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ABSTRACT
We consider the problem of approximating sliding window
joins over data streams in a data stream processing system
with limited resources. In our model, we deal with resource
constraints by shedding load in the form of dropping tuples
from the data streams. We first discuss alternate architec-
tural models for data stream join processing, and we survey
suitable measures for the quality of an approximation of a
set-valued query result. We then consider the number of
generated result tuples as the quality measure, and we give
optimal offline and fast online algorithms for it. In a thor-
ough experimental study with synthetic and real data we
show the efficacy of our solutions. For applications with de-
mand for exact results we introduce a new Archive-metric
which captures the amount of work needed to complete the
join in case the streams are archived for later processing.

1. INTRODUCTION
In many applications from IP network management

to telephone fraud detection, data arrives in high-speed
streams, and queries over those streams need to be processed
in an online fashion to enable real-time responses. Data
streams pose a serious challenge for data management sys-
tems as the traditional DBMS paradigm of set-oriented pro-
cessing of disk-resident tuples does not apply. Recently sev-
eral new proposals for data stream processing systems have
emerged [2, 6, 18]. These systems are specifically architected
to process data streams in real time.

As for traditional relational database systems, the join op-
erator is a very important operator in a data stream process-
ing system. Let R and S be two data streams that contain
a joint attribute A, which is selected as the join attribute.
The equi-join of R and S is the subset of the cross-product
of the two streams that contains exactly those pairs of tuples
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(r, s) such that r ∈ R, s ∈ S, and r.A = s.A.
While joins are very important, their computation is re-

source intensive. For instance, a standard equi-join carries
conceptually unbounded state for two infinite input streams.
To deal with the problem of unbounded state for data stream
joins, the semantics of the join are usually changed to re-
strict the set of tuples that participate in the join to a
bounded-size window of the most recent tuples [2]. Since the
window conceptually slides over the input streams, this type
of join is often called a sliding window join. Notice that there
are several possibilities to define the window boundaries—
based on time units, number of tuples, or landmarks. For
simplicity we will assume that the window is defined in terms
of time units (wall-clock time) and that at each time unit a
new tuple arrives on each input stream. Our discussion and
techniques can be generalized to windows defined in terms
of the number of tuples and to asynchronous tuple arrival.

In the following we will use w to denote the window size.
Let r(i) refer to the tuple of stream R that arrives at time
i. For simplicity we will also use r(i) to denote the value of
the tuple’s join attribute (s(i) is defined and used similarly).
According to our model, at each time t the sliding window
contains all tuples r(i) and s(i) with t− w < i ≤ t.

The online nature of data streams and their potentially
high arrival rates impose high resource requirements on data
stream processing systems. Especially in applications where
several queries are processed concurrently, the availability
of resources that can be devoted to each query is limited
and might vary over time. As another example, it is often
impossible to estimate the peak tuple arrival rate for data
streams, and thus sizing a data stream system for peak loads
is a hard problem. Thus although changing the semantics
of the join operator to sliding windows has already reduced
the resource requirements of the join operator, computing
sliding window joins can still exceed resource availability.

Resource limitations can have two effects. For streams
with high arrival rates, the CPU might not be fast enough
to process all incoming tuples in a timely manner, i.e., we
have a slow CPU compared to the arrival rate of the stream.
For large windows w the available main memory M might be
too small to keep all relevant tuples in-memory (and frequent
access to hard disk will be too slow when arrival rates are
high).

In order to deal with resource limitations in a graceful
way, returning approximate query answers instead of exact
answers has emerged as a promising approach to save re-
sources [4]. In data stream processing systems, one way of
approximating query answers is to shed load, for example, by



dropping tuples before they naturally expire (i.e., leave the
window) or even before they reach the operator. The cur-
rent state of the art consists of two main approaches. The
first relies on random load shedding, i.e., tuples are removed
based on arrival rates, but not their actual values [21]. The
second proposes to include QoS specifications which assign
priorities to tuples and then shed those with low priority
first [6]. However, the result of a join consists of pairs of
matching tuples, hence both the join attribute of a tuple
and the number of its partner tuples (i.e., those that match
the tuple) in the other stream determine the output. For
this reason both random load shedding and simple QoS as-
signments to single tuples do not fully capture the semantics
of the join.

For example, it is well known that random sampling from
the inputs R and S of a join, or biased sampling from R and
S without taking the distribution of the other relation into
account, can greatly skew the output of the join, and lead
in the worst case to an empty join output even though the
actual size of the join is very large [8].

Semantic Load Shedding. In this paper, we address
the problems outlined above by introducing the notion of
semantic load shedding. In semantic load shedding, we ap-
proximate the output of an operator by maximizing a user-
defined similarity measure between the exact answer and
the (approximate) answer returned by the system. Seman-
tic load shedding avoids the above problems by intelligently
selecting which tuples to drop and when they should be
dropped — all in order to minimize the error of the out-
put of the query. This paper contains an in-depth study of
this problem for the case of sliding window joins. Let us
shortly discuss some related scenarios where semantic load
shedding can lead to great improvements.

Static Join: Consider a network of small battery-powered
sensors with limited CPU speed and memory which measure
environmental data. Furthermore there are sensor proxies
in the network that are not power constrained and have am-
ple CPU and memory resources. The purpose of the proxies
is to collect sensor data and to execute user-supplied queries
(cf. [22]), for instance a join over an attribute of the mea-
sured data tuples. In order to compute that join for a given
time interval, the proxy needs to query the sensors for their
data. Since transmitting data is very expensive in terms of
sensor battery power [23], the goal of the system is to trans-
mit as little data as possible to extend the sensors’ lifetime.
Hence we have an optimization problem to select the right
data to transmit such that the approximation error of the re-
sult is minimized subject to power consumption constraints
(which is equivalent to data transmission constraints).

Join with Archive Support : Streams are not always arriv-
ing at a consistently high rate and it is not always desirable
to obtain results of limited accuracy. One example are re-
tail applications where sales activity is much higher during
daytime than over night. Also, business analysis typically
is more involved and hence incoming data is archived for
future analysis. In other applications, e.g., intelligence and
disaster monitoring, shedding load simply is not acceptable
due to the risk of “missing the needle in the haystack”. In
such scenarios the stream processing system would operate
in cooperation with an archive, e.g., a data warehouse. In
day (i.e., peak load) mode it will produce approximate re-
sults for incoming data in real-time. In night (i.e., low load)
mode when the arrival rate of new tuples is low, data from

the archive is read and processed in order to refine earlier
approximate results. For the join operator this means that
during day time only a subset of the overall join result is
computed. All tuples which are not completely processed
are then post-processed at night by accessing the archive.
Notice that now load is actually not shed, but rather de-
ferred. Hence we will use the term semantic load smoothing.

Contributions of this Paper. In this paper we give
an in-depth examination of semantic load shedding for data
stream window joins. We present novel algorithms for ap-
proximating set-valued join results at tuple granularity. Our
algorithms obtain the best possible approximate result ac-
cording to a given error measure subject to given resource
constraints. Specifically, we make the following contribu-
tions:

• We outline the design space of possible error measures
and introduce a new Archive-metric for sliding window
joins with archive support. We describe architectural
models for approximating data stream sliding window
joins. (Section 2)

• We then present results for one selected error
measure—the MAX-subset measure, which maximizes
the number of tuples in the approximate output of the
join. More precisely, we present hardness results and
algorithms for the static join case and optimal offline
algorithms and very fast lightweight online heuristics
for the sliding window join problem. (Section 3)

• We evaluate our algorithms on a large set of synthetic
and real-life data (Section 4).

A discussion of related work (Section 5) and a summary and
outlook to future work conclude this article (Section 6).

2. MODELS AND MEASURES
In this section we define the problem space. In particular

we introduce different models for the approximate join com-
putation problem and discuss measures for evaluating the
quality of an approximate join result.

2.1 Models
Our goal is to process a sliding window equi-join between

two data streams R and S. The join operator allocates
memory for keeping internal state, i.e., those tuples which
are within the current window. Newly arriving tuples are
joined with all matching tuples of the other stream in the
join memory. In order to guarantee the computation of the
exact result the system at any point in time needs to ac-
commodate the 2w tuples of the current window and it has
to process incoming tuples at least as fast as they arrive. If
these conditions are satisfied, an incoming tuple will remain
in memory until it expires, i.e., it will spend its whole life-
time (w time units) in memory and generate output with
all matching tuples in the other stream. However in case
of resource shortage, tuples have to be dropped before they
expire.

Modular vs. Integrated. We identify two general mod-
els for processing window joins–modular and integrated (cf.
Figure 1). In both cases there is join memory of size M
for the tuples in the current window and a queue for newly
arriving stream tuples. In order to make educated decisions
about which tuples to evict from the join or the queue in case
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Figure 1: Join processing models

of resource shortages a statistics module gathers information
about the tuple distribution. The main difference between
the two models lies in the degree of integration between the
components.

In the modular case the queue module only has limited
knowledge about the contents of the join memory (for ex-
ample, just a histogram about the frequencies of join at-
tribute values in memory) and vice versa. Each module
uses its own policy for deciding which tuples to drop in case
of resource shortages. These decisions are only influenced
by the input from the statistics module. The modular de-
sign offers the advantage that different operators can be de-
signed and implemented independently. If streams provide
input for multiple operators, queues can be shared, increas-
ing memory efficiency. Note that different operators might
have different preferences for which tuples to evict from the
queue. This can be taken into account by considering in-
put from several statistics modules. The integrated model
combines the queue with the join memory. The benefits
are potentially better decisions based on the combined ex-
act knowledge of both memory contents. On the other hand
the internal queue cannot be shared easily with other oper-
ators.

Fast CPU vs. Slow CPU. For analysis purposes we
also distinguish between the fast CPU and the slow CPU
case (similar to [21]). The system is a fast CPU system if
incoming tuples can be processed at least as quickly as they
arrive. The queue is not needed since tuples are directly
pushed into the join, therefore both modular and integrated
model essentially are equivalent. Conceptually the join has
internal state of size M and two additional buffer cells for
the new arriving tuple of each stream. When tuples arrive
they are instantly joined with their partner tuples of the
other relation in the join memory. Then it is decided if the
tuple will be added to the join memory (potentially evict-
ing another tuple). Hence an arriving tuple will always be
seen by the join. The optimization goal is to evict and re-
tain tuples such that the approximation error is minimized.
Possible error measures will be discussed shortly.

In the slow CPU case tuples arrive faster than they can
be processed. This implies that the queue is necessary for
buffering incoming tuples. The join operator now pulls tu-
ples from the queue whenever it has processed the previous
input. Clearly, the queue will fill up over time and overflow,

hence tuples have to be dropped from it without ever reach-
ing the join. This is referred to as load shedding in [6]. If
a tuple reaches the join, it is processed as discussed for the
fast CPU case. The slow CPU case therefore constitutes
a generalization of the fast CPU case. In the latter case,
approximations arise due to memory restrictions, while in
the former case, approximations arise due to both memory
and processing constraints. The load shedding in the queue
affects the contents of the streams that reach the join oper-
ator, therefore the optimization goal is to find the best join
approximation over all possible load shedding strategies.

2.2 Error Measures
The output of the join operator is a set of tuples, more

precisely a multiset. In the following for simplicity the term
set will refer to multisets as well. There is no single uni-
versally accepted measure for evaluating the quality of an
approximation to a set-valued query result [19]. One well-
known and widely used measure is the symmetric difference.
For two sets X and Y it is computed as |(X−Y )∪(Y −X)|.
For equi-joins dropping tuples before they expire naturally
leads to a situation where the generated output is a subset of
the exact join result (i.e., the result if there was no resource
shortage). In that case the symmetric difference simplifies
to the number of missing output tuples. We will therefore
refer to it as the MAX-subset measure. This measure will
be the principal focus of this paper.

In the data mining and information retrieval communities
several set-theoretic similarity measures have been used [17,
28]. The most widely used similarity measures between two
sets X and Y are Matching coefficient |X ∩ Y |, Dice coef-

ficient 2 |X∩Y |
|X|+|Y | , Jaccard coefficient |X∩Y |

|X∪Y | and Cosine coef-

ficient |X∩Y |√
|X|+|Y | . For X ⊆ Y all these measures are maxi-

mized by maximizing the size of set X, hence they are equiv-

alent to MAX-subset. The Overlap coefficient |X∩Y |
min{|X|,|Y |}

equals 1 for X ⊆ Y .
The recently introduced Earth Mover’s Distance

(EMD) [26] is mainly used as a similarity measure in
image processing. It is defined as the amount of work
required to transform a set X into another set Y of equal
or greater mass (number of tuples). Both sets are viewed as
masses distributed over a data space for which a distance
measure exists. The work required to transform X into Y is
measured as the sum over all products of mass transported
by the transport distance. EMD is the minimum work
over all possible transformations of X into Y . If X ⊆ Y it
trivially evaluates to 0.

The Match And Compare (MAC) [19] set similarity mea-
sure also requires a distance metric between the tuples of
the two sets. First a minimum cost cover of the complete
bipartite graph whose nodes correspond to the tuples and
whose edges have the weight of the respective distances is
found. Then the overall set distance is computed as a func-
tion of the weights of the edges in the cover and the number
of edges incident to each node.

We introduce a novel “error” measure, the Archive-metric
(ArM), which is relevant for semantic load smoothing. As
mentioned earlier, in some applications input data is stored
in archives and hence during low-load periods can be used
to refine approximate results which were obtained during
periods of high load. Since the final result will be exact,
ArM does not measure the approximation quality but rather



the amount of work required for finishing incomplete work.
Since accessing an archive is much slower than memory ac-
cess, we approximate this post-processing cost by the num-
ber of tuples which could not be matched with all their part-
ner tuples because of resource shortage (during peak load).
This quality measure is a simplification in that it assumes
that the post-processing cost (reading incomplete tuples and
their partners from the archive and joining them) depends
linearly on the number of such tuples only. Other measures
like average processing time per tuple or average output de-
lay are reasonable as well but not discussed in detail here
due to space constraints.

ArM is formally defined as follows. Let

δR(i, j) =

8<: 1 , if r(i) survived for at least j time
in memory

0 , otherwise.

This variable indicates when a tuple that arrives at time
i is still in memory and is similarly defined for stream S.
Furthermore we use

S<(i) = {j : j ∈ [i− w + 1, i− 1] ∧ s(j) = r(i)} .

This index set contains the arrival times of all join partners
of r(i) in S which arrived before it. A similar set R< is
defined for each s(i).

Note that r(i) is completely processed if all s(j) for j ∈
S<(i) are in memory at time i and if r(i) is in memory
until time jr(i), where jr(i) = max{j : j ∈ [i, i + w − 1] ∧
s(j) = r(i)} (i.e., the time when the last join partner of r(i)
arrives on stream S). Since δR(i, j) is equal to 0 iff r(i) has
not survived for j time, we know that r(i) is incomplete iff
δR(i, jr(i)− i)

Q
j∈S<(i) δS(j, i−j) = 0. Thus ArM is defined

as X
(δR(i, jr(i) − i)

Y
j∈S<(i)

δS(j, j − i)

+ δS(i, js(i) − i)
Y

j∈R<(i)

δR(j, j − i))) .

In the following sections we will focus on the load shedding
problem for the fast CPU, integrated join model and the
MAX-subset error measure. Examining the other models
and error measures is left for future work.

3. MAX-SUBSET MEASURE
We first examine the static join case, then present optimal

offline and efficient online algorithms for the sliding window
join. The latter is focused on the fast CPU, integrated join
model.

3.1 Static Case
We consider the following two relation (static) join load

shedding problem: We wish to compute an equi-join of two
(non streaming) relations A and B. However, as motivated
in the introduction with a sensor network scenario, due to
reasons such as transmission, memory, or processing time
restrictions, a total of k tuples need to be dropped from
the input buffers. Hence the join of A and B needs to be
computed on the resultant truncated input. Each of the
k dropped tuples may be chosen from either relation, and
we call the resultant join the k-truncated join of A and B.
For most join conditions, such as equality joins, inequality
joins etc., dropping of input tuples only implies a (potential)

dropping of tuples in the output set, and hence the output
of the k-truncated join on A and B is a subset of the out-
put of the non truncated join of A and B. In such cases,
assuming that all output tuples from the join of A and B
have the same importance, a natural measure of the loss or
approximation to the join of A and B is the MAX-subset
measure (cf. Section 2.2). Thus our aim is to find a set of k
tuples to be dropped from the input relations such that the
size of the k-truncated join result is as large as possible.

We can model the above as a graph problem, as follows:
Consider a bipartite graph G(VA, VB , E), with its two par-
titions VA and VB representing the relations A and B re-
spectively. Each partition has one node for every tuple in
the relation it represents. We have an edge between a node
nA ∈ VA and a node nB ∈ VB if the tuples corresponding
to nA and nB satisfy the join condition. Thus the bipartite
graph G has an edge for every tuple in the join result of A
and B. Since our join condition is an equality on one or more
of the attributes of A and B, it is easy to see that G will
consist of a union of mutually disjoint fully connected bi-
partite components (called Kurotowski components). Each
Kurotowski component can be represented by a pair of inte-
gers m, n where m and n are the number of nodes from VA

and VB respectively in the component. We denote such a
Kurotowski component by K(m, n). Thus our k-truncated
join approximation problem is equivalent to finding a set of
k nodes in the bipartite join-graph whose deletion results in
the deletion of the fewest number of edges (which represent
join tuples). Note that since dropping a tuple from one of
the input relations of a join results in the dropping of all
the output tuples produced as a result of that tuple joining
with other tuples from the other join relation, our definition
of node deletion requires that deleting a node results in the
deletion of all the edges incident on that node. For arbi-
trary bipartite graphs, i.e., bipartite graphs not necessarily
representing a join, the above problem can be shown to be
NP-Hard.

We are now ready to state a couple of versions of the k-
truncated join approximation problem, modeled as a graph
optimization problem as described below.

Primal version
Input: A bipartite graph consisting of c mutually dis-
joint Kurotowski subgraphs specified by the c integer pairs
K(m1, n1), K(m2, n2), . . . , K(mc, nc), and an integer k.
Output: A set of k nodes from the bipartite graph whose
deletion from the graph results in the deletion of the fewest
number of edges. Note that when we delete a node, all
edges incident on the node get deleted.

A potentially useful variant of the above problem is the
kA, kB-truncated join approximation problem in which we
are required to delete kA, kB tuples from the two joining
relations respectively as opposed to k tuples overall.

Dual version
Input: Same as for primal version.
Output: A set of k nodes to be retained in the bipartite
graph such that the subgraph induced by them has the
highest number of edges amongst all subgraphs with k
nodes.

Since an optimal solution to the primal version where k



nodes are selected for deletion is an optimal solution to the
dual problem where n−k nodes are retained (n denotes the
total number of nodes in the bipartite graph), an optimal
algorithm for either one of them trivially implies an optimal
algorithm for the other.

In the context of the motivating sensor networks scenario,
a solution to the problem formulated above may be used
for join approximation at a proxy as follows: A compact
value distribution histogram of the join attribute is trans-
mitted independently by each sensor to the proxy, which will
then run the algorithm for suitable parameters based on its
knowledge of the power constraints (which may be conveyed
to the proxy by the sensors themselves) and determine the
set of tuples to be requested from each sensor. The aim here
is to maximize the size of the truncated join, subject to an
upper bound on the number of input tuples transmitted by
the sensors.

3.1.1 An Optimal Dynamic Programming Solution
We consider the dual formulation, where a total of k nodes

need to be retained. Given c Kurotowski components, we
order the components as per some arbitrary ordering, and
let K(mi, ni) denote the i-th component (0 ≤ i ≤ c) as per
this ordering.

Given a single Kurotowski component K(m, n), the opti-
mal way to retain 0 ≤ p ≤ m+n of its nodes (or equivalently,
to delete m + n− p of its nodes), is to retain m′ ≤ m nodes
from the first partition and n′ ≤ n nodes from the second
partition such that m′ ·n′ (i.e., the number of retained edges)
is as large as possible. It can easily be shown that this cor-
responds to choosing m′ and n′ such that m′ + n′ = p and
|m′ − n′| is as small as possible. Thus, the p nodes to be
retained can be chosen one by one by selecting alternately a
node from the ‘m partition’ followed by a node from the ‘n
partition’ until a count of p is reached. If all the nodes of one
partition are exhausted before a count of p is reached, we
simply select the remaining nodes to be retained from the
larger partition. Let Cm,n(p) denote the maximum number
of edges that can be retained when p (≤ m + n) nodes are
retained from a Kurotowski K(m, n) component. It can be
shown that Cm,n(p) is given by: (w.l.o.g., assume m ≥ n)

Cm,n(p) =

8<: (p/2)2 if p ≤ 2n, p even
(p2 − 1)/4 if p ≤ 2n, p odd
n(p− n) else.

Let T (i, j) denote the optimal benefit (i.e., the max. num-
ber of edges retained) of retaining j nodes from the first
i Kurotowski components, as per our ordering. Then, for
i > 1:

T (1, j) =

�
Cm1,n1(j) if 0 ≤ j ≤ m1 + n1

−∞ if j > m1 + n1

T (i, j) = max

8>>>>><>>>>>:
T (i− 1, j),
T (i− 1, j − 1) + Cmi,ni(1),
T (i− 1, j − 2) + Cmi,ni(2),
...
T (i− 1, j −mi − ni) + Cmi,ni(mi + ni)

Intuitively, the second formula states that the optimal way
to retain j nodes from i components is to choose the best
from the following options: Either retain j nodes optimally
from the first i − 1 components, or retain j − 1 nodes op-
timally from the first i − 1 components and retain 1 node

optimally from the i-th component, or retain j−2 nodes op-
timally from the first i − 1 components and retain 2 nodes
optimally from the i-th component, and so on. Thus, the
value we are interested in is T (c, k). By keeping track of the
terms which provide the maximum in the second formula
above, we can also maintain the exact set of nodes retained
from each component in the optimal solution.

Analysis: To compute T (c, k), we need to compute c · k
entries in the dynamic programming matrix T , and each
entry takes O(k) time to compute. Thus, the overall running
time of this algorithm is O(c · k2). By considering a three-
dimensional matrix T with entries of the form T (c, kA, kB),
it is possible to extend the above algorithm to handle the
variant where one needs to delete kA, kB nodes from the two
bipartite partitions respectively.

Strictly speaking, the above algorithm is pseudo-
polynomial in the input size (O(c · log(maxi{mi, ni}) +
log k)), since the input is logarithmic in the parameter k.
However, in our case, since we wish to apply the algorithm
for retaining/deleting k nodes, we do need to spend at least
O(k) processing the two relations. Also note that the algo-
rithm is polynomial in the sizes of the input relations.

3.1.2 A Hardness Result for Multi-Relation Joins
Consider a join of three relations A, B and C, and suppose

that we need to delete (or retain) kA, kB , kC tuples from
the input relations respectively, or k tuples overall, so as to
maximize the number of join tuples that are produced from
the retained input tuples. We call this the 3-relation static
join load shedding problem.

Theorem 1. The 3-relation static join load shedding
problem is NP-Hard.

Proof. Omitted due to space constraints. The main idea
is to model the problem using a tripartite graph and to use
a reduction from the balanced biclique problem [11].

The above result can be used to show that the m-relation
static join load shedding problem is NP-hard for m ≥ 3.
However, there is a trivial m-approximation to this problem
for the formulation where one needs to delete (or retain)
ki tuples from join relation Ai (1 ≤ i ≤ m). The idea is
to independently select for each Ai the ki tuples for deletion
which produce the fewest output tuples. Assume the number
of lost output tuples caused by removing ki tuples from Ai is
pi. The optimal algorithm at least loses max{p1, p2, . . . , pm}
output tuples. The approximation algorithm will at most
lose

Pm
i=1 pi output tuples, therefore guaranteeing an m-

approximation.

3.2 Fast CPU and Offline
We are now considering the standard window join algo-

rithm as discussed in Section 2.1. We develop an algorithm
OPT-offline that minimizes the MAX-subset error in the
fast CPU case under the assumption that all tuples that
will arrive in future are already known to the algorithm.
Note that streams are infinite, and therefore knowing the
whole future can not be modeled. However, this idealized
algorithm is used to provide the baseline for measuring the
efficiency of any real online algorithms over a given subset
of the overall stream. For this subset we can compute the
optimal result using OPT-offline and compare this result to
how an online technique which does not know the future



performs on the same input. Since in the slow CPU case
even more tuples have to be dropped, OPT-offline also con-
stitutes an upper bound for any technique for the slow CPU
case.

Recall that the join memory holds a total of M tuples,
not necessarily distributed evenly between R and S. We will
now describe how to formulate the OPT-offline optimization
problem as a network flow problem that allows the efficient
computation of the best possible approximation under the
MAX-subset measure.

3.2.1 The Flow Graph
The main idea is to define a flow graph such that each

node corresponds to a tuple being in memory at a certain
time. The arcs implicitly model all possible combinations
of keeping or dropping tuples. Sending flow through an arc
intuitively indicates that the corresponding tuple is in mem-
ory, i.e., was not dropped. Since we want to minimize the
MAX-subset error, our goal is to find the optimal strategy
of keeping and dropping tuples such that the overall result
size is maximized.

We assign costs to the arcs in such a way that an op-
timal flow corresponds to the strategy which produces the
most output tuples. To do so we assign cost factor -1 to
each arc which corresponds to a result tuple. Arcs that do
not correspond to output tuples have cost factor 0. Solving
a min-cost linear flow problem will then find our optimal
strategy efficiently. For the sake of simplicity we will illus-
trate the flow graph construction with an example where
the memory M is evenly shared between streams R and S.
Later we generalize the approach.

Let the streams be R = 1, 1, 1, 3, 2 and S = 2, 3, 1, 1, 3 and
assume the first value arrives at time 0, the next at time 1,
and so on. Furthermore let the window size be w = 3 and
the available join memory M = 2. Recall that R and S each
receive M/2, i.e., one memory unit to keep tuples in the
current window. The corresponding flow network is shown
in Figure 2. For simplicity arc cost factors are only indicated
for arcs with cost -1. Overall the nodes in the upper half
correspond to events related to R-tuples, while the nodes on
the lower half correspond to the events related to S-tuples.
Nodes with label x(i) : j correspond to the event that the
tuple that arrived at time i in stream X is in memory at
time j. Nodes s and t are the source and sink of the flow
graph, respectively. The node labeled t = 2 models the fact
that at time 2 the tuples arriving in both streams have the
same join attribute value (equal to 1).

The flow graph is constructed as follows. All arcs have
capacity 1, i.e., they can transmit any flow between 0 and 1
(both inclusive). Node s has supply M + 1 and node t has
demand M + 1. All other nodes have no supply/demand.
Except for the top path s → (t = 2) → t which has a special
purpose and will be discussed later, s has M outgoing arcs.
M/2 of them point to R-tuple nodes, the other M/2 to S-
tuple nodes, modeling the arrival of the first M/2 tuples
from each stream (arcs from s to r(0) : 0 and s(0) : 0 in
the example). The idea behind these arcs is that the first
M arriving tuples will always fit in memory, which will be
reflected by a flow of 1 through each arc (a total flow of M).

Since the memory is now filled, the next arriving tuples
could replace existing tuples in memory. Recall that we
currently fix the memory allocated to R and S, therefore a
newly arriving R-tuple can only replace another R-tuple in

memory, but not an S-tuple (and vice versa). The possibility
of replacement is modeled by the non-horizontal arcs. In
the example arc r(0) : 0 → r(1) : 1 indicates that tuple r(0)
which is currently in memory could be replaced at time 1
by the newly arriving r(1).

The horizontal arcs model the fact that a tuple survives
in memory. For instance r(0) : 0 → r(0) : 2 indicates that
r(0) could still be in memory at time 2. Notice that w = 3,
therefore r(0) will expire at time 3. This means there is no
benefit in keeping r(0) in memory after it has been matched
with a partner tuple arriving at time 2, therefore there is no
outgoing horizontal arc from node r(0) : 2.

Finally, at the end of the “stream” (recall that OPT-offline
works on finite subsets of a real data stream) all nodes that
correspond to tuples in the current window are connected
to the sink t.

In Figure 2 the general design patterns of the flow graph
are marked by dotted line boxes. The tall box shows a subset
of nodes which correspond to the events at a certain time
t = 3. At that time the window contains r(1), r(2), s(1),
s(2), and the newly arriving r(3) and s(3). Which tuples
are actually in memory after the arrival of the new tuples
is determined by where flow is sent. Similarly, the wide box
corresponds to the events of a tuple (s(1)) being in memory
at time 1, 2, and 3, respectively. Again, sending flow through
an arc indicates that s(1) is in memory at the corresponding
time.

The path on the top contains a node for each pair
(r(i), s(i)) where r(i) = s(i). In our fast CPU processing
model the newly arriving tuples are always joined with their
partners in the join memory, and also with the tuple that
arrives on the other stream at the same time. The latter is
modeled by the top path.

As mentioned before, all arcs i → j in the flow graph
have capacity 1, i.e., they can transport any flow f(i, j)
with 0 ≤ f(i, j) ≤ 1. The cost of an arc flow is computed
as f(i, j) · c(i, j) where c(i, j) ∈ {0,−1}. The c(i, j) values
are determined as follows. Recall that a flow through an arc
corresponds to a tuple being in memory. The tuple in mem-
ory produces exactly one output tuple iff the tuple arriving
at the corresponding time in the other stream has the same
join attribute value. If that is the case, the arc cost is set to
-1, otherwise to 0. In the example we have r(0) = 1. Hence
when s(2) = 1 arrives and r(0) is in memory, an output tu-
ple is produced. This is modeled by arc r(0) : 0 → r(0) : 2
which has cost factor -1. If there is a flow of 1 through this
arc, this corresponds to r(0) being in memory at time 2,
hence an output tuple with s(2) is produced (reflected by
cost -1 for this flow).

Strictly speaking the arcs adjacent to s (except for the
top path) could have a cost factor smaller than -1 if one
of the first M/2 tuples in a stream generates more than
one output tuple with the first M/2 tuples from the other
stream. This does not affect the complexity of the model,
since the optimal solution always has to send full flow along
each arc adjacent to s. Also, to avoid “startup-effects” when
comparing different techniques, the output produced until
time M/2 should not be counted because any algorithm no
matter how good or bad it is will keep the first M/2 tuples
from each stream in memory.

In Figure 2 the optimal flow is indicated by the bold arcs.
The output corresponding to this optimal flow is shown in
the figure. Note that because of insufficient memory two
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output tuples are missed ((r(1), s(2)) and (r(1), s(3))).
The generalization to variable memory allocation, i.e.,

sharing the memory in any ratio between R- and S-tuples is
simple. We just need to add “cross-arcs” between R-nodes
and S-nodes in the graph which model the fact that now an
R-tuple can replace an S-tuple and vice versa. In Figure 2
such arcs would be r(0) : 0 → s(1) : 1, s(0) : 0 → r(1) : 1,
r(0) : 2 → s(2) : 2, r(1) : 2 → s(2) : 2, and so on. In general
each node (except s, t, and the top path nodes) now not
only has an outgoing arc to the newly arriving tuple of its
own stream, by also another arc to the newly arriving tuple
in the other stream.

3.2.2 OPT-offline Algorithm
As the flow network is modeled, the overall flow cost cor-

responds to the number of generated output tuples for the
given input. Hence solving the linear minimum-cost flow
problem for this graph produces the optimal strategy for
deciding which tuples to drop from memory at each time
instant.

First we show that the flow graph discussed above cor-
rectly models the offline algorithm. Note that the arcs do
not allow more than a flow of M through the main network,
and exactly a flow of 1 through the top path. This ensures
the memory constraint. Also, the way the arcs are com-
bined correctly models the tuple events. It is not possible
for a dropped tuple to re-enter the memory and only tuples
in memory produce output. The exact proof of correctness
is omitted due to space constraints.

There is one major property left to be shown in order to
establish the correctness of the model. We have to ensure
that there are no partial flows, i.e., flows f(i, j) which are
not either 0 or 1. This is ensured by the following theorem.

Theorem 2. If the flow problem has an optimal solution,
and all capacity constraints and costs are integral, then there
is an optimal solution which is also integral.

Proof. See [25], page 239.

We can use any standard linear minimum cost flow algo-
rithm that finds the optimal integer solution of the flow
problem. Since the highest absolute arc cost in our network
is 1, known algorithms find the optimal integer solution in
time O(n2m log n) (cf. [13]), where m is the number of arcs
and n the number of nodes.

For our problem we can derive the following upper bounds
for the number of nodes and arcs. Let N denote the number
of tuples in each stream. Each node belongs to at most w
windows. Furthermore there are at most N pairs (r(i), s(i))
with r(i) = s(i). Together with source and sink node there
are at most 2wN + N + 2 = θ(wN) nodes. Each node
has at most three outgoing arcs (for the events “remain in
memory”, “being replaced by new R-tuple”, “being replaced
by new S-tuple”). Only the source node has M +1 outgoing
arcs, the sink has none. Hence the total number of arcs is at
most (M + 1 + 3 · (numberNodes− 2)), i.e., is O(wN + M).
The formulation as a flow problem enables the computation
of the optimal offline solution in time polynomial in stream,
window, and memory size.

3.3 Fast CPU and Online
An online algorithm does not know which tuples will ar-

rive in the future. Hence all we can do is maximize the
expected output size assuming certain arrival probabilities.
However, even such probabilities and possible independence
assumptions only approximate the true future. At the same
time any real online algorithm faces the challenge that the
memory and CPU resources it consumes are not available for
the actual join processing. Hence our goal is to design very
fast and lightweight techniques which add the lowest pos-
sible overhead but nevertheless try to maximize the output
size based on approximate future knowledge.

3.3.1 PROB Heuristic
PROB estimates for each value in the domain of the join

attribute the probability of a tuple with this value arriving
on stream R and stream S. For attribute value a let these
probabilities be pR(a) and pS(a). A tuple’s priority is equiv-
alent to the corresponding probability value. For instance
for r(i) the priority is pS(r(i)). Ties are broken by giving
higher priority to the tuple that arrived later.

Note that PROB favors high partner arrival probabilities
over age. In other words, a tuple r(i) with a high pS(r(i))
value is always preferred over r(j) with pS(r(j)) < pS(r(i)),
even if r(i) arrived much earlier than r(j) and possibly only
has a few more time units until it expires.

This heuristic is motivated by the expectation that tuples
with a higher probability of finding incoming partner tuples
are the ones that produce the most output results. Even if



a newly arriving tuple with low partner-arrival probability
was admitted to memory, it would soon be replaced by a
later arriving tuple with higher partner-arrival probability,
hence it seems better to greedily “hold on” to the best tuples
available.

PROB can be used both for fixed memory allocation be-
tween R and S, but also when the allocation is variable. In
the former case there are two priority queues—one for R and
one for S-tuples. In the latter case there is a single priority
queue for all in-memory tuples of both streams. PROB can
also easily deal with varying memory and window sizes.

A practical issue is to compute the values of pR() and
pS() without knowing the future. This problem is similar
to the online caching problem. Hence we can use the same
techniques of using history to predict the future. Depending
on the amount of available memory the history statistics can
be exact or approximate, e.g., any of the previously proposed
data stream histograms or wavelets (see discussion of related
work).

3.3.2 LIFE Heuristic
The LIFE heuristic is also based on estimates of the pR()

and pS() values. However, while PROB favors partner ar-
rival probability over remaining lifetime of a tuple, LIFE
aims at giving more weight to the latter. The priority of a
tuple r(i) with remaining lifetime t is computed as t·pS(r(i)).

Note that with increasing window size newly arriving tu-
ples at some point are almost guaranteed to enter the mem-
ory because of their high lifetime value. LIFE in general
overestimates the expected number of output tuples because
tuples might be evicted before they expire, whereas the pri-
ority calculations are based on time to expiry. This holds
especially for tuples with low pR() or pS() values.

Like PROB, LIFE can be used for both fixed and variable
memory allocation between R and S-tuples, and also for
varying window size and memory.

4. EXPERIMENTS
We perform an extensive experimental evaluation of the

sliding window join approximation techniques suggested in
Section 3.3 on both synthetic and real life datasets. We
compare the performance of these techniques with the state
of the art, i.e., dropping tuples randomly from the join in-
put buffers (henceforth referred to as RAND), as well as
with the optimal offline approach OPT-offline described in
Section 3.2. For brevity we will abbreviate OPT-offline as
OPT where appropriate. Our experiments indicate that the
simple heuristic approach (PROB) of dropping tuples from
buffers based on the probabilities of the corresponding tu-
ples arriving in the other stream does surprisingly well in
practice.

For solving the linear min-cost network flow problem aris-
ing out of the optimal offline join approximation algorithm
we used the CS2 network flow solver as described in [13].
This solver is based on one of the fastest known algorithms
for min-cost flow problems, which still is super-linear in
the input size (cf. Section 3.2.2). Hence for all the ex-
periments involving comparison with OPT, we restrict the
stream length to 5600 tuples. This number was selected to
guarantee for any window size that at least 4000 tuples are
processed after a warmup phase of 2w (see below for more
discussion).

As we shall see later in this section, the input size does

not affect the validity of the conclusions drawn from the
graphs obtained on these streams, since our heuristics scale
well with stream length. Also, the graphs for larger stream
lengths and window and memory sizes resemble closely the
graphs obtained on stream lengths of 5600. For our syn-
thetic datasets, we used Zipfian distributions with varying
degrees of skew and correlation between the data in the
two joining streams. Within a stream, the data values were
generated in iid (independently and identically distributed)
fashion from the corresponding Zipfian distribution. For our
real-life dataset experiments, we used a weather dataset [16].
The input streams had the same tuple arrival rates, with a
tuple arriving on each stream at every timestep.

4.1 Effect of Window Size
Our first set of experiments was aimed at studying the

behavior of the various join approximation algorithms for
different window sizes. Figures 3 and 4 show the number
of join output tuples as the amount of available memory is
varied for the different algorithms for window sizes (w) of
400 and 800 respectively. In all our experiments where we
vary memory M , we vary it as 0.1w, 0.25w, 0.5w, w and
1.5w. To guarantee exact computation of the join result,
M = 2w would be necessary.1

Note that all algorithms store the first M/2 tuples from
each stream in memory and hence output the same set of
resulting join tuples. Hence in order to prevent such startup
effects we introduce a warmup phase during which output
is not counted. The warmup phase is selected as twice the
window size. This ensures that all the tuples that filled the
memory at the start of the experiment will have expired,
and the join approximation algorithm will have reached a
stable phase before generating output.

The input data streams in Figures 3 and 4 are generated
from uncorrelated Zipf distributions with parameter 1. The
domain size of the data was set to 50. We shall justify this
choice of domain size later on in this section when we ex-
amine the behavior of the algorithms for different domain
sizes. As expected, the behavior of the various algorithms
RAND, PROB, OPT and LIFE is similar for different win-
dow sizes. In the figures, EXACT refers to the number of
output tuples generated if the sliding window join were to
be computed exactly, i.e., with 2w memory. The number of
output tuples generated by RAND increases linearly with
available memory, as expected. As can be seen from Fig-
ures 3 and 4, the PROB heuristic by far outperforms the
RAND and LIFE approaches, and is very close to the OPT
curve, which is the optimal offline algorithm representing an
upper bound on the best performance (in terms of number of
output tuples generated) possible by any online algorithm.
Similar behavior was observed for other window sizes.

The reason for the poor performance of the LIFE algo-
rithm is that it tries to predict the number of output tuples
generated by a tuple in memory assuming that the tuple will
remain in memory for its entire lifetime. However, tuples
whose join attribute value has a very low probability of ap-
pearing in the other stream are unlikely to survive until they
expire, since they will be evicted by incoming tuples which
have a higher probability of finding a matching tuple in the
other stream. Hence the priority value based on the prod-

1Strictly speaking only M = 2w − 2 is needed because of
the extra memory cells provided by the input buffer in the
fast CPU model (cf. Section 2.1).
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uct of probabilities and time to expiry used in LIFE differs
significantly from the actual number of output tuples pro-
duced. This in turn leads to a higher percentage of tuples in
memory that produce little output as compared to PROB.

While the relative performance of the different algorithms
varies depending on the distributions of the input streams,
they do not change as the window size is varied for the same
pair of joining input streams. Since the window size does
not impact the nature of the graphs obtained, the results for
the rest of the experiments in this section are shown only
for a window size of 400. Similar graphs were obtained for
various other window sizes in each of these cases.

4.2 Uniform Data on Both Inputs
If both incoming data streams consist of tuples with uni-

formly distributed join attribute values, we expect all online
algorithms to produce about the same number of output tu-
ples. The reason for this is that all the tuples in memory
have the same probability of seeing a counterpart (i.e., a tu-
ple with the same join attribute value) in the other stream,
therefore there is no reason to prefer keeping one tuple over
another. This is equivalent to RAND’s strategy of evicting
random tuples from memory. Figure 5 confirms our predic-
tion, showing the performance of the different algorithms for
a window size of 400 when both the incoming streams have
a uniform data distribution. As can be seen from the graph,
the online algorithms (RAND, PROB and LIFE) perform
equally poorly. Notice that even knowing the future (OPT
curve) does not result in a major improvement. This is in
contrast to the results shown in Figure 3. There for an al-
most identical setup (the difference being Zipf distributed
join attribute values in one stream) both OPT and PROB
are much more rapidly approaching the exact result with
increasing memory. The non-uniform distribution generates
tuples which are more valuable than others because of the
frequency of their join attribute value in the stream. Both
OPT and PROB successfully identify these tuples and keep
them in memory.

PROB versus LIFE. As can be seen from Figures 3, 4
and 5, the LIFE heuristic does only marginally better than
RAND for various data distributions, for reasons explained
earlier. Similar behavior was obtained when the two input
streams had non-identical distributions, e.g., Zipf(1.0) and
uniform data distributions respectively, as well as on the
real datasets used in the later experiments. Hence the LIFE
approach is not included for comparison in the remaining
experiments in this section.

4.3 Effect of skew

Figure 6 nicely brings out the effect of skew in the input
data streams on the performance of the algorithms. The
number of output tuples generated by the RAND and PROB
algorithms is plotted as a fraction of the number of tuples
generated by OPT as a function of the Zipfian skew param-
eter. Both the arriving input streams have Zipfian distribu-
tion with the same parameter. In Figure 6, the distributions
of the two input streams are uncorrelated. Results for cor-
related Zipf distributions, e.g., where high (low) frequency
values on one stream are also high (resp. low) frequency
values on the other stream, were almost identical and hence
are not shown here. The similarity of the results for dif-
ferent degrees of correlation indicates that the correlation
between the two data streams does not affect the relative
performance of the algorithms. This is because in the case
of PROB, the decision to retain or drop tuples from one
relation only depends on the data distribution of the other
joining relation, and not on the its own data distribution
or the correlation between the two. Clearly in the case of
RAND, the eviction policy does not depend on the data
distributions at all. Thus, while most of the experimental
results shown were obtained for uncorrelated streams, the
observations are similar for correlated and anti-correlated
distributions as well. Note however, that correlation does
affect the total number of output tuples generated by the
joins.

As can be seen from the graph, for uniform data distri-
bution (Zipf with parameter 0), the performance of RAND
and PROB is essentially identical as has been noted ear-
lier. However, as the skew in the input is increased, PROB
gains an advantage over RAND because it is able to dis-
tinguish between tuples that have different probabilities of
joining with tuples on the other stream. Hence, as the skew
becomes larger, the performance gap between RAND and
PROB increases rapidly.

Both window and memory size in the experiment were
set to 400. Similarly shaped graphs were obtained for other
memory sizes. Note that even for M = w (i.e., at only 50%
of the actually needed memory for exact computation), the
PROB approach does extremely well, generating over 96% of
the output tuples for input with moderate to high skew that
can be generated by the optimal offline algorithm (OPT).

Variable memory allocation to the streams. The
experimental results discussed so far were obtained for a
fixed memory allocation of M/2 to R and S, i.e., incom-
ing R-tuples (S-tuples) could only replace another R-tuple
(S-tuple) in memory. We also compared the performance
for the case when the memory allocated to each stream can
vary while the total amount of memory is kept constant.
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Hence an incoming R-tuple can replace an S-tuple in mem-
ory and vice versa. In the following we will use PROB,
RAND, and OPT for the fixed memory algorithms, and
PROBV, RANDV, and OPTV for their variable memory
counterparts.

Our experiments for uniform and Zipf distributed data
streams led to the expected results. Both PROBV and
OPTV performed better than their fixed-allocation counter-
parts. The performance difference increased with increasing
difference in skew between the distributions of R and S, but
never exceeded 10% (output size). As a tendency the stream
with the higher Zipf parameter received more memory, up
to a share of 75%. Due to space constraints more detailed
results are not presented here. Instead the issue of fixed ver-
sus variable memory shares is shown in Section 4.5 for real
life data.

4.4 Effect of Domain Size
Figures 9, 10 and 11 bring out the effect of domain size

(10, 50, and 200 respectively) of the join attribute on the
performance of the algorithms. The graphs show the num-
ber of output tuples generated by the various algorithms as
a fraction of the output generated by the optimal offline al-
gorithm OPT as a function of memory size (window size 400,
Zipf(1.0) distribution for both input streams). An increase
in domain size has opposite effects on the performance of
OPT and PROB. As the domain size increases, the perfor-
mance of PROB seems to get worse as compared to OPT,
while the number of tuples generated by OPT approaches
the number of tuples in the EXACT sliding window join.
Similar effects were observed for other input distributions
(not shown here). As a tendency the lines for EXACT and
OPT get closer as the domain size increases from 10 to 200,
while the lines for PROB and OPT become more and more
separated.

This interesting phenomenon can be explained as follows.
As the domain size increases, the distribution for a given Zipf
parameter becomes less skewed in the sense that a longer
heavy tail reduces the maximum frequency values. At the
same time the larger number of low-frequency join attribute
values leads to a lower probability of these tuples encoun-
tering a matching join tuple in the other stream within the
window. The optimal offline algorithm OPT, which is able
to see the future, can select and keep those few small proba-
bility tuples which will be generating output within the win-
dow, and can safely discard the rest of them. PROB does
not know the future, and hence has only more opportunities
to “make a mistake” because the same probability mass is

now distributed over more tuples. On the other hand the
gap between OPT and EXACT becomes smaller since OPT
mostly discards tuples which have no or only few matching
tuples arriving within the window. In fact, as we can see
in Figure 11 the graphs for OPT and EXACT meet already
for M = w, i.e., at only 50% of the memory required to
guarantee exact computation. This implies that by picking
the right tuples to be kept in memory, the exact result can
be obtained with only 50% of the memory usually required
to hold the contents of the current window.

4.5 Real Life Dataset Experiments
For our real life dataset experiments, we used weather

data available at [16] which consists of cloud measurements
organized by month and collected over several years by thou-
sands of sensors located all over the globe, in land and wa-
ter. The data sets contain measurements such as the year,
month, day and time the reading was taken, the location
of the sensor, the brightness of the sky, cloud cover, so-
lar altitude and others. For our experiments, we chose the
readings taken by the land sensors in the month of Septem-
ber over two consecutive years (1985, 1986). These datasets
contain just over a million tuples each. The attributes of
interest were the latitude and longitude information, pin-
pointing the location of the sensor taking the readings. We
then performed a streaming sliding window join on the two
datasets using the latitude and longitude attributes to iden-
tify sensors located physically near each other. We divided
locations on the earth into a 18 by 36 square grid consisting
of 10 degrees of latitude and longitude each, and mapped
sensors falling in the same grid cell to the same location for
the purpose of the join. (There were about 650 distinct lo-
cation values). Such a join query could potentially be used
to aggregate information gathered from sensors located in
the same region, with the join window enforcing that the
matched readings are taken at nearby points in time.

To avoid startup effects, the warmup time was set to
10000. The size of the join window was set to 5000, and
a plot of number of tuples output by the various join ap-
proximation methods with varying memory size is shown in
Figure 7. This graph closely resembles those obtained for
smaller stream lengths and window and domain sizes (see
Figures 3, 4). The performance of the variable and fixed
memory allocation versions PROB and PROBV were al-
most identical, indicating that the two input streams had
similar data distributions. This is made more apparent by
the graph in Figure 8 which indicates that the memory al-
location remained more or less at the 50-50 mark (2500) for
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the entire duration of the join. The PROB and PROBV
methods again performed very well, generating over 90% of
the output tuples produced by EXACT with only 50% of
the memory. Note that we did not include a comparison to
OPT because the time and memory requirements of the flow
solver exceeded available resources.

The frequency table of the data values in the dataset was
used to estimate the probabilities of the next incoming tuple.
While in practice such a table/histogram may not be avail-
able and needs to be constructed over the data stream on the
fly, the aim of our experiments was to compare the quality
of the various join approximation techniques, and not the
quality of the estimator predicting the attribute value of
the next arriving tuple. Clearly, all online algorithms would
benefit from having a good predictor, and given a bad pre-
dictor of future tuples, no online algorithm would be able
to perform well. Note that in the experiments performed,
the frequency tables were not updated as the relations were
streaming by (say by subtracting off the counts of the data
values seen so far).

4.6 Discussion of Experimental Results
We presented a comparison of the performance of several

join approximation techniques for computing sliding window
joins with limited memory. We showed the efficacy of the
fixed and variable memory versions of the PROB technique
on both synthetic and real life datasets. PROB clearly im-
proves on the state of the art, i.e., random tuple shedding,
and it performs almost as well as the optimal offline algo-
rithm OPT-offline. As seen from the graphs, the perfor-
mance of PROB (measured in terms of the number of join
tuples output) degrades gracefully as the amount of avail-
able memory decreases, and it performs exceptionally well
for skewed data, typically producing over 90% of the total
output with as little as 50% of the memory (compared to the
EXACT algorithm). In cases where both the input streams
have join attribute values distributed uniformly at random,
no online algorithm can do better than evict tuples at ran-
dom since there is no way of taking advantage of values that
arrive with higher probability. In cases where there is a
large disparity in the skew of the two joining streams, the
variable memory allocation approaches fare better than the
fixed memory approaches. Overall, the experimental results
suggest that the PROB and PROBV approaches perform
exceptionally well and the number of tuples produced are
close to OPT on both synthetic and real life datasets. In
addition, the techniques decay gracefully as the amount of
memory available decreases.

5. RELATED WORK
There is a growing interest in the general field of data

stream processing. The general issues and some architec-
tures for stream processing systems are discussed in [2, 3]
(Stanford’s STREAM) and [6] (Aurora). The latter intro-
duces the notions of QoS-optimization based on QoS graphs
for response times, tuple drops, and values produced. Our
work is the first to examine in detail efficient drop-based
QoS optimization for sliding window joins.

The only other work on efficiently processing sliding win-
dow joins is a recently published paper by Kang et al. [21].
Their techniques use a unit-time based cost model, select-
ing the join implementation and memory allocation for the
two input streams according to their arrival rates. Load is
shed by simple random eviction. Our work addresses more
complex memory allocation problems based on the values of
single tuples (hence the notion of semantic load shedding
introduced in this paper). In that respect our work is also
related to uniform sampling over joins [8]. However, our goal
is to maximize the accuracy of the output, not its statistical
properties (e.g., being a uniform sample).

Adaptive query processing systems like Telegraph [18], Ni-
agaraCQ [9], sensor database systems [5] and adaptive tech-
niques as proposed in [7, 20, 24] aim at providing the best
possible query performance in continuously changing envi-
ronments like the Internet. Our algorithms can also adapt
to changing amounts of available resources and hence can
be used in adaptive query processing systems.

Arasu et al. [1] examine when stream queries can be com-
puted with bounded storage. Joins in general might require
unbounded memory, hence in data stream systems they are
restricted to computation over sliding windows as discussed
earlier.

For maintaining online data stream statistics, e.g., in or-
der to compute the tuple priorities for join memory replace-
ment, some of the recently proposed stream aggregation ap-
proaches could be applied. Recent work includes [10, 12, 14,
15, 27].

6. CONCLUSIONS AND FUTURE WORK
We discussed the problem of approximately computing

sliding window joins for data streams. We defined the prob-
lem space of fine grained tuple-based join approximations us-
ing different set error measures, and we examined the MAX-
subset measure in depth and gave optimal offline and good
online algorithms for sliding window joins. We believe that
this work shows that semantic load shedding, i.e., adapting
to resource shortages by dropping tuples based on their val-



ues, is clearly superior to random load shedding at the cost
of a small overhead for maintaining simple stream statistics.

We also proposed the novel Archive-metric as a new mea-
sure for evaluating the performance of join algorithms over
sliding windows for data stream systems with support by an
archive.

This work only examined part of the overall problem
space, and many problems remain open. Developing effi-
cient algorithms for the Archive-metric is part of our future
work. We will also examine the other join processing models,
especially the slow-CPU case. Another interesting direction
of future work is to examine how multiple queries can effi-
ciently share resources and how to combine semantic load
shedding with the join implementation selection in [21].
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