamp in thoiyis
can be used to determine its order with respect to anothtariis
From this theorem, we can prove an even stronger result, lgame
that complete-history model is tlomly model of the axioms, up to
isomorphism.

THEOREM 2. LetT be a temporal model satisfying Axioms 1-
14. LetS be the complete-history model. If we idenfify with Z,
the mappingo®- - - ®t, — o whereo (i) = t; is an isomorphism.

As an interesting technical aside, Theorem 2 demonstragds t
our axioms are a sound and complete axiomatization of the the
ory of the complete-history model. They are sound because th
complete-history model satisfies the axioms. They are cetapl
because they have only one model up to isomorphism, and so
their logical consequences are exactly those statememsrithe
complete-history model. However, this result is only ofdtregical
interest as we are not interested in using our axioms fod&tbn,
but only in characterizing those temporal models that acete
able.

As these two theorems are the primary result of this paper, th
remainder of this section is a outline of their proof. We preéghe
important steps of the proof as propositions, which are Heves
stated without proof.

5.1.1 Proof of Theorem 1

To prove Theorem 1, we will assume from here on ffias a
temporal model satisfying all of the axioms (Axioms 1-14gf@e
we prove Theorem 1, we first need a way of distinguishing time
stamps. To do this, we introduce two equivalence relations.

Definition 1. For anyto,t1 € T, we sayto, t1 have thesame
end time(denotedty ~g t1) when, for anys € T, ¢, < s if and
only if 1 < s. Similarly, to, t1 have thesame start timédenoted
to ~s t1) when, for anys € T, s < to if and only if s < ¢;.

Intuitively, these relations give us an abstract way to fifen
the start and end time of a time stamp without having to assume
our time stamps are actually intervals. The following pigifions
below guarantee that every time stampas a unique start time
t ~5 so € T°, and a unique end time~g s; € T°. Thus we
can unambiguously speak of a time stamp “interval” in anralost
sense.

PROPOSITION 6. Supposé, < t1. Thenty ® t1 ~g t1 and
to ®t1 ~s to.

PROPOSITION 7. Suppose,p1 € T°. Thenp, = p: if and
only if po ~g p1. Similarly,po = p1 if and only ifpg ~s p1

To prove Theorem 1, we will need to induct over the length
of a decompositiort po ® - ® p, of t. We can reduce
a time stamp to one with smaller decomposition length bygisin
Axiom 14 (2-DeEcoMPOSITION. However, in order to make use
of this axiom, we need to understand what happens when we ap-
ply succtwice. Proposition 8 tells us that all of the successors



have the same end time. Hence by Axioms® ELIMINATION ),
if to,t1 are both successors af from the same candidate set,
sucqto, F) = sucdti, F).

PROPOSITION 8. Supposé, t1 € Sucq(s, F). Thento~gti.

COROLLARY 1. Supposeo,t; € Sucds, F) with to,t; € T°.
Thentg = t1.

While these propositions appear fairly technical, theyesmeugh
to prove that every time stamp has at most one successor.isThis
such a powerful result that we state it as a theorem in its égin.r

THEOREM 3. Lets,to,t1 € T. Forall # C T, if to,t1 €
sucds, F), thenty = 1.

PROOF Using Axiom 10 (RRIMITIVE REPRESENTATION,
SUPPOSE = Up®- + *QUn, t1 = Vo®- - -QUm, Whereu;, v; € T°.
We proceed by induction on andm. The case fom,m = 1
is covered by Corollary 1. Suppose we know it is true for any
n,m < k, and take somey, t; with n,m < k + 1. Without loss
of generalityym = k + 1.

First we consider the case far> 1. By Propositions 7 and 8,
we have thati,, = vs,. Letqg = u,, andletpg = uo ® - - - @ un—1
andp1 =v®- - -Qum—1. HENCE ) = poRq, t1 = p1Rq. By Ax-
iom 5 (THINNING), po ® ¢, p1 ® ¢ € SUCC(s, { po ® ¢, p1 ® q }).
Hencepo, p1 € sucd(s,{po,p1}) andq € sucdp:,{q}) by
Axiom 14 (2-DecomMpoOSITION. Thenpoy = p1 by our induction
hypothesis, and so we are done.

Now supposen = 1, i.e.,, to € T°. By Propositions 8 and
7, Um to. Now letr < s. Thens € sucdr,{s}). As
sucd(s, { to, t1 }) = { to, t1 }, ®-DECOMPOSITIONgIiveS us

{s®@tr,s@Uo® - @Vm—1 to}
=sucdr,{s®to,sRuo Q- Rtg})

Again by ®-DECOMPOSITION we have thak, s ® -+ - @ Um—1 €
sucdr,{s,s® -+ ®vm-1}). However,s < vo < vm—_1, and
so this case contradicts Proposition &1

To prove Theorem 1, we need one more result. Proposition 9
establishes that a single usagesotannot collapse two different
time stamps into a single time stamp.

PROPOSITION 9. Supposeo,ti,s € T with to,t1 < s and
to 75 t1. Thentg ® s 76 t1®s

PROOF OFTHEOREM1. Lettp = 4o ® -+ ® Un, t1 = 10 ®
-+ ® vm. Also suppose that # m, orn = m andu; # v;
for some: < n. We need to show that # t;.We proceed by
induction onn andm. The case fon = m = 1 is obvious. So
suppose we know that thg # t; forn,m < k. Letm =k + 1
andn < m.

First we consider the case where> 1. Suppose for a contradic-
tion thatto = ¢1. Then by Proposition 6 and %,, = v, = ¢. Let
Do =Uo®- - RUn—1 andpr = vo®- - -Qvm—1. By Proposition 9,
po = p1, contradicting our induction hypothesis.

Now suppose: = 1. Thenn # m and souo # vo. However,
to ~s t1 and so this contradicts Proposition 7]

5.1.2 Proof of Theorem 2

Theorem 3 proves that there is at most one successor at agy tim
While this is true in complete-history, this is not enoughestab-
lish complete-history as the unique temporal model. We rieed
prove that this unique successor is structurally identizahe one
in complete-history. In particular, we need to know that plae-
tial order< behaves just like the interval partial order This fact
follows from the next proposition.

PROPOSITION 10. Supposéo,t1 € T with s, s1 € T° such
thatto ~g so andt; ~gs s1. Thenty < ¢; ifand only ifsg < s1.
In other words¢, followst, if and only if the start time aof; follows
the end time ofo.

Thus the only difference between any two models that satisfy
all the axioms could lie in how they break ties between oyerla
ping “intervals”. We therefore need to establish that ang such
models must break ties in the same way. Complete-historythse
linear orderC to break ties. Because of Theorem 1, we can extend
the definition ofC to arbitrary temporal models in the usual way,
identifyingto ® - - - ® t,, with o as specified in Theorem 2. As the
following proposition demonstrates, for small candidagetss is
our only option to choose a successor.

PROPOSITION 11. Supposesucd(s, { to,t1 }) = {to} with
t; € T. If s < t1, thento C t;.

Theorem 3 guarantees that there is at most one successor, and
Proposition 11 suggests that when we have a successor, agsalw
useL to determine which one it is. Therefore, to prove Theorem 2,
we only need to guarantee that, when there is someF with t <
s, then there isat leastone element irsucd(t, 7). Fortunately,
this follows from Axiom 7 (NON-BLOCKING).

PROOF OFTHEOREMZ2. By Theorem 1, the mapping®- - - ®
t, — o is well-defined; it is clearly a bijection. We need to show
that this mapping preserves the successor operation. \&adgir
know from Proposition 10 thak and the interval order are the
same. So we need only show that we break ties properly on all
candidate sets.

Supposet, € sucds,F) with s < ¢t1 € F. Applying
NON-BLOCKING to Proposition 11, we see that C— t; when-
everto # t1. ThusC is the only way to break ties over arbitrary
candidate sets. The only thing left to show is thatc (s, F) # 0
whenevert € F with s < t. Suppose for a contradiction that
t € Fwith s < t, butsucd(s, F) = . Then by NoN-BLOCK-
ING, sucd(s, { t }) = 0. But this contradicts Proposition 1.[]

5.2 Relaxing the Desirable Axioms

The moral of Section 5.1 is that to satisfy all axioms, thegem
ral model needs to rely on time stamps of unbounded size. If we
want models with time stamps of bounded size, we need to relax
our demands. This means that our primary goal now is to if§enti
the least number of axioms that we need to relax in order to get
such temporal model, e.g., an interval model.

Definition 2. An interval modelis a modelT in which

to ®t1 @tz = to @t foranyto,t1,t2 € T )

An interval model allows us the most compact representation
as we only need to remember two primitive time stamps for each
element ofT° (see Proposition 12 below). While this may seem
like a fairly extreme restriction, our results in this seatgeneralize
for any model with bounded representation (i.e. there isesfixed
n such that foreach t = po ® - - - ® p,, for somep; € T°). Thus
we consider only interval models in order to simplify our lysés.

We still require any temporal model to satisfy the standard a
ioms (Axioms 1-11). Furthermore, of all the desirable axsom
Section 4.2, we do not want to drop Axiom 18{ASSOCIATIVI-
TY). That axiom is necessary to prevent the pathological hehav
equating the two expressions in (3), which is clearly urrddéd.
Therefore, in this section we will determine what types oéial
models we get if we relax either Axiom 12 {BONG THICKEN-
ING) or Axiom 14 (2-DECOMPOSITION.



As many of the of the propositions in Section 5.1 did not regjui
the use of axioms in Section 4.2, we can still say a lot abcegeth
models. In particular, Propositions 6 and 7 require neiSTONG
THICKENING nor ®-DECOMPOSITION Therefore, we can prove
the following result, which shows that our name “intervaldatj
is indeed appropriate.

PrROPOSITION 12. Let T be any interval model satisfying the
accepted axioms and letc T \ T°. There are uniquéo, t; € T°
such thatty ~s t,t1 ~g t. Furthermoret = to @ t1.

5.2.1 RelaxingSTRONG THICKENING

STRONG THICKENING is an important part of the proof of The-
orem 1, which prevents any model of the axioms from being an
interval model. As an illustrative example, suppose tHads two
representations

t=t@pRt1 =10R®qR 1

as is the case in an interval model. Also supposephatq. Then
by ®-DeEcompPosITION for anys < t,

sucd(s, {to @ p,to @ q}) = {to ®p,to ® q }

However, this violates 8RONG THICKENING, Sinceto @ p < g by
®-ELIMINATION .

This example suggests that might be able to get an asseciativ
interval model by relaxing this axiom. However, as we sawen-S
tion 2, none of the existing interval models are associativer-
thermore, as the following theorem shows, there is no wayeto g
an associative interval model of the standard axioms.

THEOREM 4. There is no interval model of the standard axioms
that is also associative.

This theorem is true because any associative model mustysati
both Axiom 13 ®-ASSOCIATIVITY)and Axiom 14 ®-DECOMP-
OSITION). And any interval model of these two axioms can never
have more than one successor. Suppose e¥ertas time stamp
[0,0] and there are two instances @f-; E3) with time stamps
[1, 3] and[2, 3], respectively. We cannot tell from the time stamp
[1, 3] whetherE, had time stamij1, 1] or [1,2]. So if we choose
both the event &ffl, 3] and the one al2, 3] as the next occurrence
of (E2; E3), and the twoE; events have time stamps, 1] and

THEOREM 5. LetT be an interval model satisfying all axioms
but -DECoMPOSITION Then there are expressiors; and a
streamsS such thaf[(Eo; E1); E2]s 2 [E1; (Ev; E2)]s.

It is also possible to approximate associativity when
[(Eo; Ev); E2]s C [Eo;(E1; E2)]s. This property guar-
antees that we can rewritgFy; F1); F» as a right-associated
expression, and eliminate the false positives in postgesiag,
thus allowing us to take advantage of those cases where ttegrpa
E; is selective, bufzy and E4 are not. Furthermore, this property
guarantees that we will never produce false positives if everite
Ey; (E1; E2) as a left-associated expression.

Satisfying this half of associativity requires the forwalitection
of ®-DECOMPOSITION namely

t1 € sucdto, Fi1), t2 € SUC(t1, F2)

8
= t1 ® t2 € SUCto, F1; F2) ®

It is easy to verify that Cayuga has this property. Furtheeno
any interval model with this property must accept almost-al
successor time stamps with the minimal end time, and thus is a
most a minor variation of the Cayuga model. In particulag, fthl-
lowing proposition demonstrates that a model like the oreal uis
Active Office does not approximate associativity in eithieection.

PROPOSITION 14. Let T be an interval model satisfyin(g)
and all axioms butx-DECOMPOSITION Let F be a candidate
setin whicht = ro ® r1 ® r2 for everyt € F. Then

sucq(s, F) = {t|s<teFand end timg ~gq € T"is least.

Itis possible for an interval model satisfying (8) to havieitiary
behavior on time stamps of very short duration (i.e., the posi
tion of one or two base time stamps), as they are too shortsfor a
sociativity to apply. However, in addition to (8), Cayuga@has
a very weak form of associativity that applies when it is saqu
ing a stream of events with itself (i.e. an expression of thenf
E1; (E2; E2)). In Cayuga, if there are no overlappirdg, events
in S, then[E; (E2; E2)]s = [(E1; E2); E2]s. This property
follows from a weaker version ab-DECOMPOSITION hamely

Sucqt:{pi@)s}iel) = sucdt, { ps }iEI); {s} 9

2, 2], respectively, then we must choose both of them as the next This property, in addition to (8), uniquely characterizes/Gya up

E5 event afterF;. However, this violates Axiom 6 (ICKENING),

which is an standard axiom. In fact, as the following proposi
shows, we can never limit the successor in an associatieevait
model to a single choice.

PrROPOSITION 13. LetT be any interval model of the accepted
axioms which is associative. Let T and letF C T be such that
s1 ~g sz andt < sy forall si,s2 € F. Thensucdt, F) = F.

As a result of Theorem 4, there is no obvious benefit for ralgxi
STRONG THICKENING.

5.2.2 Relaxing®-DECOMPOSITION

Even though there is no hope for an associative interval imode
we may still be able to construct an interval model thpprox-
imatesassociativity. All of the interval models in Section 2 sat-
isfy ®-AssocIATIVITY. The only problem is how we treat the
candidate sets of composite events. For full associativigy re-
quire[(Eo; E1); E2]s = [Fo; (Ev; E2)]s. Suppose instead that
we have a model in whicfi(Eo; E1); E2]s 2 [Eo; (E1; E2)]s.

In such a model we could rewrite the expressioy (E1; E2) as
a left-associated expression, and eliminate false pesiti post-
processing. However, even this is impossible in an intenadel.

to isomorphism, suggesting that this temporal model is thgest
we can get to an associative interval model.

THEOREM 6. LetT be an interval model satisfyin@), (9) and
all axioms butr-DECOMPOSITION LetS be the Cayuga temporal
model. If we identif§° with Z, the mappingo®t1 — [to, t1] € S,
wheret; € T°, is an isomorphism.

Again, we note as an aside that Theorem 6 shows that these prop
erties are a sound and complete axiomatization of the weedg-
ciative interval time stamps. We also note that SnooplB ab&EO
satisfy both (8) and (9), and thus approximate associgtiqually
well as Cayuga. Still, they do not satisfyr SONG THICKENING.

As our results show, there is no gain from eliminatingRBNG
THICKENING and hence there is no apparent advantage to adopt-
ing the temporal models of SnooplB or ODE over Cayuga.

6. RELATED WORK

Initial implementations of event composition systems,hsas
Snoop [6] and EPL [14], used a linear temporal model based
on point time stamps. Results from the Knowledge Represen-
tation community [3, 8] demonstrated that this temporal etod



did not correctly implement the semantics of sequencinggint+
associated queries. Other attempts at event systems [215] all
use interval or history models. However, there has beengeareh
into which definition of successor is most appropriate.

The work on EPL [14] is particularly notable as it provide®s f
mal semantics for event languages. However, even thougharthe
guage is well-defined, it still exhibits unusual behavig&elequat-
ing the queries in (3). Instead of presenting yet anothemé#br
semantics, our work in this paper has been to determineiarfter
evaluating and comparing alternate semantics.

The theory of temporal logic has covered many aspects ofdaemp
ral models; an excellent survey can be found in van Benthé&h [1
Bohlen et al [5] have examined the difference between paidt a
interval models in database systems. Our temporal modejésa
eral framework that includes all of these types of modeld,raany
of our axioms in Section 4.1 were motivated by work in thisaare
To our knowledge, our paper is the first formulation of a terapo
model that examines the definition of a successor operaiffar-d
ent from the usual one defined by the partial order on time.

Kraemer and Seeger [10] have examined the difficulty of imple
menting a window join operation on streaming data with iveér
time stamps. However, their analysis only looks at impletingn
a specific temporal model, and is not an attempt to charaetaii
possible implementations, such as we have done in this paper

Finally, there has been much work on the theory of specific tem
poral models for event systems. Interval temporal logid [i$3
a framework for first-order reasoning about intervals. Rio#t
and Constable [4] also have a logic for reasoning about svant
general distributed processes. However, these approasseme
a fixed temporal model and provide rules for making inference
within that model. Our approach differs in that it is answars
higher level question; we do not assume a fixed temporal model
but use generic properties of event systems to reason wdrigbd-
ral models are best.

7. CONCLUSIONSAND FUTURE WORK

While our approach has been motivated by practical implemen
tation concerns, we have attempted to give a formal andaigor
analysis of the different ways in which we can define a sequenc
ing operator in event composition systems. Admitting thai of
the axioms in Section 4.2 are controversial, we have idedtifivo

canonical temporal models. One of the two models — complete-

history — has serious implementation issues because ifresgu
time stamps of unbounded size. The interval-based timepstam
model of Cayuga appears to be the best trade-off betweeroéase
implementation and support of sequencing associativityraght-
associated queries.

Notice that our results were obtained for what one might call
a “minimal CEP system”, which only has the sequencing opera-
tor. Considering additional operators, and hence possititiing
more axioms about their properties, can only introducén&rrton-
straints that limit the choice of temporal models. Hencaitiviely,
the best temporal model identified for this minimal systemstio
tutes the ideal case for any CEP system with additional opexa

There are two axioms in Section 4.1 which, while accepted by
all event composition systems, are controversial in theptaal
logic community. In particular, while Axiom 11 (NEARITY) is
appropriate for synchronous event systems, it is not agipliécto
distributed event systems as initially studied by Lampiif] [and
later by Liebig et al [12]. Future work is needed to determntime
effect of removing this axiom from our framework.

An even more interesting solution to the synchronous assump
tion would be to remove bothINEARITY and Axiom 10 (RRiM-

ITIVE REPRESENTATION. While the base time stamps are fun-
damental to our arguments, we can artificially construcintfzes
equivalence classes over the relatiensand~ . Further research
is needed to determine what temporal models arise when waaxt
an existing model with these equivalence classes as timgsta
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APPENDIX
A. PROOFSOMITTED FROM PAPER

A.1 Propositionsfrom Section 4

In this section, we present the proofs of all of the proposgi
posed in Section 4. All of these proofs follow from algebraia-
nipulation and direct application of the axioms, and so aee p
sented without comment.

PropPOSITION1. For anyto,t1 € T, to < ¢ if and only
t1 € sucdto, {t1}).

PROOF By Axiom 4 (RESPECTINGORDER), to < t; if and
only there is someF such thatt; € sucdto, F). By Axiom 5
(THINNING), we can choosé = {¢1 }. [

PROPOSITION2. If t1 € sucC(to, F), thento < t; and there
isnos € Fwithtyg < s < t1.

PROOF Suppose that there is such an As s € F, we
gett; € sucdto,{s,t1}) from Axiom 5 (THINNING). As
to < s, {s} = sucdto,{s}) by Proposition 1. Hence
{s} = sucdto,{s,t1}), by Axiom 6 (THICKENING), a con-
tradiction. [

PROPOSITION3. The sefl® in PRIMITIVE REPRESENTATION
is unique.

PROOF. LetT; andT. both satisfy the properties @ in Ax-
iom 10 (RRIMITIVE REPRESENTATION, and suppos&'; # Ta.
Without loss of generality, there is somec Ty with s ¢ Ts.
As s ¢ Ts, there is somev,...,pn € T2, n > 1 such that
s=po®(p1®---®pn). However, as € Ty, this is a contradic-
tion. O

PROPOSITION4. (to ® t1) ® t2 is defined if and only ifo <
t1 < to.

PROOF Suppos€to ® t1) ® to is defined. Therp < t; by
Axiom 8 (CONSERVATIVE COMPOSITION). Furthermore, by Ax-
iom 13 (2-ASSOCIATIVITY), we know thato® (t1 ®t2) is defined
and hence; < to.

Now suppose, < t1 < t2. By CONSERVATIVE COMPOSFH
TION, to ® t1 is defined, and hence ® t1 < t2 by Axiom 9
(®-ELIMINATION ). Therefore(to ® t1) ® t2 is defined. [

PROPOSITIONS. SupposeTl is a temporal model satisfying
Axiom 9 R®-ELIMINATION ), Axiom 13 Q-ASSOCIATIVITY), and
Axiom 14 ®-DECOMPOSITION. Let E4, E», E3 be event expres-
sions, and suppose@ is associative over the data elements of the
event strean$. Then[(Eo; E1); E2]s = [Eo; (E1; E2)]s.

PROOF. Suppose that
((ao ® a1) B az, (to @ t1) R t2) € [(Eo; Ev); E2]s

with (ai, t;) € [Ei]s. As @ is associative, an@ is associative by
Axiom 13 (®-ASSOCIATIVITY)
((ao ® a1) ® az, (to ® t1) ® ta)

= (a0 ® (a1 ® a2),to ® (t1 R t2)) 0

Furthermoret; € sucQ(to, Fg, ) andte € sucdto ® t1, Fg,).
By Axiom 9 (®-ELIMINATION ), we havety € sucdti, Fg,).

Hencet: ® t2 € sucdto, FE,; ,) by Axiom 14 (-DECOMPO-
SITION), and thus

((ao ® a1) @ az, (to @ t1) @ t2) € [Eo; (E1; E2)]s
Now suppose
(a0 ® (a1 B az),to ® (t1 ® t2)) € [Eo; (E1; E2)]s

Again, ®-ASSOCIATIVITY gives us (10). Furthermore, €
sucqti, Fe,) and 1 ® t2 € Sucdto,Fe,; B,). SOti €
sucdto, FE, ) by ®-DECOMPOSITION [

A.2 Propositionsfrom Section 5.1

Once we are given the definition of the equivalence relations
and~ g, the propositions in this section all follow from algebraic
manipulation and direct application of the axioms. Themefthey
are presented without comment.

PROPOSITIONG. Supposéd, < t1. Thento ® t1 ~g t1 and
to ®t1 ~s to.

PROOF to ® t1 ~g t1 is immediate from Axiom 9 ©-ELI-
MINATION), SO we need only prove ® t1 ~g to. First suppose
s < to ® t1. By Axiom 8 (CONSERVATIVE COMPOSITION), s ®
(to ® t1) is defined. Thus < to by Axiom 13 (®-ASSOCIATE
VITY) and Proposition 4. Now suppose< ty. By Proposition 4,
(s ® to) ® t1 is defined. S& ® (to ® t1) is defined by®-Asso
CIATIVITY ,and hence < to ® t1. [

PROPOSITION7. Suppose,p1 € T°. Thenpy = p; if and
only if po ~g p1. Similarly,po = p1 if and only ifpg ~s p1

PROOF If to = t1 thenty ~g t; is clear. Suppose then that
to ~g t1 buttg # t1. By Axiom 11 (LINEARITY) we can assume
to < t1 without loss of generality. Butas ~g t1,t1 < t1, which
contradicts Axiom 2 (RREFLEXIVITY).

The proof for~g is analogous. [J

PROPOSITIONS. Supposéo,t1 € SUCds, F). Thentg~gt;.

PROOF Suppose thafy, t1 € sucq(s, F) with to tg t1. As
elements ofT are built up fromT®, we know from Proposition 6
that there argo, p1 € T° with p; ~g ;. As~g is an equivalence
relation,po g pi. So from Axiom 13 ®-ASSOCIATIVITY) and
Axiom 11 (LINEARITY), we can assume without loss of generality
thatpo < p1. Thus aspo ~g to, we havets < pi. We now
consider two cases.

First, suppose; € T°. In this cas&; = p; and sotp < t1. As
to, t1 € sucq(s,F), {to, t1 } = sucds, {to,t1 }) by Axiom 3
(CANDIDATE PRESENCH and Axiom 5 (THINNING). Then, again
by these two axioms{ ¢y } = sucds,{to}). Butte < t1, and
this so this contradicts Axiom 6 (ICKENING).

Now supposé; ¢ T°. We writets = v ® +++ ® Um Q p1
wherev; € T°. Again by CANDIDATE PRESENCEand THIN-
NING we have that{ to,t1 } = sucds,{to,t1}) and{to} =
sucd(s, {to }). Butasty < pi, Axiom 12 (STRONG THICKEN-
ING) gives us{ to } = sucq(s, { to, 1 }), a contradiction. ]

COROLLARY 1. Supposéy,t; € sucC(s, F) with to, ¢ € T°.
Thentg = t1.

ProOF Apply Proposition 7 to Proposition 8.1

PROPOSITION9. Supposeo,ti,s € T with to,t1 < s and
to 74— t1. Thentg ® s 74— 11 ®s



PROOF By Proposition 15 € sucd(;, { s }) for eachi. Sup-
pose for a contradiction thag ® s = ¢t1 ® s. Letr € T° be such
thatr < to. By Proposition 67 < to ® s = t1 ® s. Hence

to®s =t ®s € sucar,{to®s,t1 @ s})

By Axiom 14 (®-DECOMPOSITION, to, t1 € sucdr, { to,t1 }).
But this contradicts Theorem 3.[]

PROPOSITION10. Supposéo,t1 € T with so,s1 € T° such
thatty ~g so andt; ~s s1. Thenty < ¢ if and only ifsg < s1.
In other words¢; followst if and only if the start time af; follows
the end time ofy.

PROOF Supposé, ~g so andt; ~gs si. First suppose that
to < t1. Asty ~g So, so < t1 by the definition of~g. Sim-
ilarly, so < s1 asti1 ~g si. The proof for whensy < s1 is
analogous. [

PROPOSITION11. Supposesucd(s,{to,t1}) = {to } with
t; € T. If s < t1, thento C t;.

PROOF Supposesucds, { to,t1}) = {to } with¢; € T, and
also thats < t¢;. Furthermore, suppose for a contradiction that
to £ t1. AsC is alinear ordert; C to.

We first prove our claim assuming th&t «%g t1. By Ax-
iom 10 (RRIMITIVE REPRESENTATION and Proposition 6, there
arepo,p1 € T° with p; ~g t;. Thenpy £ p1, and so from Ax-
iom 13 (®-ASSOCIATIVITY) and Axiom 11 (LUNEARITY), either
po < p1 Orp1 < po. Asty L to, itis clear from Proposition 6
and the definition of= thatp, < po. Asp: ~g t1, we have that
t1 < po. We now split into two cases.

First assume, € T°. In that casdo = po, and sot; < to.
Thus we havesucd(s, { to, t1 }) = { ¢1 } by the arguments in the
proof of Proposition 8.

Now assume, ¢ T°. By PRIMITIVE REPRESENTATION we
can writetp = v ® -+ ® vm ® po. By Axiom 3 (CAN-
DIDATE PRESENCEH and Axiom 5 (THINNING), we have that
{to,t1} = sucd(s, {to,t1 })and{t1 } = sucd(s,{t1}). But
asti < po, Axiom 12 (STRONG THICKENING) gives{t1 } =
sucd(s, { to, t1 }), a contradiction.

We now consider the case whetrg ~g t1. We decompose
to=V0 R QUm,t1 =U R+ R Up. ASto ~g 1, Um = Un
by Proposition 6. Again we have two possibilities.

The first possibility is that there is some > 0 such that
Um—k < Up—g @aNdvm—; < un—; for ¢ < k. In that case
m,n > 0,sowelepo =v0®  QUn-1,P1 = U@+ @Un—_1,
andqg = vm = un. SO0ty = po ® g andt; = p1 ® q. As
sucd(s, { to, t1 }) = {to }, we have{ po } = sucds, { po,p1 })
by Axiom 14 (»-DECOMPOSITION. As s < t1, AxXiom 5 (THIN-
NING) gives{ t1 } = sucd(s, {1 }), and thuss < p; by ®-DE-
COMPOSITION Thereforepo T pi1 by our induction hypothesis,
and hencég C ;.

The second possibility is that > n andv,—; = wu,—; for
alli < n. Thistmeweletp = vy ® -+ ® Vm—n—1 andqg =
Um—n ® -+ @ Um, and SOty = p ® q, t1 = ¢q. By LINEARITY,
pickr < s. Thens € sucdr,{s}) and soR-DECOMPOSITION
gives

{s@p®q}=sucdr,{s@p®q¢,s®q})
Then again byw-DECOMPOSITION
{s@p}=sucdr,{s@ps})

Ass < p,s®p < pandp g s, which contradicts our proof of
the caseo g t1. O

A.3 Proofsfrom Section 5.2

Given the equivalence relationss and ~ g introduced in the
previous section, the remainder of the proofs have a verjlasim
style. We present them without further comment.

PrROPOSITION12. LetT be any interval model satisfying the
accepted axioms and letc T \ T°. There are uniqueo, t1 € T°
such thatty ~s t, t1 ~g t. Furthermoret = to ® t1.

PROOF By Axiom 10 (PRIMITIVE REPRESENTATION, we
have thatt = vp ® --- ® v, with v; € T°. By Proposition 6,
vo ~g tandv, ~g t. Also asT is an interval model, = vo @ v,.
Letto = vo, t1 = v,. We need only show that they are unique.

Suppose = sp ® s1 with s; € T°. By Proposition 6s¢ ~s t
and hencesy ~gs to. Thussy = to by Proposition 7. A similar
argument shows that =¢;. O

PrRoPOSITION13. LetT be any interval model of the accepted
axioms which is associative. Let T and letF C T be such that
s1 ~g sz andt < s; forall si,s2 € F. Thensucdt, F) = F.

PROOF. By Proposition 12, there is somg € T° with ¢y ~s t.
Similarly, for eachs € F there is some; € T° such thak; ~g s.
Furthermore, ag: ~g p2 for eachp; € F, by Proposition 7, there
is a uniques; that works for all elements of. Now take any €
F.Ast < p, t®pisdefined. By Proposition 6y ~s t ~s tQp
ands; ~g p ~g t®p. Thust ® p = to ® s1 forallp € F, and
hence{to ®s1} ={t}; F.

By Axiom 11 (LINEARITY), there is somer € T° such
that » < t¢o. Hencer =< to ® si by Proposition 6.
Thus sucdr,{to ®s1}) = {to® s1} by Proposition 1. As
{to®s1} = {t}; F, sucqt,F) = F by Axiom 14 (®-DE-
CcoMPOSITION. [

THEOREM4. There is no interval model of the accepted axioms
that is also associative.

PROOF By Axiom 11 (LINEARITY), lett; € T° with0 < i <
3andty < t1 < t2 < t3. By Proposition 13,

SUCto, {t1 @ t3,t2 @tz }) = {t1 @3, t2 Qt3}

Then by Axiom 14 &-DECOMPOSITION, SUC(to, { t1,t2 }) =
{t1,t2 }. However,sucdto, {t1 }) = {t1 } andt; < t2, which
violates Axiom 6 (THICKENING). [

THEOREMD5. LetT be an interval model satisfying all axioms
but -DECOMPOSITION Then there are expressiors; and a
streamsS such thaf[(Eo; E1); E2]s 2 [E1; (E1; E2)]s.

PROOF Suppose for a contradiction thptEo; E1); E2]s 2
[Eo; (E1; E2)]s for any E; and S. This means that we get the
reverse direction ofo-DECOMPOSITION In other words, for any
to, t1,t2, andFi, Fo,

t1 ® ta € SUCUto, Fi1; F2), t2 € SUCHt1,F2)

11
= t1 € sucdto, Fi) (11)

Now suppose we havwe< t, < p < ¢ < t1, all elements ofr°.
By (7), we have that

tRPpRt1 =t0RqRt1 =to Rt (12)

As to < p,g, to < p ® ti,q ® t1 by Proposition 6.
Consider now the sesucC(to,{p®ti,q®¢1}). We know
by Axiom 3 (CANDIDATE PRESENCH and Axiom 4 (Res-
PECTING ORDER) that sucto,{p®t1}) = {p®t:} and



sucdto,{¢®t1}) = {g® t1 }. Therefore, by Axiom 7 (MN-
BLOCKING), sucdto, {p ® t1,q ® t1 }) cannot be empty. By
Axiom 3 (CANDIDATE PRESENCBH, it must contain eithep ® 1
or g ® t1. Therefore, by (12), we have that

{tohi{p@ti,q@t1} ={to®@t1} (13)

As s < to, we also have that < to ® t1 by Proposition 6. Thus
sucds,{to®t1}) = {to®t1}) as before. So, in particular,
the equivalence in (12) gives us

tRpRti,to®q®t1 € sucds,{to}; {pRt1,q®t1})

By (11) and Q\NDIDATE PRESENCE we have that
sucQto,{p®@t1,q®t1}) {p®ti,q®t1}.  Since
p,q < t1, arguing as before

{p@ti,g®t1} ={p,q} {t:1}

Therefore, again by (11) and ARDIDATE PRESENCE

sucdto, {p,q}) {p,q}. However, we know that
sucdto,{p}) = {p} by CANDIDATE PRESENCEand Res-

PECTING ORDER. Asp < ¢, Axiom 6 (THICKENING) yields

sucdto, {p,q}) = {p}, which is a contradiction. [J

PROPOSITION14. LetT be an interval model satisfyin@) and
all axioms butx-DECOMPOSITION Let F be a candidate set in
whicht = ro ® r1 ® ro for everyt € F. Then

sucd(s, F) = {t|s<teFand end timé ~g g € T°is least

PROOF The key idea of this proof is to use the interior element
r1 of each time stamp, together with Axiom 12T(8ONG THICK-
ENING), to show that no time stamp can block another with the
same end time. Given Proposition 10 and several other axisms
can assume without loss of generality that all events inave the
same end time and follow. We letq € T° be the unique end
time of all these elements. Then by (7), every elemerf @in be
expressed as; ® g with p; € T°.

Let 7' = {p; |p: ® ¢ € F,p; € T° } be the set of start times
of all these time stamps. A’ is linearly ordered, picko ®q € F
such thatpy € F' is least. By Axiom 6 (HICKENING), po €
sucd(s, F'), and thugp ® ¢ € sucds, F) by (8).

As every element inF has formry ® 1 ® ¢, there is some
r € T° such thatp; < r < ¢ forall p, € F'. Letr be the
greatest such primitive time stamp. Take @ny- p; ® ¢ € F,
and defineF; = {p; @ r [i #j } U{p: }. Note thatF; {¢q} =
F. By STRONG THICKENING, p; € sucd(s,F;), and sot €
sucds, F) by (8). O

THEOREMG6. LetT be an interval model satisfyin@), (9) and
all axioms butr-DECOMPOSITION LetS be the Cayuga temporal
model. If we identif{ff® with Z, the mappingo®t1 — [to,t1] € S,
wheret; € T°, is an isomorphism.

PROOF. Proposition 12 guarantees that the mapping is a well-
defined bijection. The proof of Proposition 8 does not regjuir
®-DECOMPOSITION Hence by Axiom 7 (MWN-BLOCKING) and
Axiom 12 (STRONG THICKENING), it is sufficient to show that
sucdt, F) = F for any F such thaip, ~g p2 and¢ < pq for all
pi € F.

Take any such, F. By Propositions 7 and 12, there is a unique
s such thatp ~g s for all p € F. By Axiom 11 (LINEARITY),
there is some < u < v. By (9),

sucdt, {pi® (u®v)}, .z) =sucdt, F); {uxv}

Hence by Proposition 14,

sucat, {pi®@ (u@v)}, cr) ={Pi® (V) }, cr

By Proposition 12, each element&fthas a unique start time. Thus
sucqt, F)=F O



