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Abstract. A variety of index structures has been proposed for support-
ing fast access and summarization of large multidimensional data sets.
Some of these indices are fairly involved, hence few are used in practice.
In this paper we examine how to reduce the 1/O cost by taking full ad-
vantage of recent trends in hard disk development which favor reading
large chunks of consecutive disk blocks over seeking and searching. We
present the Multiresolution File Scan (MFS) approach which is based
on a surprisingly simple and flexible data structure which outperforms
sophisticated multidimensional indices, even if they are bulk-loaded and
hence optimized for query processing. Our approach also has the advan-
tage that it can incorporate a priori knowledge about the query workload.
It readily supports summarization using distributive (e.g., count, sum,
max, min) and algebraic (e.g., avg) aggregate operators.

1 Introduction

Modern scientific databases and data warehouses reach sizes in the order of
terabytes [7] and soon even petabytes [1]. Hence fast aggregation techniques
and efficient access to selected information play a vital role in the process of
summarizing and analyzing their contents. The complexity of the problem grows
with increasing dimensionality, i.e., number of attributes describing the data
space. For instance the cloud data in [12] is defined by 20 attributes.

Despite the availability of high-capacity memory chips, rapidly growing
amounts of information still require maintaining and accessing large data collec-
tions on hard disk. Hence the I/O cost, i.e., the time it takes to retrieve relevant
information from hard disk, dominates the query cost. Our goal is to reduce this
cost factor. There is a variety of indices which try to address this problem (see
for instance [8] for an overview). Unfortunately, except for the R-tree [11] and its
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relatives (e.g., R*-tree [1] and X-tree [3]) few have ever gained wide acceptance
in practice. Hence, instead of developing another sophisticated index, our goal is
to examine how efficiently queries can be supported using the simplest possible
data structure—a collection of flat files.

Notice that indices typically concentrate on what is accessed, that is, the
number of accessed index pages during search. In this paper, we demonstrate
that it is at least as important to optimize how the data is accessed since the
disk geometry supports data streams (sequential I/O) rather than random ac-
cesses [24, 25]. Over the last decade, improvements in disk transfer rates have
rapidly outpaced seek times. For example, the internal data rate of IBM’s hard
disks improved from about 4 MB/sec to more than 60 MB/sec. At the same
time, the positioning time only improved from about 18 msec to 9 msec [30].
This implies that reading and transferring large chunks of data from sequen-
tially accessed disk sectors became about 15 times faster, while the speed for
moving to a “random” position only improved by a factor of 2. The disk can
reach its peak performance only if large chunks of consecutive sectors are ac-
cessed. Hence, it is often more efficient to read data in large chunks, even if the
chunks contain irrelevant sectors.

A naive way to take advantage of the disk geometry in answering queries is by
reading the whole data set using fast sequential I/O. While this approach, known
as sequential scan, may make sense when much of the data must be accessed, it
is not efficient for very selective range queries. We propose the Multiresolution
File Scan (MFS) technique to address this issue. MFS is based on a selection
of flat files (“views”) that represent the data set at multiple resolutions. Its
simple structure and low storage overhead (typically below 5% of the data size)
allow it to scale with increasing dimensionality. Each of the files is accessed
using a pseudo-optimal schedule which takes transfer and positioning time of
the disk into account. Our experiments show that for processing range queries
MF'S achieves up to two orders of magnitude speedup over the sequential scan
and is on average a factor of 2-12 times faster than the X-tree.

The simple structure of MFS makes it easy to model its performance. It also
allows the incorporation of a priori knowledge about the query workload. An-
other benefit is the flexibility in choosing the sort order of the data set, which is
particularly useful for temporal data. Often there is a strong correlation between
the value of a temporal attribute and the time when the corresponding data point
is inserted into the database [21]. For instance environmental measurements and
sales transactions are recorded in a timely manner. Later analysis then is con-
cerned with discovering trends, hence also involves the temporal attribute(s).
MFS enables grouping of points with similar time values in neighboring disk
blocks. Hence queries and updates observe a high locality of access. Similarly,
removing chunks of old (and hence less relevant) data from disk to slower mass
storage only affects a small portion of the data structure.

The outline of this paper is as follows. In Section 2 we motivate the design
of MFS and then present its data structures and algorithms in Section 3. The
selection of the files for MFS is discussed in Section 4, including a discussion
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on file selection for temporal data. Section 5 shows how MFS design principles
can improve the query cost of standard indices. Detailed experimental results
are presented in Section 6. Related work is discussed in Section 7. Section 8
concludes this article.

2 Problem Definition and Motivation

Scientific and warehouse data is often conceptualized as having multiple log-
ical dimensions (e.g., latitude, longitude) and measure attributes (e.g.,
temperature, cloud cover). Complex phenomena like global warming can be
analyzed by summarizing measure attribute values of points which are selected
based on predicates on the dimensions. A typical and important query in sci-
entific and business applications is the multidimensional range aggregate. It
computes an aggregate over range selections on some (or all) of the dimen-
sion attributes. Suppose we have geographical data with schema (latitude,
longitude, temperature). An example of a range aggregate on this data is,
“Find the minimum and maximum temperatures in the region of Santa Barbara
County.”

In the following we will concentrate on the count operator. Other aggre-
gate operators can be handled in a similar way. Note that applying the null
“aggregate” operator is equivalent to reporting all selected data points without
performing any aggregation. While MFS can efficiently answer such reporting
queries, the focus of this paper is on its performance for range aggregates. For
the sake of simplicity we will further on assume that the data set has d dimen-
sion attributes and a single measure attribute (for the null operator no measure
attribute is necessary). Our technique can be easily generalized.

Hard Disk Geometry. Here we only provide a high-level view of relevant disk
features; the interested reader might consult [24, 23] for more details. A disk read
request is specified by its start sector and the number of bytes to be transferred.
Unless the requested data is already in the disk cache, this request incurs two
major access costs. First positioning time, more exactly seek time and rotational
latency, is spent to move the disk head above the start sector. Once the head
is correctly positioned the start sector and all following sectors are read and
transferred until the specified amount of data is read. This cost is referred to as
transfer time (for the sake of simplicity we omit a discussion of head and track
switch times). Depending on the actual seek distance, modern hard disks are able
to transfer 50 or more sectors during a time frame equivalent to the positioning
time. Hence it is often faster to issue a single large read request which might
contain irrelevant sectors, instead of using multiple small reads which each incur
positioning time. Figure 1 shows a schematic illustration of this process.

To be able to find the best access strategy, the set of target sectors must
be known in advance. The pre-fetching option of modern disk drives only par-
tially addresses this problem by automatically reading several sectors after the
requested target sectors and keeping them in the disk cache for future requests.
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However, pre-fetching is not effective if requests are not accessing sectors in order
or if there is a large “gap” between groups of target sectors.

Dimensionality Curse for Indexing and Aggregation. There is an inher-
ent dimensionality curse in indexing and computing range aggregates. The best
known algorithms whose runtime is provably sub-linear in the size of the data
set, e.g., [0], have polylogarithmic query cost and storage overhead. However, for
dimensionality d > 9 a polylogarithmic cost is practically worse than a linear
cost. Let n denote the number of data points. Then for d = 9 the polylogarithmic
value logd n is only less than n if n > 10'5. This means that polylogarithmic per-
formance does not guarantee a practically better cost than a simple sequential
scan of the whole data set. A storage explosion by a factor of logd n, i.e., a total
storage cost of O(n logd n) is clearly unacceptable for large data sets.

A similar dimensionality curse has also been observed for popular practical
indexing techniques [3]. Other empirical studies for nearest neighbor queries have
also shown that balanced tree structures can be outperformed by a sequential
scan of the complete data set [5, 32].

Another possibility to speed up aggregate queries is to materialize pre-
computed values and to use them to reduce on-the-fly computation and access
costs, e.g., as has been proposed for the data cube operator [10]. Unfortunately
for a d-dimensional data set any pre-computed value is contained in at most
about one out of 2¢ possible range queries (proof omitted due to space con-
straints). Hence the effectiveness of materializing pre-computed aggregates is
very sensitive to changes in the query workload.

3 The MFS Technique

The discussion in the previous section shows that even the most sophisticated
index cannot guarantee good query performance for multidimensional data sets
with 8 or more dimensions. Together with the limited practical impact complex
indices have had in the past, there is a strong motivation to try the opposite
direction—supporting queries using the simplest possible data structure.
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3.1 Overview of MFS

MF'S consists of a collection of flat files and pointers. Each file represents the
data set at a different level of resolution. The file with the finest resolution
contains the exact information. The next coarser file partitions the data space
into regions and stores for each region the number of data points in the region.!
The next coarser file in turn stores the count value over regions of regions, etc.

Figure 3 shows an example for a data set with the two dimensions longitude
and total cloud cover [12]. The letters indicate weather stations that measure
the cloud cover for certain locations (projected to their longitudes for presenta-
tion purposes). The user is interested in finding out how many stations measured
a given cloud cover range for a given longitude range. Note that in practice there
are far more dimensions.

The original data set is at the granularity of single degrees by 1 cloud intensity
level. Figure 4 shows a possible MFS where the coarser files are at 90 degrees
by 2 levels and 180 degrees by 4 levels resolution, respectively. The tuples in
the files are shown as (longitude,cloud cover),measure and correspond to the
cells indicated in Figure 3. For instance the first tuple in top file F5 corresponds
to the upper left quarter of the whole data space, i.e., to range [—180, —90) by
[4,8] in longitude and total cloud cover dimension, respectively. Note that
coarser granularity enables a more efficient encoding of the dimension values
since less bits are necessary to distinguish between the values.

The granularities establish a conceptual hierarchy among the files. Figure 4
illustrates this hierarchy by placing the file with the coarser resolution above the
file with the next finer one. We will therefore refer to the file with the coarsest
resolution as the top file. Also, a file and the next coarser file are referred to
as child and parent. Let F; be the file at level ¢, level 0 containing the base

! Recall that we describe MFS for the count operator, other operators are handled
similarly.
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Algorithm Query
Input: MFS-file; query
Output: progressively refined approximate results with absolute error bounds

1. Scan top file to find tuples intersected by query;

2. Compute approximate query result with error bounds and output it;

3. While (the file has a child file of finer resolution)
Compute pseudo-optimal schedule to access all relevant sectors in child file;
Access child file according to schedule to find tuples intersected by query;
Output new approximate result when all child tuples of a parent are read;

Fig.5. Querying MFS (“breadth-first”)

data. Knowledge about the workload can be taken into account by selecting the
appropriate file granularities.

An example for a query that selects the longitude range from —22 to —66
degrees and the whole cloud cover range is indicated in Figure 3. In Figure 4
the tuples that intersect the query at the different granularities are shaded. To
allow efficient pruning during range query processing, each non-base tuple has
two pointers first and last. They point to the first and last sector on disk
that contains information that refines the aggregate information of a high-level
aggregate tuple.

3.2 Processing Queries

The query procedure is similar to a breadth-first tree traversal. The main con-
tribution of MFS are the emphasis on file organization and access order rather
than on the number of accessed “index” pages alone. Another main aspect is the
use of a simple and fast, yet very efficient disk access scheduler.

A query is processed by first sequentially scanning the (small) top file. Then
the relevant tuples in its child file are read using a pseudo-optimal access schedule
that takes the disk parameters into account. Then the next child file is pseudo-
optimally accessed and so forth. This way the query proceeds breadth-first, file
by file in increasing order of resolution. The first and last pointers provide the
information for computing the pseudo-optimal schedule. The overall algorithm
is shown in Figure 5. Approximate output is generated similar to [20].

The pseudo-optimal disk access schedule is computed using a very fast
approximation algorithm which assumes a simple disk model. This algorithm is
a simplified version of a scheduler proposed in [25], nevertheless the experimen-
tal results in Section 6 show that it is very effective. Let R = % denote
the ratio between the “average” positioning time and the transfer time per sec-
tor. Given a set of target sectors, the pseudo-optimal schedule is generated as
follows. The first read request starts at the target sector with the lowest num-
ber and contains all target sectors with higher numbers such that the number
of non-target sectors between any neighboring target sectors in the request is
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less than R. The second read request starts at the target sector with the low-
est number which is not in the first request and contains all following sectors
such that there are no gaps of R or more sectors between neighboring target
sectors, and so on. The motivation for allowing gaps of less than R consecutive
non-target sectors in a read request is that it is faster to read and transfer the
non-target sectors instead of issuing smaller reads which each incur positioning
time. Figure 2 shows an example for R = 2.

3.3 File Organization

In general the tuples in a file could be sorted in any order. However note that
during query processing for an intersected tuple in file F; all child tuples in the
next file F;_; are accessed to refine the result. In order to increase locality of
access these “sibling” tuples should be stored in neighboring disk sectors. Hence
each file (except for the top file) consists of chunks of sibling nodes which could
be stored in any order on disk, e.g., Z- or Hilbert order.

The requirement of clustering tuples that share the same parent tuple es-
tablishes a partial order which is determined by the selected file granularities.
Tuples in a file therefore can be stored in any order which is consistent with this
partial order.

3.4 Bulk-Loading MFS

For now assume the granularities for the files of MFS are known. As discussed in
Section 3.3 the tuples in a file can be stored in any order that is consistent with
the partial order established by the file granularities. For bulk-loading a consis-
tent total order “<” is selected which has the following property. For any two
base tuples ¢; and ¢; it holds that if ¢; < ¢; then for all ancestors a; and a;
of t; and ¢; it also holds that a; < aj. Such an order trivially exists (just group
descendent tuples together recursively).

The bulk-loading algorithm first sorts the input file according to the total
order. Then all files of MFS are constructed simultaneously by scanning the
sorted file only once. This is possible because of the ancestor order ensured by
“<”. The algorithm only needs little memory to hold the currently processed
tuple with all its ancestors. The values of the pointers first and last are
generated during the scan as well. In Figure 6 the algorithm is shown in pseudo
code. The total bulk-loading cost is equivalent to the cost of one sort and one
scan of the data set. Both operations take advantage of the disk geometry by
transferring large chunks of sequentially stored data. Note that the bottom file
of MFS is already complete after the sorting step, therefore during step 3 only
tuples of the small coarse-resolution files are written to disk. The write cost thus
is negligible compared to the cost of scanning the sorted base data file.

3.5 Updating MFS

In the following discussion the term wupdate denotes any change to the base
data set, including insertion and deletion of tuples. Processing updates on MFS
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Algorithm Bulk-load
Input: File containing input data; total order < of input tuples
Output: Files of MF'S

1. Sort input file baseFile according to total order <;
2. Read first tuple from baseFile and generate list Ancestors of
its ancestor tuples in the coarse-resolution files;
3. While (there are more tuples in baseFile)
Read tuple from baseFile; currentFile = baseFile;
Do
If (tuple is a child of the corresponding parent tuple parent in Ancestors)
Update aggregate value of parent; continue = false;
Else
Create new parent tuple newParent of tuple;
Set first pointer of newParent;
Replace parent by newParent in Ancestors;
Set last pointer of parent and append it to the corresponding file;
tuple = newParent; currentFile = parent of currentFile;
continue = true;
while (continue);
4. Append tuples from Ancestors to the respective files;

Fig. 6. Bulk-loading MFS (writes are buffered)

is simple and inexpensive. As discussed in Section 3.3 the files only have to
maintain a partially ordered set. Hence whenever an update leads to overflowing
sibling chunks or gaps within the file, selected sibling chunks can be moved
to a different location in the file. A standard garbage collection algorithm can
maintain the gaps within a file at a low cost [5]. Details are omitted due to space
constraints. Updates to the dimensions, e.g., inserting a new product, can be
processed in the same way.

MFS’s regular structure also simplifies batch updates. First a small delta-
MFS is built for the updates (using MFS’ granularities). If MFS is maintained
according to the total order “<”, both MFS and delta-MFS can be merged in
a single scan. Otherwise the sub-"trees” of common top-level tuples are merged
using pseudo-optimal accesses.

Note that one can leave “gaps” of empty sectors within the files of MFS to
enable fast single updates with very low re-organization cost. Thanks to the use
of the pseudo-optimal scheduler these gaps have virtually no effect on the query
cost (cf. Section 6).

4 Selecting the Granularities for the MFS Files

The main design challenge for MF'S is to select the right number of files and their
granularities. We show how MFS can take workload information into account and
discuss how to construct it if no such knowledge exists.
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4.1 Notation

Let the data set D have d dimensions and n tuples. Each dimension ¢ has (%)
hierarchy levels. The levels are numbered 0, 1,..., (i) — 1; 0 being the level
with the finest resolution and (i) — 1 corresponding to the artificial ALL value
that stands for the whole domain of attribute i (cf. [10]). For instance time
could have the 3 levels month (=0), year (=1), and ALL (=2). If no natural
attribute hierarchy exists, any hierarchical partitioning, e.g., according to the
decimal system, can be used. We use N; to denote the size of the domain of
dimension . We assume that MFS has [ files Fy, Fy,...,F; in decreasing order
of their resolution. Let n; denote the number of tuples in Fj.

The smallest unit of measurement in the data set is a tuple of the original
data set. We can conceptually view such a base tuple as a cell of side length 1
that contains a value. Notice that our model can also be applied to continuous
domains by assuming that a point has a size of 1 as well. Tuples of coarser
resolution files correspond to hyper-rectangular regions of base level cells. We
will use xgk)
file Fk.

to denote the side length in dimension ¢ for the region of a tuple in

4.2 Estimating Query Performance for a Given MF'S

Given a certain MFS configuration we evaluate its expected query performance
by using a fast and lightweight analytical solution. As described in Section 3.2
a query first completely scans the top file F; and then reads all child tuples
of those tuples in F; which intersect the query, and so forth. Hence the selec-
tivity of the query in file Fy_1, 1 < k < [, is affected by the granularity of
its parent file Fj. Let query ¢ select a multidimensional range that has size g;
in dimension ¢. The expected belectivity of ¢ in file Fr_1 (0 < k < 1) can

then be computed as H'Z:l %_1 (proof omitted due to space constraints).

Based on the selectivity, the average number of accessed bits can be estimated

(k)
as Ng_1Sk_1 ]_[Z 1 %T Here s;_1 denotes the number of bits required to

encode a tuple of file Fk 1, including the measure value and the two pointers to
the child tuples.

The overall query cost for MF'S is the sum of the cost for scanning F; and the
query cost for reading relevant tuples in each file below. With the above formula
this cost is estimated as

(k)

1 d

q +x;’ —1

(T anflsquZ#
k=l i=1 ¢

This formula provides an estimate for the average time it takes to read the data
from disk. Note that we are actually not interested in the absolute value. All we
need to find is the MFS configuration with the lowest cost relative to all other
examined configurations.

To compute the result we have to determine all ny, the number of tuples in
file Fj. One can either materialize the files to obtain the exact values, or use
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efficient approximation techniques like the one proposed by Shukla et al. [26].
For fractal data sets (cf. [L7]) there is an even faster purely analytical way of
determining the ng. Let Dy be the Hausdorff fractal dimension. Then nj can be

Dy
accurately estimated as ny = n (2{—5) where dj, denotes the diameter of the

region that corresponds to a tuple of file Fj.

4.3 Addressing the Complexity

So far we have a formula that computes the cost for a certain MFS configura-
tion. However, the number of possible MFS configurations is exponential in the
number of dimensions. We therefore use a greedy heuristic to explore this space.

The algorithm first selects the granularity for F; assuming MFS only consists
of Fy and Fi. It greedily reduces the resolution of Fj in that dimension which
leads to the greatest reduction in query cost. Once a local minimum is reached,
the algorithm adds a new top level file F5 with F}’s resolution and greedily
decreases Fy’s resolution, and so on until adding a new top level file does not
result in any improvement.

This greedy process over-estimates the cost for non-top level files during the
search. When a new candidate for the top file is examined, the cost of a scan
is assumed for it. Later, when a file with coarser resolution is added above it,
the actual cost contribution is much lower. To correct for this problem we use
a second bottom-up process which greedily increases the resolution of the files.
This process iterates over all files until no improvements are possible.

The overall process in the worst case examines a number of MFS configu-
rations which is linear in Z?Zl I(i), the total number of hierarchy levels of the
dimensions.

4.4 Taking the Query Workload into Account

The formula derived in Section 4.2 computes the average cost given a certain
query specification. A workload containing several of these query specifications
with their respective probabilities can be taken into account by computing the
cost for each query type and weighting it with its probability.

Often there exists less specific information about the most likely queries,
e.g., “the majority of the queries selects on product categories rather than single
products”. Such knowledge about queries aligning in some dimensions can be
incorporated by correcting the query volume enlargement caused by the coarser
parent file.

Knowledge about the location of a query can also be taken into account, e.g.,
for density-biased queries. One simply needs to partition the data space into
smaller regions and then perform the cost analysis using the appropriate query
workload and weight for each region. Similar to multidimensional histograms [18]
there is a tradeoff between accuracy of estimation and storage and maintenance
costs. Examining this tradeoff is beyond the scope of this paper.
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4.5 Default Configuration

So far we have discussed how to select the file granularities when a query work-
load is given. If there is no such knowledge, one could choose any typical mix of
range queries. During the experimental evaluation we noted that choosing very
selective queries to configure MFS resulted in best overall performance. Choos-
ing such queries generated a larger number of coarse-resolution files, allowing
efficient pruning during search. Queries that select large ranges typically access
a large number of disk blocks in any MFS-configuration and are well supported
by the pseudo-optimal disk scheduling anyway. In the experiments (cf. Section 6)
MFS was simply configured assuming each query selects 10% of the domain in
each dimension. The resulting data structure performed very well for queries
with varying selectivity, indicating the robustness of MFS.

4.6 MFS for Temporal Data

MFS’s flexible tuple order enables it to efficiently support management of real-
time observations. Such observations could be measurements of environmental
factors (e.g., temperature, amount of clouds), experimental data, or sales trans-
actions in retail stores. All these applications have in common that the observa-
tions are time stamped in order to be able to discover trends like global warming
or unusual sales patterns. As discussed in [21], there is a strong correlation be-
tween the time of the observation and the time when a tuple is inserted into the
database. In other words, the data set consists of a current part which is heavily
updated and a much larger historical part which is mainly queried and rarely
updated.

MFS can explicitly support such applications by choosing a tuple order which
groups tuples with similar time stamps into neighboring disk blocks. This is
done by selecting a sufficiently fine resolution for the temporal attribute at the
top file. For instance, if the temporal attribute is at granularity month in the
top file, all tuples belonging to the same month are automatically clustered
together. Newly arriving observations therefore only affect the small part of MFS
which corresponds to the current month, guaranteeing a high locality. Parts that
contain the previous months are rarely updated and hence can be packed without
leaving empty space into disk blocks. Queries that search for trends and hence
compare aggregate values for different time periods observe similar locality since
the values are essentially clustered by time periods.

The same benefits apply to data aging processes in data warehouses which
manage rapidly growing amounts of data by retiring old information from hard
disk to slower mass storage.

5 Improving Indices

New indexing techniques proposed in the literature only rarely address the exact
layout of the structure on disk and the scheduling of node accesses taking this
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layout into account. Our experiments indicate that these aspects should become
integral parts of index structure proposals since they considerably affect the
performance.

Figure 9 shows how the query cost of the X-tree index can be reduced by ap-
plying MFS’ design principles. The first graph shows the query cost distribution
for the standard depth-first (DFS) traversal of a dynamically generated X-tree.
The second graph indicates the improvement obtained for exactly the same in-
dex structure, now using breadth-first (BFS) traversal and our pseudo-optimal
scheduler for accessing the next tree levels. Finally the curve for the bulk-loaded
X-tree was obtained by clustering the tree level-wise and making sure that the
children of an inner node are stored in neighboring disk blocks. The experimental
setup is explained in detail in Section 6.

6 Experimental Results

We evaluated the performance of MFS for several real and synthetic data sets.
To allow a fair and detailed comparison, we report the I/O costs measured with
the DiskSim 2.0 simulation environment [9]. This tool is publicly available at
http://www.ece.cmu.edu/ ganger/disksim and was shown to model the real
access times very accurately. In our experiments we used the settings for the
most detailed and exact simulation.

We compare MFS to the dynamic X-tree [3] and a bulk-loaded X-tree [2]. The
latter has a high page utilization (in the experiments it was 90% and higher) and
there is generally no overlap of page extents (except, if page boundaries touch).
Furthermore the bulk-loaded tree also is given the advantage of having all its
non-leaf nodes in fast cache. The leaf nodes also are laid out such that they are
traversed in order, i.e., the disk arm does not have to move forth and back while
processing a query. For both indices the page size was set to 8 KB. MFS works
at the level of single disk sectors since its approach is not based on index pages.

We initially also compared MFS to augmented index structures that maintain
pre-computed aggregates in their inner nodes [20, 16]. However, due to the fairly
high dimensionality of the data, the results were virtually identical to the non-
augmented indices, sometimes even worse, and hence are not included. Similarly
the performance comparison for indexing, i.e., for reporting all selected points
rather than computing an aggregate, led to almost identical results and therefore
is omitted as well.

6.1 Experimental Setup

The results presented here were obtained for the Seagate Cheetah 9LP hard disk
(9.1 GB, 10045 rpm, 0.83-10.63 msec seek time, 4.65MB/sec max transfer rate).
All parameters, including a detailed seek time lookup table for different seek
distances, are part of the simulation tool and set to match the exact performance
of the real disk. The results for other disks are similar.
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Table 1. Quantiles of the query selectivity for the experiments

Figure| 20% | 40% | 60% | 80% |100%
7,8 |1.5e-9|3.5e-7|3.3e-5|4.1e-3] 0.91
9, 10

We compared the different approaches for a variety of data sets. Due to
lack of space only the results obtained for two real data sets are discussed here.
Experiments with other data, e.g., the TPC benchmark [31] and synthetic skewed
data consisting of Gaussian clusters, were similar.

Weather is a real data set which contains 1,036,012 cloud reports for
September 1986 [12]. We selected the 9 dimensions Day, Hour, Brightness,
Latitude, Longitude, Station-ID, Present-weather, Change-code, and
Solar-Altitude. For Day the natural hierarchy (ALL, year, month, day) was
selected. For the other dimensions we recursively partition the domain by 10
(large domains), by 4 (medium domains) or by 2 (small domains). Data set
WeatherL has the same attributes, but contains 4,134,221 cloud reports for four
months of 1986 (September till December).

We measured the performance for several workloads of multidimensional ag-
gregate range queries. The results discussed here were obtained for a workload
that was constructed as follows. For a query for each dimension one of the four
range predicates min < x < A (prefix range), A < 2 < B (general range), © = A
(point range), and min < z < max (complete range) is chosen with probability
0.2, 0.4, 0.2, and 0.2, respectively. Values A and B are uniformly selected. This
way of generating queries models realistic selections and ensures a wide variety
of selectivities. Table 1 shows the 20 percent quantiles for the selectivity distri-
bution of the queries that were used to produce the figures. For instance, the
value for the 60% quantile and Figure 7 indicates that 60% of the queries in
this experiment had a selectivity of 3.3e-5 or below, and that the other 40% had
a higher selectivity.

Note that the queries as generated above are the most expensive for MFS
because they do not take hierarchies into account. In practice users often query
according to hierarchies. For example it is more likely that a query selects the
31-day period from May 1 till May 31 (i.e., the month May), than from say

Table 2. Average query costs (in seconds)

Data set |MFS| Bulk| Dyn.|Scan
X-tree|X-tree
‘Weather 0.18| 0.33] 1.83| 0.91
(fast controller)
‘Weather 0.40f 0.79] 2.80| 3.91
WeatherL 1.36] 2.82| 9.07(15.52
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May 5 till June 5. MF'S benefits from such hierarchy-aligned queries because its
“grid” structure is based on hierarchies, therefore the query intersects less tuples
(cf. cost formula in Section 4.2).

MFS Properties. MFS did not take the real query workload into account
during construction. The file selection algorithm simply assumed that each query
selects a range of 10% of the domain in each dimension (cf. Section 4.5). The
resulting MFS configurations had between 4 and 5 files. The overall storage
overhead was below 2.4% compared to the base data set.

6.2 Performance of MFS

We report results obtained for 10,000 range queries. Notice that for the indices
the disk’s pre-fetching feature was enabled. Without it the average query cost
increased from 2.8 to 5.1 sec (dynamic X-tree) and from 0.79 to 2.0 sec (bulk-
loaded X-tree).

The results are presented in Figures 7 and 8 for a slow and fast disk controller,
respectively. The figures show the query cost distribution over all queries. The
numbers on the x-axis are the cost quantiles, the y-axis shows the corresponding
I/O cost in seconds. We report all quantiles, hence the graphs show the ezact
cost distribution.

The graphs of Figure 7 were obtained for the original configuration of the
hard disk. MF'S clearly outperforms the competitors, virtually never exceeding
the cost of a sequential scan. Note that the 50% fastest queries on the bulk-
loaded index are faster than the fastest 50% of the queries on MFS. However,
the absolute I/O-cost difference there is between 10 and 30 msec and mostly
caused by not counting the inner node accesses for the index. MFS on the other
hand shows clear performance advantages for the expensive queries that take 500
msec and longer and cause noticeable delays for the user. For instance, 78.4%
of the queries on MFS take less than 500 msec, compared to only 65.8% on the
bulk-loaded index. The dynamic X-tree performs much worse than both MFS
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and the bulk-loaded tree. About 25% of the queries take longer on the X-tree
than by simply scanning the whole data set even though the selectivity of the
queries is very low (cf. Table 1).

MFS and Future Hard Disks. To examine the fitness of the data structures
with respect to current hard disk trends, we increased the disk’s transfer rate
by a factor of 4.3 without changing the parameters that affect positioning time.
Figure 8 shows that all techniques benefit from the higher transfer rate, but the
high percentage of random accesses limits the benefit for the dynamic X-tree
compared to the competitors (see also Table 2). The bulk-loaded tree benefits
similarly to MFS. The reason is that most of its disk positionings are actually
masked thanks to the pre-fetching. Recall that the pre-fetching is only effective
because we made sure that the leaf pages are laid out and accessed on disk in
the right order, i.e., following the principles established for MFS.

Scalability with Data Size. The cost distribution for the larger WeatherL is
almost identical to Weather, hence the graphs are omitted. The average query
costs are reported in Table 2. It turned out that the worst case cost for the
dynamic X-tree increased from 12 to 63 sec, i.e., by a factor of 5. For the other
techniques the worst case cost increased almost exactly by a factor of 4, the size
ratio of the two weather sets.

Support for Single Updates. We examined the effect of leaving empty space
in the MFS files to enable incorporation of single updates. We constructed MFS
by leaving k& empty sectors in between chunks of j non-empty sectors. An update
would sequentially read the appropriate chunk of j non-empty sectors and write
the updated chunk back. The variables j and k determine the query-update cost
tradeoff. Larger j and smaller k increase the update cost, but avoid query over-
head caused by reading empty sectors (or seeking over a chunk of empty sectors).
Figure 10 shows the query cost distribution for the same set of queries we used
in Section 6.2. Variables j and k were such that the storage utilization of MFS
was only 75%. We examined the combinations (j=2000,k=500), (j=400,k=100),
and (j=80,k=20). As expected, the larger the absolute values, the lower the
effect of leaving empty space. Note that for j=2000 and j=400 the cost distribu-
tion is almost identical to MFS without empty sectors. The experiment shows
that moderate amounts of single updates (up to 25% of the data size) can be
supported with virtually no effect on the queries.

7 Related Work

The DABS-tree [5] and the VA-file [32] (including its variants) explicitly address
high-dimensional data spaces, but focus on nearest neighbor queries. The under-
lying idea is to have simple two-level schemes where the first level is sequentially
scanned and then the relevant data in the second level is accessed. MFS extends
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these approaches and addresses range queries. It is more general by allowing
multiple “levels” depending on the query workload.

Roussopoulos et al. [14, 22] use packed R-trees to store tuples of multiple
views of the base data in a single data structure. The techniques were shown to
be effective for low to medium dimensionality. With increasing dimensionality
the R-tree performance is expected to degrade as shown in this paper for the
X-tree. Note that the packing requires the tuples to be sorted in row-major order
(alphabetically) which was shown to be inferior to lattice path clustering in [13].
MF'S supports lattice path clustering.

Seeger et al. [25, 24] propose algorithms for determining the fastest way of
retrieving a set of disk pages when this set is known a priori. Our technique to
select the pseudo-optimal schedule is similar to the approach of [25] for limited
gaps and unlimited buffer.

Previous work regarding the prediction of range query performance focused
on B-trees and the R-tree family [28, 29, 19]. Our cost model arrives at similar
results regarding the selectivity estimation of a query. However, it is specific to
our technique and can take advantage of the regular and simple structure of
MFS. For data structures like B-trees and R-trees the shape of the bounding
box of a tree node can only be approximated which leads to high errors with
increasing dimensionality [15].

Recent work by Tao and Papadias [27] improves index performance by adap-
tively changing the number of pages assigned to index nodes. Their motivation,
like for MF'S, is to reduce the number of disk positioning operations (seeks). Since
the technique is based on detailed cost models, its effectiveness will rapidly de-
crease with less accurate cost prediction in medium to high dimensions. MFS
takes a more radical approach away from improving indices and using complex
(and hence fragile) cost models.



230 Mirek Riedewald et al.

8 Conclusions and Future Work

Efficient access and summarization of massive multidimensional data is an es-
sential requirement for modern scientific databases. The MFS technique shows
that this can be achieved with a very simple lightweight data structure. The
key to MFS’ performance is the consequent orientation on the geometry and
parameters of hard disks. With rapidly increasing transfer rates of modern hard
disks, MF'S will further benefit.

In the experiments MFS clearly outperformed existing popular indices, even
when they are bulk-loaded and hence optimized for query performance. We also
showed how principles developed for MFS can be applied to indices in order to
increase their performance.

MFS’ simple and flexible structure enables it to take query workloads into
account. By choosing an appropriate tuple order, timestamped data (e.g., exper-
imental measurements, sales transactions) and data aging can be managed with
guaranteed locality of access. For the same reason provably efficient clustering
strategies like snaked lattice paths [13] are supported as well. Thanks to its use
of simple flat files, MF'S can also be combined with popular secondary indices
like B+-trees. Examining the actual tradeoffs involved in choosing certain tuple
orders and secondary indices is part of our future work.
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