
Approximation Techniques for Spatial Data ∗

Abhinandan Das
Cornell University

asdas@cs.cornell.edu

Johannes Gehrke
Cornell University

johannes@cs.cornell.edu

Mirek Riedewald
Cornell University

mirek@cs.cornell.edu

ABSTRACT
Spatial Database Management Systems (SDBMS), e.g., Ge-
ographical Information Systems, that manage spatial ob-
jects such as points, lines, and hyper-rectangles, often have
very high query processing costs. Accurate selectivity esti-
mation during query optimization therefore is crucially im-
portant for finding good query plans, especially when spatial
joins are involved. Selectivity estimation has been studied
for relational database systems, but to date has only received
little attention in SDBMS. In this paper, we introduce novel
methods that permit high-quality selectivity estimation for
spatial joins and range queries. Our techniques can be con-
structed in a single scan over the input, handle inserts and
deletes to the database incrementally, and hence they can
also be used for processing of streaming spatial data. In con-
trast to previous approaches, our techniques return approx-
imate results that come with provable probabilistic quality
guarantees. We present a detailed analysis and experimen-
tally demonstrate the efficacy of the proposed techniques.

1. INTRODUCTION
In recent years, data management for spatial applications

such as Geographic Information Systems, the earth sciences,
and environmental monitoring has gained significant impor-
tance. In spatial data management, records in the database
have a spatial extent, and users can pose expressive queries
such as a spatial join between two relations (join all objects
that overlap or are within certain distance of each other)
or a range query (report all objects in a selected range, or
return an aggregate over the selected objects). Due to the
spatial extent of the objects, executing spatial queries can
be very expensive.

When selecting different query plans for a spatial query,

∗The authors are supported by NSF grants IIS-0330201,
CCF-0205452, and IIS-0133481, and by a gift from Mi-
crosoft. Any opinions, findings, conclusions, or recommen-
dations expressed in this paper are those of the authors and
do not necessarily reflect the views of the sponsors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . .$5.00.

we need accurate estimates of the cost of different execu-
tion strategies. Thus as in relational systems, we need ac-
curate selectivity (cardinality) estimates. Note that these
estimates can also be used for fast approximation of an ag-
gregate query, e.g., a classical example is the approximate
range aggregate; another interesting example is to use ap-
proximate join cardinality for correlation analysis between
data sets.

The current state of the art in estimating the sizes of
spatial joins uses either sampling or histograms, where re-
cent work has shown that histograms are superior for a wide
range of possible query classes [5, 26]. However, existing
histogram-based techniques still have significant drawbacks.
First, they either give no or only very conservative worst-
case error guarantees that are usually overly pessimistic in
practice. Due to the lack of error guarantees, it is not pos-
sible to quantify the tradeoff between storage and result ac-
curacy (except by performing extensive experimental evalu-
ation with a priori known data distributions). Second, ex-
isting histogram techniques are designed for static datasets,
and require usually several passes over the data during con-
struction. The only exception are histograms that use a
fixed partitioning of the space (e.g., equi-width). These can
be constructed in a single pass and can be maintained in-
crementally, but they cannot adapt to skewed or changing
data distributions.

Our Contributions. In this paper, we introduce a novel
framework for spatial data that is based on randomized pro-
jections. Our framework can handle a large set of challeng-
ing spatial operators, and it can handle objects with spatial
extent. Our approach is grounded on randomizing tech-
niques for computing small, pseudo-random sketches of the
spatial dataset. The basic sketching technique was origi-
nally introduced for on-line self-join size estimation by Alon,
Matias, and Szegedy in their seminal paper [4] and, as we
demonstrate in our work, can be generalized to provide ap-
proximate answers to spatial join queries with explicit and
tunable performance guarantees on the approximation error.
The main challenge in using sketches for spatial data is to
design selectivity estimation algorithms which are based on
the right way of counting events like points being contained
in intervals. The algorithm should not only determine the
correct estimate on expectation, but its results should also
have low variance.

More concretely, the key contributions of our work can be
summarized as follows:

• We introduce the first summary data structure for spa-
tial data that allows estimation of the selectivity of

spatial queries with provable performance guarantees.
It permits a graceful tradeoff between space consump-
tion and the quality of the resulting estimation. We
apply our spatial sketch technique to spatial joins of
intervals and rectangles (Section 4). All of our tech-
niques are accompanied by a thorough analytical eval-
uation in which we show probabilistic bounds on the
quality of the resulting summary data structures.

• We show the generality of our technique by discussing
several extensions: Joins of hyper-rectangles in a d-
dimensional space where d > 2, spatial joins with other
join predicates like “contained”, ǫ-joins, and range
queries (Section 6).

• In a thorough experimental evaluation, we compare
our techniques with the best previously known esti-
mation techniques for spatial joins, the Geometric and
the Euler histograms (Section 7).

Note that, even though we develop our sketching algorithms
in the classic database context of stored relations, our tech-
niques are more generally applicable to scenarios where only
a single pass over the data is possible — from streams of
spatial data to huge Terabyte databases where performing
multiple passes over the data for the exact computation of
query results may be prohibitively expensive.

The rest of the paper is organized as follows. Section 2
defines spatial queries and discusses the sketching approach
of [4]. In Section 3 we introduce the basic atomic sketches
which will be used to construct selectivity estimators. Se-
lectivity estimation for joins of interval sets and rectangle
sets are discussed in Section 4. Sections 5 and 6 show how
to generalize the technique to virtually any practical set-
ting and how to extend our techniques to the d-dimensional
case, other join conditions, and other spatial operators. Ex-
perimental results are discussed in Section 7, and Section 8
reviews related work. Section 9 concludes this article.

2. BACKGROUND

2.1 Queries
We focus mostly on selectivity estimation for spatial joins,

more precisely spatial joins of sets of hyper-rectangles and
ε-joins of point sets. These are the most common types of
joins in spatial DBMS. In the following, let N be a (dis-
crete) metric space and let r = r(1) × r(2) × · · · × r(d)
be a hyper-rectangle which is defined by range r(i) in di-
mension i, 1 ≤ i ≤ d. A range r(i) is defined by its
lower and upper endpoint l(r(i)) and u(r(i)) such that
r(i) = {x ∈ N|l(r(i)) ≤ x ≤ u(r(i))}. Hence r = {x =
(x1, x2, . . . , xd) ∈ N d|∀1 ≤ i ≤ d : l(r(i)) ≤ xi ≤ u(r(i))}.
Note that our techniques easily generalize to multidimen-
sional data spaces with different domains for the dimensions.
In Section 5.1 we discuss how to handle real-valued domains.

Definition 1. Let R and S be two sets of hyper-rectangles
in d-dimensional space N d. Function overlap for two hyper-
rectangles r(1)×r(2)×· · ·× r(d) ∈ R and s(1)×s(2)×· · ·×
s(d) ∈ S returns true if ∀1 ≤ i ≤ d : l(r(i)) < l(s(i)) <
u(r(i)) ∨ l(r(i)) < u(s(i)) < u(r(i)) ∨ l(s(i)) < l(r(i)) <
u(s(i)) ∨ l(s(i)) < u(r(i)) < u(s(i)), and false otherwise.
The spatial join of R and S then is defined as

R ⊲⊳o S = {(r, s)|r ∈ R ∧ s ∈ S ∧ overlap(r, s)} ,

and hence its selectivity is |R⊲⊳oS|
|R|·|S|

.

According to this definition objects that only “touch at their
boundaries” are not part of the join result. We will examine
possible generalizations in Section 6.

Definition 2. Let A and B be two sets of points in d-
dimensional space N d and dist be a function that returns
the distance between a point in A and a point in B. The
ε-join of A and B then is defined as

A ⊲⊳ε B = {(a, b)|a ∈ A ∧ b ∈ B ∧ dist(a, b) ≤ ε} .

Its selectivity is the cardinality of the result divided by the

total number of point-pairs, i.e., |A⊲⊳εB|
|A|·|B|

.

Typically the distance dist(a, b) of two points a =
(a1, . . . , ad) and b = (b1, . . . , bd) is computed by using an
Li-distance distLi

, or disti for short, where

disti(a, b) = (
d

∑

i=1

|ai − bi|i)
1

i ,

including the L∞ distance

dist∞(a, b) = max{|a1 − b1|, . . . , |ad − bd|} .

We also examine selectivity estimation for range queries.

Definition 3. Let R be a set of d-dimensional hyper-
rectangles and q = (q(1) × q(2) × · · · × q(d)) be the query
hyper-rectangle such that range q(i) is selected in dimen-
sion i. This range query selects the set Q(q, R) = {r ∈
R|overlap(r, q)}. The selectivity is defined as |Q(q,R)|

|R|

Notice that for all introduced query types the challenge is
to compute the result cardinality. Knowing the cardinal-
ity, we can compute the selectivity by simply keeping track
of the input cardinalities. Hence in the following we are
concerned with estimating the cardinality of the results of
spatial queries.

2.2 AMS Sketches
Sketches were proposed for processing data streams. Con-

sider a simple scenario where the goal is to estimate the size
of the self-join SJ(A) of relation R over one of its attributes
R.A as the tuples of R are streaming in; that is, we seek
to approximate the result of query Q = COUNT(R ⊲⊳A R).
W.l.o.g. let the domain of join attribute A be dom(A) =
{0, 1, · · · , |dom(A)| − 1}, where |dom(A)| denotes the size of
the domain. Using f(i) to denote the frequency of attribute
value i in R.A, we can rewrite query Q as Q = SJ(A) =
∑

i∈dom(A) f(i)2 (i.e., the second moment of A). In their

seminal paper, Alon, Matias, and Szegedy [4] prove that
any deterministic algorithm that produces a tight approxi-
mation to SJ(A) requires at least Ω(|dom(A)|) bits of stor-
age, rendering such solutions impractical for a data-stream
setting. Instead, they propose a randomized technique that
offers strong probabilistic guarantees on the quality of the
resulting SJ(A) approximation while using only logarithmic
space in |dom(A)|.

The basic idea of their scheme is to define a random vari-
able Z that can be easily computed over the streaming val-
ues of R.A, such that (1) Z is an unbiased estimator for
SJ(A), i.e., E[Z] = SJ(A); and (2) Z has sufficiently small
variance Var(Z) to provide strong probabilistic guarantees

for the quality of the estimate. This random variable Z
is constructed on-line from the streaming values of R.A as
follows:

• Select a family of four-wise independent binary random
variables {ξi : i = 1, . . . , |dom(A)|}, where each ξi ∈
{−1, +1} and Pr[ξi = +1] = Pr[ξi = −1] = 1/2 (i.e.,
E[ξi] = 0). Informally, the four-wise independence
condition means that for any 4-tuple of ξi variables
and for any 4-tuple of {−1, +1} values, the probability
that the values of the variables coincide with those in
the {−1, +1} 4-tuple is exactly 1/16 (the product of
the equality probabilities for each individual ξi).

• Define Z = X2, where X =
∑

i∈dom(A) f(i)ξi. Note

that X is simply a randomized linear projection (in-
ner product) of the frequency vector of Ri.A with the
vector of ξi’s that can be efficiently generated from the
streaming values of A as follows: Start with X = 0 and
simply add ξi to X whenever the ith value of A is ob-
served in the stream.

The crucial point here is that, by employing known tools
(e.g., orthogonal arrays) for the explicit construction of
small sample spaces supporting four-wise independent ran-
dom variables, such families can be efficiently constructed
on-line using only O(log |dom(A)|) space [4]. More precisely,
we do not explicitly store the ξi. Instead we store a single
seed (for ξi with i of length k bits, the seed has length 2k+1
bits) for the whole ξ-family. Whenever a ξi is needed for the
computation, its value is generated on-the-fly from the seed
in time linear in the seed size.

2.3 Boosting Accuracy
To improve the quality of the estimation guarantees one

can use a standard boosting technique (see [4]) that main-
tains several independent identically-distributed (i.i.d.) in-
stantiations of a random variable and uses averaging and
median-selection operators to boost accuracy and proba-
bilistic confidence. The i.i.d. instances can be constructed
by simply selecting independent random seeds for generating
the families of four-wise independent ξi’s for each instance.

Let {Zi,j}, i ∈ {1, 2, . . . , k1} and j ∈ {1, 2, . . . , k2}, be
a set of k1 · k2 of such i.i.d. instances of an estimator Z
for a quantity Q, such that E[Z] = Q. Each Zi,j is a ran-
domized linear projection of the data stream as discussed
in Section 2.2. We use the term atomic sketch to describe
such a single projection, and the term sketch for the overall
synopsis consisting of k1 ·k2 i.i.d. instances of these random
projections.

Figure 1 shows a sketch and illustrates how the boost-
ing works. For each row j we compute the average Z̄j =
∑k1

i=1 Zi,j . Then we output the median of these aver-
ages {Z̄1, Z̄2, . . . , Z̄k2

}. The following lemma establishes the
quality guarantees.

Lemma 1. [4] Using 16 Var[Z]

ε2E[Z]2
lg 1

φ
independent copies of

Z we can guarantee that the computed estimate Z̄ of E[Z]
satisfies Pr[|Z̄ − E[Z]| > εE[Z]] ≤ φ.

Proof. By setting k1 = 8
ε2

Var[Z]

E[Z]2
and k2 = 2 lg(1/φ) the

lemma follows from Chebychev’s inequality and Chernoff
bounds.

Note that determining the number of instances of Z actu-
ally requires knowledge of E[Z], the very value we would like

Boosted estimate of E[Z]:

Sketch

Z(1,1)
Atomic sketch

Z(2,1)
Atomic sketch

Z(k1,1)
Atomic sketch

Z(1)
Average

Z(1,2)
Atomic sketch

Z(2,2)
Atomic sketch

Z(k1,2)
Atomic sketch

Z(2)
Average

Z(1,k2)
Atomic sketch

Z(2,k2)
Atomic sketch

Z(k1,k2)
Atomic sketch

Z

Z(k2)
Average

Median of the

Figure 1: Boosting the accuracy

to estimate! This is a common problem shared by previous
sketching techniques (see Section 8) and Online Aggrega-
tion [19, 18], in fact also by any experiment in the natural
sciences where we want to estimate the error in measur-
ing an unknown quantity. We can generally use simple ap-
proximation techniques that provide a lower bound on E[Z]
(“sanity bounds” as discussed in [3]), or use historic data,
e.g., previously computed exact answers, to predict future
values of E[Z]. The tradeoff here is that the tighter these
bounds are, the stronger the quality guarantees returned by
the technique.

3. SKETCHES FOR SPATIAL DATA
Techniques designed for relational DBMS often do not eas-

ily extend to spatial data. This is mainly caused by the fact
that SDBMS manage data with extent. A typical operation
during the processing of a spatial query is to check if two
objects overlap, or if they are within a certain distance ε of
each other. Our techniques address this problem for spa-
tial queries over collections of hyper-rectangles (including
points, lines, and rectangles as special cases). Most SDBMS
manage hyper-rectangles like geographical maps, environ-
mental measurements for points on the earth’s surface, and
so on. (Hyper-)rectangles are also used as bounding boxes
of more complex objects (e.g., polygons, polylines) since it is
often more efficient to first compute a super-set of the final
result based on these bounding boxes, and then to filter out
the false positives in a final filtering step.

For processing hyper-rectangles, we identified that all of
the targeted spatial queries rely on the same basic operation:
determine if a point lies within an interval. Hence by con-
structing a corresponding sketch, we have the basic ingredi-
ent for selectivity estimation for spatial queries. The actual
challenge then is to determine how to use these sketches to
obtain a good query result cardinality estimate with high
probability, using only small space.

3.1 Basic Sketches for One Dimension
For simplicity assume our input data set R is a one-

dimensional set of intervals. We use [a, b] to denote an
interval with lower endpoint a and upper endpoint b. To
construct our sketch we use a family of four-wise indepen-
dent random variables {ξi} (as introduced in Section 2.2),
such that variable ξi, i ∈ {0, . . . , n−1} = N , corresponds to
coordinate i ∈ N . An interval [a, b] ∈ R intuitively is repre-
sented by the coordinates of the points it contains, i.e., we
use ξa + ξa+1 + · · ·+ ξb to sketch it. Now assume we want to
test if a point c ∈ N lies within the interval. Observe that

since the ξ-variables are four-wise (and hence also pairwise)
independent we have

a ≤ c ≤ b ⇔ E[(ξa + ξa+1 + · · · + ξb)ξc] = 1

c < a ∨ c > b ⇔ E[(ξa + ξa+1 + · · · + ξb)ξc] = 0

This forms the basis of our spatial sketches. For data set R
define the standard atomic spatial sketches

VI =
∑

[a,b]∈R

(ξa + ξa+1 + · · · + ξb) and

VE =
∑

[a,b]∈R

(ξa + ξb) (1)

Intuitively VI keeps track of the complete intervals, while VE

summarizes only their endpoints.
Notice that the update cost of VI depends linearly on the

interval length since we have to add the corresponding ξi for
each point i ∈ N that is contained in the interval. For large
coordinate domains, which are not uncommon in spatial ap-
plications, this quickly becomes costly and also results in
high variance of the estimates. Hence we introduce dyadic
spatial sketches. Similar to [11, 17], we partition the domain
N into intervals of size 2i. For simplicity let n = |N | be a
power of 2, say 2h for some positive integer h.1 For each
level 0 ≤ i ≤ h we partition N into 2h−i intervals of size 2i

each. Hence for level i = 0 we have point “intervals”, each
corresponding to a single domain value, while for level i = h
we have a single interval covering the whole domain. Let D
be the set of all dyadic intervals of all levels over N . Our
technique is based on the following lemmata.

Lemma 2. Let [a, b] be an interval. Its dyadic cover,
D([a, b]), is defined to be the smallest set of dyadic inter-
vals {δ1, δ2, . . . , δm} such that δi = [di−1, di], 1 ≤ i ≤ m,
and d0 = a and dm = b. Then m ≤ 2 log2 n.

Lemma 3. For each point a ∈ N , let D([a]) denote its
dyadic point cover, which is the set of all dyadic intervals in
D containing a. There are exactly log2 n+1 dyadic intervals
in D that contain this point. Each of these dyadic intervals
is at a different level.

Lemma 4. A point c ∈ N is contained in an interval [a, b]
iff there is exactly one dyadic interval δ ∈ D such that δ ∈
D([a, b]) and δ ∈ D([c]).

Proof. See [13].

Instead of having a ξ-variable for each coordinate in N
we will use a ξ-variable for each dyadic interval over N . For
data set R, the corresponding atomic sketches for intervals
and endpoints then are defined as:

XI =
∑

[a,b]∈R

∑

δ∈D([a,b])

ξδ and

XE =
∑

[a,b]∈R

∑

δ∈D([a])∪D([b])

ξδ (2)

Figure 2 shows an example for intervals and their dyadic
covers. To simplify notation we will henceforth use

ξ̄[a,b] =
∑

δ∈D([a,b])

ξδ and ξ̄[a] =
∑

δ∈D([a])

ξδ (3)

1Otherwise we just pad the domain with additional values.

{δ7,δ3,δ1}

δ1
δ2 δ3

δ4 δ5 δ6 δ7

Domain:

Dyadic Intervals:

Input intervals: r
s

Dyadic covers:

D(r):

D(l(r)):

D(u(r)):

{δ2,δ6}
{δ4,δ2,δ1}
{δ6,δ3,δ1}

D(s):

D(l(s)):

D(u(s)):

{δ5,δ3}
{δ5,δ2,δ1}

Figure 2: Intervals and their dyadic covers

With this notation we can rewrite the dyadic atomic sketches
as

XI =
∑

[a,b]∈R

ξ̄[a,b]; XE =
∑

[a,b]∈R

(ξ̄[a] + ξ̄[b]) (4)

Overall, using dyadic sketches the update cost is reduced to
O(log2 n) per atomic sketch. Since the atomic sketches are
defined over the set of dyadic intervals, which has cardinal-
ity 2n − 1, we need O(log2(2n − 1)) = O(log2 n) space for
generating each family of the ξ-variables.

For variance analysis it will often be more convenient to
rewrite the dyadic sketch definition into a different format.
Note that XI is computed by adding one or more ξδi

for
each interval [a, b] ∈ R, where δi ∈ D is a dyadic interval
over N . For each dyadic interval δ ∈ D let fI(δ) = |{[a, b] ∈
R|δ ∈ D([a, b])}| be the number of intervals in R whose
cover contains δ. Similarly, let fE(δ) = |{a|a ∈ δ∧(∃b ∈ N :
[a, b] ∈ R∨ [b, a] ∈ R)}| be the number of interval endpoints
in R whose cover contains dyadic interval δ. Then we can
write

XI =
∑

δ∈D

fI(δ)ξδ; XE =
∑

δ∈D

fE(δ)ξδ (5)

For instance for interval r in Figure 2 we have fI(δ2) = 1,
fI(δ6) = 1, and fI(δi) = 0 for i ∈ {1, 3, 4, 5, 7}.

For an atomic sketch X we define its self-join size SJ(X)
as E[X2]. For example, for sketch XI we have

SJ(XI) = E[X2
I] = E[(

∑

δ∈D

fI(δ)ξδ)
2] =

∑

δ∈D

f2
I (δ) .

The last step follows from linearity of expectation and
the four-wise (and hence two-wise) independence of the ξ-
variables.

3.2 Sketches for Multidimensional Data
We discuss sketches for d = 2, i.e., sets of rectangles. The

generalization to higher dimensionality then is straightfor-
ward. As introduced in Section 2.1, we write a rectangle
as the cross-product of its ranges in each dimension, e.g.,
r = [a, b] × [c, d].

To keep track of two-dimensional objects, we need an in-
dependent ξ(i) family of four-wise independent random vari-
ables (see Section 2.2) for each dimension i ∈ {1, 2}. More
precisely, any ξ(1)j is independent of any ξ(2)k for any j, k.
The main observation for sketching a rectangle [a, b]× [c, d]
is that we (1) have to make sure that the sketch “remem-
bers” that [a, b] and [c, d] “belong together”, and that (2) we
have to keep track not only of rectangles and points, but also
of horizontal and vertical lines, as will become clear below.
The latter is important for correct join size estimation.

The dyadic atomic sketches for a two-dimensional data set

R are defined as follows:

XII =
∑

[a,b]×[c,d]∈R

ξ̄(1)[a,b]ξ̄(2)[c,d]

XIE =
∑

[a,b]×[c,d]∈R

ξ̄(1)[a,b](ξ̄(2)[c] + ξ̄(2)[d])

XEI =
∑

[a,b]×[c,d]∈R

(ξ̄(1)[a] + ξ̄(1)[b])ξ̄(2)[c,d]

XEE =
∑

[a,b]×[c,d]∈R

(ξ̄(1)[a] + ξ̄(1)[b])(ξ̄(2)[c] + ξ̄(2)[d])

The ξ̄ are sums over the ξ-variables for dyadic intervals that
cover the corresponding interval or endpoint as defined in
the previous section. Intuitively, XII keeps track of the
whole rectangles, XIE and XEI of their horizontal and ver-
tical edges, respectively, and XEE of the rectangles’ corner
points. The standard atomic sketches VII, VIE, VEI, and VEE

are defined similarly.
Similar to Equation 5, we can rewrite XII as

XII =
∑

δ(1)×δ(2)∈D2

fII(δ(1), δ(2))ξ(1)δ(1)ξ(2)δ(2) (6)

Here variable fII(δ(1), δ(2)) denotes the number of rectan-
gles in R whose dyadic cover contains rectangle δ(1)× δ(2),
defined by dyadic intervals δ(1) and δ(2) in dimension 1 and
2, respectively. We can similarly rewrite the other atomic
sketches. As in Section 3.1 we define SJ(X) = E[X2], hence
we obtain in a similar manner

SJ(XII) =
∑

δ(1)×δ(2)∈D2

f2
II(δ(1), δ(2))

The self-join size for the other atomic sketches is similar.
The generalization to higher dimensionality follows the

same pattern. Let IEd = {I, E}d be the set of all strings
of length d over letters I and E. For w ∈ IEd the term w[i]
refers to the i-th letter in w. For a hyper-rectangle r let r(i)
be its range in dimension i. With N d we denote the data
space. The atomic sketches for R are then defined for all
w ∈ IEd as:

Xw =
∑

r(1)×r(2)×···×r(d)∈R

ξ(1)r(1)ξ(2)r(2) · · · ξ(d)r(d)

such that for each dimension i, ξ(i)r(i) = ξ̄(i)[l(r(i)),u(r(i))]

if w[i] = I, and ξ(i)r(i) = ξ̄(i)[l(r(i))] + ξ̄(i)[u(r(i))] otherwise
(i.e., if w[i] = E). As before, each family ξ(i) for dimension
i is a family of four-wise independent {−1, 1} random vari-
ables. For any i 6= j the variables in ξ(i) are independent
from the variables in ξ(j).

4. SPATIAL JOINS

4.1 Spatial Join of Intervals
We describe a counting procedure that will be used to

compute the cardinality of the join of two sets of inter-
vals. Since intervals only overlap if their intersection is a
non-empty one-dimensional object (see Definition 1), we can
safely assume that the data sets do not contain any degen-
erate objects, in this case point objects, since these would
not contribute to the join result anyway. We also assume
that the data domain is finite. We will discuss in Section 5.1
how to handle real valued coordinates.

s

r s

r

r

r

r r

r

(1) disjunct (4) contain

(2) meet

(3) overlap (6) identical

s

s

s

s s
(5) contain, meet

Figure 3: Spatial relationships between intervals

4.1.1 Spatial Relationships
Figure 3 shows all cases of spatial relationships between

an interval in R and a potential join partner in S (cases
which can be obtained by swapping r and s are omitted for
simplicity). According to our definition, in cases (1) and (2)
the intervals do not overlap, while intervals in cases (3)-(6)
are overlapping. If two intervals r ∈ R and s ∈ S fall into
case (i), we say that they have the spatial relationship (i).

4.1.2 Counting Intersections
Finding an appropriate sketch that correctly counts all

overlaps, but does not count cases (1) and (2) is a non-trivial
problem. None of the previously proposed approaches (cf.
Section 8) can be directly applied to compute a function
like “add 1 for each pair of intervals (r, s) for which one
endpoint of r is between the two endpoints of s”. In order
to use sketches, we need a different way of counting interval
intersections. As before, let l(r) and u(r) be the lower and
upper endpoints of interval r, respectively (similar for s).

Intuitively, for each pair of intervals r ∈ R and s ∈ S
we want to add 0 to the join result size if they have spatial
relationship (1) or (2), and 1 otherwise. We obtain a first
approximation by counting for each pair (r, s) how many
of their endpoints are contained in the other interval. For
instance, in case (3) r.u is covered by s, and s.l is covered
by r, hence the count is 2. Overall we obtain counts 0, 2, 2,
2, 3, and 4 for cases (1) to (6), respectively. If we divide this
result by 2, we obtain counts 0, 1, 1, 1, 1.5, 2. However, for
correct join selectivity estimation the counts should be 0, 0,
1, 1, 1, 1 (add 1 only for cases (3) to (6)).

Notice that the “problem cases” with incorrect counts are
only those cases where r and s have endpoints in common.
Hence for the remainder of this section we will assume the
following.

Assumption 1. None of the intervals in R has an end-
point in common with any of the intervals in S.

With the assumption it is easy to see that cases (2), (5), and
(6) are eliminated, and since our technique counts correctly
for cases (1), (3), and (4), we have a simple method for
calculating the join size. We will show in Section 5.2 how to
generalize our algorithm if the assumption does not hold.

4.1.3 An Atomic Sketch for Intervals
The simple counting procedure can be directly imple-

mented with interval and endpoint sketches as introduced
in Section 3.1. Here we use the dyadic sketches, i.e., we
construct atomic sketches XI and XE for R, and the corre-
sponding sketches YI and YE for S.

We want to count how many times an endpoint of an in-
terval in S is contained in an interval in R, and vice versa.
To do this we just multiply the corresponding sketches, i.e.,
we define a random variable Z = (XIYE + XEYI)/2. This
random variable is an unbiased estimator for the join cardi-
nality.

Lemma 5. Random variable Z has the expected value
E[Z] = |R ⊲⊳o S|.

Proof. See [13].

For our example in Figure 2 we have XI = ξ2 + ξ6, XE =
2ξ1 + ξ2 + ξ3 + ξ4 + ξ6, YI = ξ3 + ξ5, and YE = 2ξ1 + ξ2 +
ξ3 + ξ5 + ξ7. For Z we therefore obtain

Z = ((ξ2 + ξ6)(2ξ1 + ξ2 + ξ3 + ξ5 + ξ7)

+(2ξ1 + ξ2 + ξ3 + ξ4 + ξ6)(ξ3 + ξ5))/2 .

Multiplying these terms results in a formula that is the sum-
mation of terms of the form ξi ·ξj . Recall that the ξ-variables
are four-wise (and hence also pairwise) independent, there-
fore it holds that E[ξiξj] = E[ξi]E[ξj] = 0 if i 6= j. Further-
more, because each ξ is either 1 or -1, it holds that E[ξ2

i] = 1.
Thus from the above formula we obtain

E[Z] = (E[ξ2
2] + E[ξ2

3])/2 = 1 ,

which, as expected, is the correct value for the number of
intersecting intervals.

4.1.4 Variance Analysis
Using standard transformations we obtain:

Var[Z] = Var[(XIYE + XEYI)/2]

= 1/4(Var[XIYE] + Var[XEYI]

+2Cov[XIYE, XEYI])

Since in general, for any random variables X and Y ,
|Cov[X, Y]| ≤

√

Var[X]
√

Var[Y]:

Var[Z] ≤ 1/4(Var[XIYE] + Var[XEYI]

+2
√

Var[XIYE]
√

Var[XEYI])

= 1/4(
√

Var[XIYE] +
√

Var[XEYI])
2 (7)

To analyze the terms of Equation 7 we use the definition of
the atomic sketches in the form of Equation 5. For this type
of sketches (tug-of-war sketch) it can be shown that their
variance is bounded by twice the product of their self-join
size [3]:

Var[XIYE] ≤ 2SJ(XI)SJ(YE) and

Var[XEYI] ≤ 2SJ(XE)SJ(YI) .

Together with Equation 7 we have

Var[Z] ≤ 1/2(
√

SJ(XI)SJ(YE) +
√

SJ(XE)SJ(YI))
2 .

Since XI and XE together account for all dyadic intervals
that cover the intervals of R and their endpoints (similarly
the Y sketches for S), we define

SJ(R) = SJ(XI) + SJ(XE) and SJ(S) = SJ(YI) + SJ(YE) .

Using the Cauchy-Schwarz inequality it holds that
(
√

SJ(XI)
√

SJ(YE) +
√

SJ(XE)
√

SJ(YI))
2 ≤ (SJ(XI) +

SJ(XE))(SJ(YE) + SJ(YI)), hence:

Var[Z] ≤ 1/2 SJ(R)SJ(S) . (8)

4.1.5 The Overall Technique
Having constructed the appropriate random variable Z

and computed an upper bound on its variance, we can boost
its accuracy as described in Section 2.3. The following the-
orem summarizes the result.

Theorem 1. Let R = {r1, r2, . . . , r|R|} and S =
{s1, s2, . . . , s|S|} be two sets of intervals that satisfy As-

sumption 1. Furthermore let X
(i)
I =

∑

[a,b]∈R
ξ̄
(i)

[a,b]
, X

(i)
E =

∑

[a,b]∈R
(ξ̄

(i)
[a] + ξ̄

(i)
[b]), Y

(i)
I =

∑

[c,d]∈S
ξ̄
(i)
[c,d], and Y

(i)
E =

∑

[c,d]∈S(ξ̄
(i)

[c] + ξ̄
(i)

[d]), 1 ≤ i ≤ 8SJ(R)SJ(S)

ε2E[Z]2
lg 1

φ
, be atomic

sketches such that Zi = (X
(i)
I Y

(i)
E + X

(i)
E Y

(i)
I)/2. The ξ̄-

variables are defined as in Equation 3 over ξ(i)-families of
four-wise independent {−1, 1} random variables, which are

generated from seeds s(i) of size O(log2 n) bits and where

each s(i) is independently chosen. By computing the me-

dian of 2 lg(1/φ) averages over groups of 4SJ(R)SJ(S)

ε2E[Z]2
esti-

mators Zi we obtain an estimate Z̄ that with probability
1 − φ is within ε relative error of the true expected value
E[Z] = |R ⊲⊳o S|.

Notice that the atomic sketch Z for estimating the join
size only stores five values: a seed of size O(log n) bits for
generating the ξ-variables on-the-fly (during updates), and
four counters for keeping track of the current value of XI,
XE, YI, and YE. As mentioned before, when an interval is
inserted into R (deleted from R), we simply generate the
corresponding ξ-variables for its interval and endpoint cover
from the seed and add (subtract) them from XI and XE,
respectively (similarly for S).

The cost of generating a ξ-variable from the seed is linear
in the seed size, and each interval or endpoint cover con-
sists of O(log n) dyadic intervals. Hence the total update
cost for a single instance of Z is O(log2 n). To compute
Z’s estimate we simply combine the counters, resulting in

a constant overhead. Since we use 8SJ(R)SJ(S)

ε2E[Z]2
lg 1

φ
inde-

pendent instances of Z, the total query, update, and stor-

age costs of our interval join sketch are O(SJ(R)SJ(S)

ε2E[Z]2
log 1

φ
),

O(SJ(R)SJ(S)

ε2E[Z]2
log 1

φ
log2 n), and O(SJ(R)SJ(S)

ε2E[Z]2
log 1

φ
log n), re-

spectively.

4.2 Spatial Join of Rectangles
The spatial relationships between intervals (cf. Sec-

tion 4.1.1) generalize naturally to higher dimensionality by
examining the one-dimensional axis-parallel projections of
the hyper-rectangles (these projections are intervals). Fig-
ure 4 shows selected examples.2 The spatial relationship of
two hyper-rectangles r and s is a d-tuple (i1, . . . , id) where
ij is the spatial relationship of the projection in dimension
j, as per Figure 3. Hence r and s overlap iff ij ∈ {3, 4, 5, 6}
for all dimensions j.

4.2.1 Rectangle Sketches
The simple counting procedure for interval overlaps gen-

eralizes to two-dimensional rectangles as follows. Let r and
s be rectangles from R and S, respectively. The counting
procedure adds the following values: number of corners of

2The spatial relationships are slightly different from the ones
used in [24, 25] since we selected them to correspond to the
sketches we use.

overlap

(2, 3)

(4, 5)

(3, 3)

(3, 4)

overlap

overlap

no overlap

Figure 4: Spatial relationships between rectangles

r which are covered by s, number of horizontal edges of r
which intersect vertical edges of s, number of vertical edges
of r which intersect horizontal edges of s, and number of
corners of s which are covered by r. The reader might eas-
ily convince herself that under the assumption that r and
s have no common corner coordinates in any dimension, we
will always obtain a count of 4 for intersecting rectangles
(and 0 otherwise).

As it turns out, we can combine the two-dimensional
sketches (see Section 3.2) to obtain the correct count; us-
ing atomic sketches XII, XIE, XEI, and XEE for R, and the
analogously defined YII, YIE, YEI, and YEE for S:

Lemma 6. Let Z be a random variable such that Z =
(XIIYEE + XIEYEI + XEIYIE + XEEYII)/4; and R and S
be two sets of rectangles that satisfy Assumption 1 in
each dimension. Then E[Z] = |R ⊲⊳o S| and Var[Z] ≤
1/16(8SJ(R)SJ(S)) = 1/2 SJ(R)SJ(S).

Proof. It is easy to show that E[Z] = |R ⊲⊳o S|,
with the analysis being similar to the 1-dimensional case.
The variance analysis, on the other hand, differs from
the 1-dimensional case mainly because the set of ran-
dom variables {ξ(1)δ(1)ξ(2)δ(2) : δ(1) × δ(2) ∈ D2}
does not have the 4-wise independence property. This
might come as a surprise since the set of ξ(1) and the
set of ξ(2)-variables are both 4-wise independent, and
the variables in one set are independent of those in the
other. However, notice that for instance for the 4-tuple
{x1 = ξ(1)δ(1)1ξ(2)δ(2)1 , x2 = ξ(1)δ(1)1ξ(2)δ(2)2 , x3 =
ξ(1)δ(1)2ξ(2)δ(2)1 , x4 = ξ(1)δ(1)2ξ(2)δ(2)2} it is easy to show
that E[x1x2x3x4] = 1 6= 0 = E[x1]E[x2]E[x3]E[x4]. Hence
we cannot directly use variance bounds from earlier results.

We can obtain a bound on the variance of Z as follows.
In the following, for w ∈ IE2 let w̄ be the string obtained
from w by replacing I with E and vice versa. Then

Var[Z] =
1

16
(

∑

w∈IE2

Var[XwYw̄]

+
∑

w1 6=w2

Cov[Xw1
Yw̄1

, Xw2
Yw̄2

])

≤ 1

16
(

∑

w∈IE2

√

Var[XwYw̄])2

The inequality follows since, for any random variables X
and Y , |Cov[X, Y]| ≤

√

Var[X]
√

Var[Y].
With some involved analysis we can show that for any

w ∈ IE2, Var[XwYw̄] ≤ 8SJ(Xw)SJ(Yw̄). With the above
inequality we have:

Var[Z] ≤ 1/16 · 8 · (
∑

w∈IE2

√

SJ(Xw)SJ(Yw̄))2

Using Cauchy-Schwarz and the fact that SJ(R) =

∑

w∈IE2 SJ(Xw) and SJ(S) =
∑

w∈IE2 SJ(Yw) yields:

Var[Z] ≤ 1/16 (8 SJ(R)SJ(S)) .

For details see [13].

Here SJ(R) = SJ(XII) + SJ(XIE) + SJ(XEI) + SJ(XEE),
similarly for SJ(S).

4.2.2 The Overall Technique
As for interval sketches, we boost the accuracy of the

atomic rectangle sketch as described in Section 2.3 to ob-
tain accurate estimates of |R ⊲⊳o S| with quality guarantees.

Theorem 2. Let R = {r1, r2, . . . , r|R|} and
S = {s1, s2, . . . , s|S|} be two sets of rectangles whose
endpoints have no coordinates in common in any dimen-
sion. Furthermore let XII =

∑

[a,b]×[c,d]∈R
ξ̄(1)[a,b]ξ̄(2)[c,d],

XIE =
∑

[a,b]×[c,d]∈R
ξ̄(1)[a,b](ξ̄(2)[c] + ξ̄(2)[d]),

XEI =
∑

[a,b]×[c,d]∈R
(ξ̄(1)[a] + ξ̄(1)[b])ξ̄(2)[c,d],

XEE =
∑

[a,b]×[c,d]∈R
(ξ̄(1)[a] + ξ̄(1)[b])(ξ̄(2)[c] +

ξ̄(2)[d]), YII =
∑

[a,b]×[c,d]∈S
ξ̄(1)[a,b]ξ̄(2)[c,d],

YIE =
∑

[a,b]×[c,d]∈S
ξ̄(1)[a,b](ξ̄(2)[c] + ξ̄(2)[d]),

YEI =
∑

[a,b]×[c,d]∈S
(ξ̄(1)[a] + ξ̄(1)[b])ξ̄(2)[c,d], and

YEE =
∑

[a,b]×[c,d]∈S
(ξ̄(1)[a] + ξ̄(1)[b])(ξ̄(2)[c] + ξ̄(2)[d]),

be atomic sketches such that Z = (XIIYEE + XIEYEI +

XEIYIE + XEEYII)/4. Using 8SJ(R)SJ(S)

ε2E[Z]2
lg 1

φ
independent

instances of Z we obtain an estimate Z̄ that with probability
1 − φ is within ε relative error of the true expected value
E[Z] = |R ⊲⊳o S|.

Note that the number of instances of Z for the one- and
two-dimensional case incidentally is the same (cf. Theo-
rem 1). However, the actual storage cost can be quite differ-
ent. First, the number of atomic sketches per instance of Z
has doubled for d = 2. Second, the self-join size for R and S
will be larger than for the one-dimensional case. Since up-
date and query cost depend approximately linearly on the
storage, those costs will be larger as well. In Section 6.1
we will show that our technique suffers from the “curse of
dimensionality”, like any other estimation or indexing tech-
nique.

5. GENERALIZATION
In this section we discuss how to remove the restricting

assumptions we made for our technique.

5.1 Real-Valued Data Domains
Note that for our techniques to work, domain N should be

finite. This is essential because a seed of size 2k+1 limits us
to a domain of size 2k. Theoretically this prevents us from
using our technique for real-valued domains.

However, in practice our technique will work just fine.
There is no spatial application we know of that uses coordi-
nates of unbounded precision. Typically real-valued coordi-
nates are stored as 32 or 64 bit size floating point numbers—
clearly a finite domain.

Our sketch-based estimation technique can handle such
domains very well. Recall that the storage requirement of
an atomic sketch is logarithmic in the domain size. Hence
our technique scales very well with increasing domain size.
In contrast, histograms traditionally suffer from the problem
that large data domains result in large buckets and hence

poor approximation. Histogram-based techniques therefore
typically quantize the data space and make assumptions
about the distribution within a bucket in order to obtain
good estimates [23, 26].

5.2 Spatial Join with Common Endpoints
The counting algorithms used so far relied on Assump-

tion 1 for correctness. We can make this assumption hold
for any data set as follows. Recall that the interval endpoints
are drawn from domain N = {0, 1, . . . , n−1}. First, we cre-
ate a new domain M which contains all values from N and
in addition for each pair of consecutive values i, i + 1 ∈ N
two values i+ and (i + 1)− with i < i+ < (i + 1)− < (i + 1).
Then we replace each interval s ∈ S by a new interval s′

such that for l(s) = i, we set l(s′) = i+ and for u(s) = j we
set u(s′) = j−, i.e., we shrink the interval “a little”. For
instance if all interval endpoints are integer coordinates,
we could augment the domain by i − 0.1 and i + 0.1 for
each integer in the domain and thus shrink the S-intervals
by 0.1 at each end. The spatial join size is not affected
by this transformation: For each case we can easily verify
overlap(r, s) ⇔ overlap(r, s′). All this transformation does
is increase the dimension’s domain size by at most a factor
of 3. The asymptotic cost of our technique is not affected
by this transformation (cf. Section 4.1.5 where n now be-
comes 3n). We can apply the same transformation to each
dimension of the data space.

Instead of using the endpoint transformation, we can al-
ternatively adapt our original simple counting procedure to
explicitly keep track of common endpoints [13].

6. EXTENSIONS

6.1 Join of Hyper-Rectangles
The one-and two-dimensional spatial join estimators gen-

eralize naturally to higher dimensionality d as the following
theorem shows.

Theorem 3. For d-dimensional data sets R and S let
{Xw}w∈IEd and {Yw}w∈IEd be two families of atomic
sketches over the same ξ(i) families of four-wise indepen-
dent random variables, such that families ξ(i) and ξ(j),
1 ≤ i, j ≤ d, for i 6= j are independent of each other. Set
Z = 2−d

∑

w∈IEd XwYw̄. Then it holds that E[Z] = |R ⊲⊳o

S| and Var[Z] ≤ 3d−1
4d

SJ(R)SJ(S).

Proof. The proof is fairly involved and can be found
in [13].

The atomic sketches are as defined in Section 3.2. As before,
for w ∈ IEd we define w̄ as the string that is obtained from
w by replacing I with E and vice versa (the “complement”
of w).

At a first glance the variance might appear to be decreas-
ing with increasing dimensionality d due to the (3/4)d factor.
Unfortunately this is not the case. The self-join terms for
R and S each have 2d contributing sums. Also note that to
compute Z we have to maintain 2d atomic sketches for each
stream.

6.2 Other Join Conditions
We can extend our algorithm to estimate the cardinality

for a slightly different notion of overlap, where case (2) (cf.
Figure 3) is also counted as overlap. We can also support

other join predicates like containment joins by maintaining
the appropriate spatial sketches. Due to space constraints
we defer the details to [13].

6.3 ε-Joins
For simplicity we will first discuss ε-joins for two-

dimensional data. Let A and B be two-dimensional sets
of data points over space N 2. In the following we as-
sume that the L∞ distance is used. We can estimate
the ε-join cardinality based on the following observation.
Let B′ be a data set obtained from B by replacing each
point b ∈ B with the spatial object b′ which is defined as
b′ = {x|x ∈ N 2 ∧ dist∞(x, b) ≤ ε}. Notice that for the L∞

distance this object b′ is a square of sidelength 2ε with b as
its center.

According to definition, it holds that dist∞(a, b) ≤ ε ⇔
a is contained in b′. Hence we can compute the cardinality
of the ε-join by counting how many points of A are con-
tained in the squares of B′. This turns out to be a special
case of the rectangle join where endpoints might have equal
coordinates. Since the objects in A are points, we do not
need most of the two-dimensional atomic sketches, except
for:

XEE =
∑

(a1,a2)∈A

ξ̄(1)[a1]ξ̄(2)[a2]

YII =
∑

[e,f]×[g,h]∈B′

ξ̄(1)[e,f]ξ̄(2)[g,h] ,

where the ξ̄-variables are as defined in Equation 3.

Lemma 7. For random variable Z = XEEYII it holds that
E[Z] = |A ⊲⊳ε B| and Var[Z] ≤ 8SJ(XEE)SJ(YII).

The generalization to any dimensionality follows the same
pattern as for the spatial join. The following lemma sum-
marizes the result:

Lemma 8. For d-dimensional point sets A and B
let B′ = {b′|b′ = {x|x ∈ N d ∧ dist∞(x, b) ≤ ε}}
be the set of hyper-cubes of sidelength 2ε around
the points of B. For atomic sketches XE =
∑

(a1,a2,...,ad)∈A
ξ̄(1)[a1]ξ̄(2)[a2] · · · ξ̄(d)[ad] and YI =

∑

l1×l2×···×ld∈B′ ξ̄(1)[l(l1),u(l1)]ξ̄(2)[l(l2),u(l2)] · · · ξ̄(d)[l(ld),u(ld)]

let Z = XEYI. Then E[Z] = |A ⊲⊳ε B| and
Var[Z] ≤ (3d − 1)SJ(XE)SJ(YI).

Here SJ(XE) =
∑

δ(1)×δ(2)×···×δ(d)∈Dd f2(δ(1), δ(2), . . . , δ(d))

and SJ(YI) =
∑

δ(1)×δ(2)×···×δ(d)∈Dd g2(δ(1), δ(2), . . . , δ(d))

where f(δ(1), δ(2), . . . , δ(d)) is the number of points in A
which are covered by the hyper-rectangle spanned by the
dyadic intervals δ(i). Similarly, g(δ(1), δ(2), . . . , δ(d)) is the
number of hyper-cubes in B′ whose dyadic cover contains
δ(1) × δ(2) × · · · × δ(d).

Notice that the constant factor of the variance bound
seems surprisingly high, compared to the bound for the more
general spatial join (see Theorem 3). However, here the self-
join sizes will be much lower (1 term versus 2d terms added
for the spatial join), and the number of atomic sketches is
much lower (2 per instance of Z versus 2 · 2d for the spatial
join).

6.4 Range Queries

The range query is a special case of the spatial join,
where the second “data set” consists only of a single hyper-
rectangle—the query (see Definition 3). Hence we could
readily apply the spatial join estimation technique. The fol-
lowing optimization can further improve performance. We
illustrate it for the case of R being a one-dimensional set of
intervals.

Assume we want to estimate how many intervals are se-
lected by range query q = [u, v]. The reader might convince
herself that an interval [a, b] ∈ R is selected iff either its
upper endpoint lies in [u, v] or if v lies in [a, b]. Notice that
both conditions are mutually exclusive and exhaust all pos-
sible cases of intervals being selected. To implement this
counting procedure we only need two atomic sketches—one
that keeps track of the intervals as a whole (XI), and one
for their upper endpoints (XU):

XI =
∑

[a,b]∈R

ξ̄[a,b]; XU =
∑

[a,b]∈R

ξ̄[b] .

Lemma 9. For interval set R let XI and XU be atomic
sketches as defined above. For range query q = [u, v] let Z =
ξ̄[u,v]XU + ξ̄[v]XI. Then E[Z] = |Q([u, v], R)| and Var[Z] ≤
2 · (3 log2 n+1) ·SJ(R) where n is the size of the domain N .

The logarithmic factor is caused by the fact that the dyadic
cover of [u, v] can consist of up to 2 log2 n intervals and the
dyadic point cover of v contains log2 n + 1 intervals. Com-
pared to the result for the spatial join (see Section 4.1.4)
the self-join size here does not depend on the lower interval
endpoints and hence will be smaller. The generalization to
d dimensions follows the same pattern as for the spatial join
(just replace XE with XU).

6.5 Taking Data Properties into Account
In Section 3.1 we presented two different atomic sketch ap-

proaches for summarizing intervals: standard sketches and
dyadic sketches. For each interval [a, b] ∈ R, the standard
sketch adds the ξ-variables for all points in [a, b] to the in-
terval sketch VI, a cost of O(n). If the domain is large and
the data set contains many long intervals, then the dyadic
atomic sketches are clearly preferable since they guarantee
O(log n) update cost. However, if most intervals are very
short, then the standard sketch might deliver better esti-
mates for the same storage cost. Recall that the dyadic
endpoint sketch keeps track of all dyadic intervals covering
an endpoint, hence it will add the ξ-variable for the dyadic
interval that covers the whole domain on each interval inser-
tion. For sets with mostly short intervals this might lead to
a higher self-join size than if standard atomic sketches were
used.

We therefore propose an adaptive approach. Based on
statistics about the interval length distribution, the algo-
rithm determines the maximum level, maxLevel. When com-
puting the cover of an interval or endpoint it only uses dyadic
intervals from levels up to maxLevel. Note that the input
stream can have intervals of length greater than 2maxLevel.
The lower maxLevel, the lower the self-join size for XE. On
the other hand, long intervals will require more dyadic in-
tervals than before (since the longer dyadic intervals on the
upper levels above maxLevel can not be used any more).
Notice that the more small intervals the data set contains,
the lower maxLevel, in the extreme the dyadic sketch turns
into the standard sketch for maxLevel = 0.

7. EXPERIMENTS
We evaluate the performance of our spatial join size esti-

mation techniques (henceforth referred to as SKETCH) on
both synthetic and real life 1D and 2D spatial datasets. We
compare our algorithms with recently proposed techniques
based on generalized Euler Histograms [26] (henceforth re-
ferred to as EH) and with the Geometric Histograms tech-
nique [5] (henceforth referred to as GH). These are currently
the best known techniques for spatial join selectivity estima-
tion.3

The EH approach partitions the data space using a grid of
a given level L. A grid of level L partitions each dimension
into 2L equi-width cells. An Euler histogram allocates buck-
ets not only for grid cells, but also for grid edges and grid
vertices. Besides storing object counts in a cell, the general-
ized Euler histogram [26] also stores information such as the
average height, width and area of the intersection regions
between the objects and the cell. In terms of storage space,
a generalized Euler histogram of level L uses 9·22L−6·2L+1
units (words) of memory.

Geometric Histograms also partition the data space us-
ing a grid of given level L, similar to the generalized Euler
Histograms. The information stored in each cell is the total
number of corner points, the sum of the areas of the objects,
the sum of the lengths of the vertical edges and the sum of
the lengths of the horizontal edges of objects intersecting
the cell. Thus a Geometric Histogram of level L uses 4L+1

units of memory.
In the following, all references to memory allocation refer

to the memory allocated per dataset to the SKETCH, GH
or EH techniques.

7.1 Effect of Input Size and Skew
None of the existing techniques provides guaranteed er-

ror bounds (probabilistic or otherwise) for spatial join size
estimation. Hence, for comparison purposes, we provide
SKETCH, GH and EH with the same space and compare
the actual relative errors on their respective estimates as
the size of the spatial data set increases, for datasets with
different degrees of skew.

We use synthetic two-dimensional datasets, with intervals
along each dimension i generated independently according
to a Zipfian distribution with Zipf parameter zi. The aver-
age length of an object along a dimension is O(

√
di) where

di is the size of the domain along the ith dimension. We
used generalized Euler histograms with grid level L = 6,
which corresponds to about 36K units of memory. The same
space was allocated to SKETCH and GH, and the actual rel-
ative errors are shown in Figures 5 and 6. Since our sketch
techniques are based on randomization, the relative errors
reported are averages over multiple independent runs.

Figure 5 plots the relative error as the size of the dataset
increases from 30K to 0.5 million. Both the joining datasets
had the same size, as specified on the x-axis. The datasets
used here have rectangles generated on the two streams with
Zipf parameter z = 0 (uniform). As can be seen from the
figure, the error for SKETCH (and GH) remains fairly stable
as the input size increases, if the distribution of the datasets
remains the same. For uniform data (z = 0), the SKETCH
and GH techniques perform similarly, with an average rel-

3The authors would like to thank Chengyu Sun for providing
the original EH code and the data sets used in [26].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500

R
el

at
iv

e
E

rr
or

Dataset Size (K)

Relative Error Vs Dataset size [zipf=0 (uniform)]

SK
EH
GH

Figure 5: Zipf = 0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500

R
el

at
iv

e
E

rr
or

Dataset Size (K)

Relative Error Vs Dataset size [zipf skew=1]

SK
EH
GH

Figure 6: Zipf = 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500

R
el

at
iv

e
E

rr
or

Dataset Size (K)

Actual Relative Error Vs Dataset size for epsilon=0.3 phi=0.01 (1D)

True Error
Guaranteed Error Bound

Figure 7: Relative error guarantee

ative error which is much lower than the error of the EH
technique. Similar results were observed on other datasets
with low skew in the distribution of the spatial objects over
the data space. Note that EH is more general than GH, and
hence its performance is more sensitive to data distribution
and grid level, which explains the poor performance for the
given data set.

We would like to point out that for a given grid level,
the performance of both EH and GH depends heavily on
the domain size, since that determines the granularity of
the grid. Thus, for example, if the domain size is doubled
along each dimension, the relative errors for both EH and
GH increase considerably, even if the input is not changed!
For the SKETCH technique, on the other hand, if the max-
imum dyadic level is not changed (see Section 6.5), the rel-
ative error remains the same for the same input, even if the
underlying domain is ‘conceptually’ (i.e. without changing
the input datasets) doubled.

Figure 6 shows the relative error for datasets with a fairly
high degree of skew in the distributions of the spatial ob-
jects. For these datasets, the projection of the objects
along each dimension is distributed with Zipf parameter
z = 1. Here the performance of EH is comparable to GH
and SKETCH, with SKETCH faring marginally better than
the other two techniques. For other data sets we observed
the general trend that SKETCH does comparatively better
than the grid-based histogram techniques for skewed input.

7.2 Error Guarantees and Space Require-
ments

Our next set of experiments shows how the actual relative
error and space requirement for our technique varies for a
given guaranteed relative error bound for spatial datasets of
different sizes. In Figures 8 and 7 we consider interval joins
of two datasets with intervals uniformly distributed over do-
mains of sizes ranging from 16384 to 65536. Figure 8 shows
the space requirement and Figure 7 shows the actual relative
error for a guaranteed relative error bound of 0.3 at the 99%
confidence level. As can be seen from the figure, the space
required remains almost constant at around 63K as the size
of the dataset increases. The reason is that the distribution
of the objects does not change significantly. Note that for a
d-dimensional dataset of size N , the total space required to
store the dataset completely is 2d · N . Thus the size of the
SKETCH summary structure as a fraction of dataset size
varies from around 60% for smaller datasets, to about 6%
for larger datasets. As can be seen from Figure 7, the ac-
tual relative error is much smaller than the guaranteed error
bound.

 62

 63

 64

 65

 66

 67

 68

 69

 70

 0 100 200 300 400 500

S
ke

tc
h

si
ze

 (
10

00
’s

 w
or

ds
)

Dataset Size (1000’s objects) [1 object = 2 words]

Space Requirement Vs Dataset size for epsilon=0.3 phi=0.01 (1D)

SKETCH

Figure 8: Space requirement

7.3 Real Life Datasets
In this section, we compare the performance of EH, GH

and SKETCH on the three real life 2-dimensional spatial
datasets used in [26]. The descriptions of the datasets are
as follows:

• LANDO: This dataset contains land cover ownership
and management information for the state of Wyoming
at a 1 : 106 scale. Number of objects = 33860.

• LANDC: This dataset contains land cover informa-
tion such as vegetation types for the state of Wyoming
at a 1 : 106 scale. Number of objects = 14731.

• SOIL: This dataset represents soils of Wyoming at a
1 : 106 scale. Number of objects = 29662.

We consider all the 3 combinations of joins on these spatial
datasets. Figures 9, 10 and 11 show the relative errors ob-
tained on LANDO ⊲⊳o LANDC, LANDC ⊲⊳o SOIL and
LANDO ⊲⊳o SOIL respectively, as the allocated space is
varied.

The three graphs are similar in nature. The most sur-
prising result is the unpredictability of the EH estimates:
Whereas the estimates provided by SKETCH improve as the
space allocated to it is increased, histogram-based methods
(with no quality guarantees) such as EH might sometimes
produce worse estimates. Similar to the results in [26], EH
provides good estimates with small memory allocated to it,
but the relative error increases rapidly with finer grid parti-
tioning. This behavior is related to the probabilistic model
used for estimation by EH — it might produce small per-
bucket errors which add up if the actual data distribution
differs from the model assumption. The GH technique is
more robust than EH in this regard since it uses a sim-
pler model. However, it fares well only for higher amounts

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

R
el

at
iv

e
E

rr
or

Space Allocated (K words)

Relative Error for the LANDC+LANDO spatial join

SKETCH
EH
GH

Figure 9: LANDC ⊲⊳o LANDO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

R
el

at
iv

e
E

rr
or

Space Allocated (K words)

Relative Error for the LANDC+SOIL spatial join

SKETCH
EH
GH

Figure 10: LANDC ⊲⊳o SOIL

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

R
el

at
iv

e
E

rr
or

Space Allocated (K words)

Relative Error for the LANDO+SOIL spatial join

SKETCH
EH
GH

Figure 11: LANDO ⊲⊳o SOIL

of memory, and is mostly outperformed by SKETCH (by
a small margin). The relative error of SKETCH shows a
steady decline with increasing space in all the three graphs.
This is expected, since SKETCH is an unbiased estimator
and therefore the more independent instances of this esti-
mator are used, the better the expected results.

7.4 Discussion of Experimental Results
We presented a comparison of SKETCH, GH and EH on

synthetic and real life datasets. Overall, the performance of
GH and SKETCH is comparable, with SKETCH perform-
ing slightly better. In general the experiments highlight the
practicality of our randomized estimation technique. It not
only provides quality guarantees, but also has predictable
behavior: The more space we allocate, the better the esti-
mate. The histogram techniques might sometimes produce
better estimates, sometimes they do much worse. Without
knowing the data distribution in advance, their behavior and
best storage allocation cannot be determined. For instance,
the EH technique does very well for small space, but pro-
duces high errors when the number of buckets is increased.
Since in practice robustness of an estimation technique is
an important factor, we believe that SKETCH in general
is preferable over techniques whose behavior cannot be pre-
dicted a priori.

There are essentially only two parameters that effect
SKETCH’s performance: the self-join sizes of the data sets,
and the result size. As long as the self-join sizes are not too
large compared to the result size, SKETCH provides good
estimates and its performance is independent of the actual
object distribution (skew) in the joining spatial datasets.
This dependence on result size is a characteristic of all prob-
abilistic estimation techniques with provable error bounds.

8. RELATED WORK
The best known general techniques for selectivity estima-

tion for joins involving spatial objects are based on sampling
or on histograms. An et al. [5] examine different sampling
techniques and propose new histogram-based approaches.
Their results indicate that for achieving a comparable ac-
curacy, histograms will require less storage and estimation
time than sampling. Mamoulis and Papadias [23] take a
more general approach of analytically estimating the selec-
tivity of complex spatial queries, i.e., queries that combine
selection and join operators. Their formulas are based on
uniformity assumptions. A skewed data set is partitioned
into a regular grid of cells, and the formulas are applied for
each cell. Sun et al. [26] improve on these results with a

framework based on Euler histograms [25]. They also use
a regular grid partitioning of the space, but the Euler his-
tograms together with adaptively selected per-cell estima-
tion techniques provide more accurate estimates for spatial
joins with geometric selections.

Faloutsos et al. [15] and Belussi and Faloutsos [8] propose
parametric methods for estimating the selectivity of ε-(self-
) joins of point-sets. For self-similar data sets they achieve
good approximations using power laws and fractal dimen-
sionality. The techniques of Acharya et al. [2] estimate the
selectivity for point and range queries over two-dimensional
rectangular data. The basic idea is to partition the data
space into buckets and to use models based on uniformity
assumptions per bucket. Closely related to selectivity esti-
mation are approaches for estimating the cost (in terms of
CPU or I/O) of specific operator implementations. Exam-
ples are cost models for range queries and index-supported
joins for spatial data [9, 20, 21, 22, 29, 30].

None of the previous approaches provides any result qual-
ity guarantees. Samples are difficult to maintain in the pres-
ence of updates, especially deletes which could remove ob-
jects from the sample. Similarly, there is no efficient al-
gorithm for maintaining fractal dimensionality and power
law parameters in the presence of updates. The histogram
techniques, due to the regular grid partitioning, are easy to
maintain dynamically, however, their utility is limited when
the data is skewed. Other histograms that are more appro-
priate for skewed data cannot be maintained efficiently and
introduce an additional error when the buckets of the joined
data sets do not align.

Our techniques are based on AMS sketches [4, 3] which
are dynamically maintainable and provide approximation
quality guarantees. Different types of sketches so far have
been used for efficiently maintaining aggregates over data
streams [6]. Example applications are complex aggre-
gates [14], quantiles [17], frequent items [10, 11], multidi-
mensional histograms [28], and graph statistics [7]. An up-
coming paper by Tao et al. proposes to use sketches to
improve the result quality for aggregate queries over spatio-
temporal point sets [27].

9. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new framework for using spa-

tial sketch techniques for approximately answering spatial
queries. To the best of our knowledge, our technique is the
first method for spatial data that gives probabilistic qual-
ity guarantees. It permits incremental construction under
insertion and deletion of records while at the same time be-

ing effective for skewed distributions and applications where
deletions of objects are frequent. Our experimental evalu-
ation shows that our techniques are competitive compared
to the best previously known methods, and we believe that
their additional features of quality guarantees, incremental
maintenance, and predictable behavior make them a viable
choice in practice.

Note that in principle any sketching technique that can
estimate join sizes with guaranteed error bounds (not
only AMS sketches) could be incorporated into our frame-
work. Thus for example one could potentially use some
of the sketching techniques proposed in upcoming publi-
cations [12, 16] with their corresponding error guarantees
suitably adapted to our spatial framework.

In future work, we plan to extend our techniques to other
spatial queries, including non-rectangular selections [1]; and
we would like to incorporate quality boosting techniques
such as sketch partitioning into our framework. One espe-
cially promising candidate for future work are complex spa-
tial queries that contain multiple operators, e.g., joins with
selections. Selectivity estimation for spatial joins with selec-
tions can be done using our sketch-based framework. How-
ever a straightforward application (use counting sketches
like for spatial joins, but multiply each inserted interval and
endpoint contribution with a factor that encodes the range-
query sketch for independent ξ-families), would lead to dra-
matically increased variance and hence space requirement,
compared to spatial join without selection.

10. REFERENCES
[1] A. Aboulnaga and J. F. Naughton. Accurate

estimation of the cost of spatial selections. In Proc.
ICDE, pages 123–134, 2000.

[2] S. Acharya, V. Poosala, and S. Ramaswamy.
Selectivity estimation in spatial databases. In Proc.
SIGMOD, pages 13–24, 1999.

[3] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy.
Tracking join and self-join sizes in limited storage. In
Proc. PODS, pages 10–20, 1999.

[4] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
In Proc. STOC, pages 20–29, 1996.

[5] N. An, Z.-Y. Yang, and A. Sivasubramaniam.
Selectivity estimation for spatial joins. In Proc. ICDE,
pages 368–375, 2001.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proc. PODS, pages 1–16, 2002.

[7] Z. Bar-Yossef, R. Kumar, and D. Sivakumar.
Reductions in streaming algorithms, with an
application to counting triangles in graphs. In Proc.
SODA, pages 623–632, 2002.

[8] A. Belussi and C. Faloutsos. Self-spacial join
selectivity estimation using fractal concepts. Proc.
ACM TOIS, 16(2):161–201, 1998.

[9] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Parallel
processing of spatial joins using R-trees. In Proc.
ICDE, pages 258–265, 1996.

[10] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In Proc. ICALP, pages
693–703, 2002.

[11] G. Cormode and S. Muthukrishnan. What’s hot and

what’s not: Tracking most frequent items dynamically.
In Proc. PODS, pages 296–306, 2003.

[12] G. Cormode and S. Muthukrishnan. An improved
data stream summary: The count-min sketch and its
applications. In LATIN, pages 29–38, 2004.

[13] A. Das, J. Gehrke, and M. Riedewald. Approximation
techniques for spatial data. Technical report, Cornell
University, 2004.
http://techreports.library.cornell.edu.

[14] A. Dobra, M. N. Garofalakis, J. Gehrke, and
R. Rastogi. Processing complex aggregate queries over
data streams. In Proc. SIGMOD, pages 61–72, 2002.

[15] C. Faloutsos, B. Seeger, A. J. M. Traina, and
C. Traina. Spatial join selectivity using power laws. In
Proc. SIGMOD, pages 177–188, 2000.

[16] S. Ganguly, M. N. Garofalakis, and R. Rastogi.
Processing data-stream join aggregates using skimmed
sketches. In Proc. EDBT, pages 569–586, 2004.

[17] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. How to summarize the universe: Dynamic
maintenance of quantiles. In Proc. VLDB, pages
454–465, 2002.

[18] P. J. Haas and J. M. Hellerstein. Online query
processing. In Proc. SIGMOD, page 623, 2001.

[19] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In Proc. SIGMOD, pages 171–182, 1997.

[20] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. A
cost model for estimating the performance of spatial
joins using R-trees. In Proc. SSDBM, pages 30–38,
1997.

[21] J. Jin, N. An, and A. Sivasubramaniam. Analyzing
range queries on spatial data. In Proc. ICDE, pages
525–534, 2000.

[22] H.-P. Kriegel, M. Pfeifle, M. Pötke, and T. Seidl. A
cost model for interval intersection queries on
RI-trees. In Proc. SSDBM, pages 131–141, 2002.

[23] N. Mamoulis and D. Papadias. Selectivity estimation
of complex spatial queries. In Proc. SSTD, pages
155–174, 2001.

[24] D. Papadias, Y. Theodoridis, T. K. Sellis, and M. J.
Egenhofer. Topological relations in the world of
minimum bounding rectangles: A study with R-trees.
In Proc. SIGMOD, pages 92–103, 1995.

[25] C. Sun, D. Agrawal, and A. El Abbadi. Exploring
spatial datasets with histograms. In Proc. ICDE,
pages 93–102, 2002.

[26] C. Sun, D. Agrawal, and A. El Abbadi. Selectivity
estimation for spatial joins with geometric selections.
In Proc. EDBT, pages 609–626, 2002.

[27] Y. Tao, G. Kollios, J. Considine, F. Li, and
D. Papadias. Spatio-temporal aggregation using
sketches. In Proc. ICDE, 2004. to appear.

[28] N. Thaper, S. Guha, P. Indyk, and N. Koudas.
Dynamic multidimensional histograms. In Proc.
SIGMOD, 2002.

[29] Y. Theodoridis and T. K. Sellis. A model for the
prediction of R-tree performance. In Proc. PODS,
pages 161–171, 1996.

[30] Y. Theodoridis, E. Stefanakis, and T. K. Sellis.
Efficient cost models for spatial queries using R-trees.
IEEE TKDE, 12(1), 2000.

