
Database Management Systems

Mirek Riedewald

Some slides based on presentation by Ramakrishnan and

Gehrke

1

Logistics

• Go to http://www.ccs.neu.edu/~mirek/classes/2012-S-
CS3200 for all course-related information

• Grading
– Homework: 50%
– Midterm: 20%
– Final exam: 25%
– Participation: 5%

• TA: Bahar Qarabaqi
• Office hours will be announced soon
• Can always email us with questions or to set up

appointments

2

Project

• Work with a real DBMS: Postgres

• Work with database using SQL and Java (JDBC)

• Deliverables: code and reports

• We have a database server set up

– You can install client GUI tool to connect to it

• You can also install a server on your own
machine

– We cannot provide support for that

3

Goals for This Course

• Learn about the fundamentals of relational DBMS
– Declarative programming: specify WHAT you want, not HOW to

get it
– Set-oriented processing and query optimization
– Data independence
– Transactions and recovery from crashes

• Be able to create, access, and manipulate a database
through SQL and from an application

• Work with a real DBMS
– Acquire enough background to more quickly become an expert

on any other DBMS

• Be better able to understand and critically evaluate
features of competing data management offerings

4

What This Course Cannot Do

• Make you a DB admin or SQL guru
– Requires a lot of practice, but you will get the basics

• Make you an expert on the DBMS from vendor

XYZ
– Course provides general fundamentals, future

employers can train you for their specific environment

• Provide details about DBMS internals

– That’s a whole different course

5

Any Questions So Far?

6

What Is a DBMS?

• Database = very large, e.g., terabytes,
integrated collection of data.

– Entities (e.g., students, courses)

– Relationships (e.g., Joe is taking CS 3200)

• Database Management System (DBMS) =
software package designed to store and
manage databases.

7

Why Study Databases?

• Ubiquitous in enterprises and daily life
– ATMs, banking, retail transactions, flight

booking, customer databases

• Shift from computation to information
– Simplify data management tasks
– Enable efficient data processing at large scale

• Datasets increasing in diversity and volume.
– Digital libraries, Human Genome project, Sloan Digital

Sky Survey

• DBMS encompasses most of CS
– OS, languages, theory, AI, multimedia, logic

8

Files vs. DBMS

• File example: Find all young customers (age < 25) in a large customer file
– Solution 1: simple sequential scan of entire file
– Solution 2: if the file is already sorted by age, scan from beginning and stop

when first “old” customer is found
• Note: sorting a file costs more than scanning it completely

– Solution 3: if an index on age exists, it directly points to the right customers in
the file
• This is only efficient if the number of young customers is a small fraction

– Best solution depends on data properties (fraction of young customers), query
properties (age range selected), and physical data layout (sorted file, index)

– Once your program finally works, what if data layout or file size changes…?

• Writing code for managing very large files is difficult
– Application must stage large datasets between main memory and secondary

storage (e.g., buffering, page-oriented access)

• Protect data from inconsistency due to multiple concurrent users
• Crash recovery, security, access control,…

9

Data Models

• Data model = collection of concepts for
describing data.

• Schema = description of a particular collection of
data, using a given data model.

• The relational data model is the most widely used
model today.
– Main concept: relation, basically a table with rows and

columns.

– Every relation has a schema, which describes the
columns, or fields.

10

Levels of Abstraction

• Many views, single
conceptual (logical)
schema and physical
schema.
– Views describe how users

see the data.

– Conceptual schema
defines logical structure

– Physical schema describes
the files and indexes used.

11

Physical Schema

Conceptual Schema

View 1 View 2 View 3

Example: University Database

• Conceptual schema:
– Students(sid: string, name: string, login: string,

 age: integer, gpa: real)

– Courses(cid: string, cname: string, credits: integer)

– Enrolled(sid: string, cid: string, grade: string)

• Physical schema:
– Relations stored as unordered files

– Index on first column of Students

• External Schema (View):
– Course_info(cid: string, enrollment: integer)

12

Data Independence

• One of the most important benefits of using a DBMS

• Applications insulated from how data is structured and
stored

• Logical data independence: Protection from changes in
logical structure of data
– If logical structure changes, create view with old structure

– Works fine for queries, but might be tricky for updates

• Physical data independence: Protection from changes
in physical structure of data
– Query and update logical structure, not physical structure

13

Concurrency Control

• Concurrent execution of user programs is essential for
good DBMS performance.
– Because disk accesses are frequent and relatively slow, the

CPU can work on several user programs concurrently

• Interleaving actions of different user programs can lead
to inconsistency
– E.g., check is cleared while account balance is being

computed

• DBMS ensures such problems do not arise: users and
programmers can pretend they are using a single-user
system

14

Transaction = Atomic DB Program

• Transaction = atomic sequence of database actions
(reads, writes)

• Each transaction, executed completely, must leave the
DB in a consistent state if DB is consistent when the
transaction begins
– Users can specify integrity constraints on the data, and the

DBMS will enforce these constraints
– Beyond this, the DBMS does not really understand the

semantics of the data
• E.g., it does not understand how the interest on a bank account is

computed.

– Thus, ensuring that a transaction (run alone) preserves
consistency is ultimately the user’s responsibility!

15

Ensuring Atomicity

• DBMS ensures atomicity (all-or-nothing property)
even if system crashes in the middle of a Xact

• Idea: Keep a log (history) of all actions carried out
by the DBMS while executing a set of Xacts:

– Before a change is made to the database, the
corresponding log entry is forced to a safe location

– After a crash, the effects of partially executed
transactions are undone using the log

16

Databases And Startups

• DBMS perfect as data management system for startups

• LAMP stack: Linux OS, Apache Web server, MySQL
DBMS, PHP (or Perl, Python)

• Why LAMP?
– The price is right

– Easy to code using MySQL and scripting language

– Easy to deploy
• Set up LAMP on laptop, build app locally, then deploy on the Web

– Ubiquitous hosting
• Even cheapest Web hosting options usually allow running PHP,

MySQL

17

Example: eBay

• 1995—1997: GDBM (GNU library of DB functions)

• 1997—1999: Oracle (biggest DBMS vendor)

• 1999—2001: still Oracle, but now multiple servers

• 2001—present: split DBs by functionality, pull most
functionality from DBMS up into application layer

• DBMS still important component
– Initially the data management entity, scaling well…

– …until eBay grew so much that customized solutions were
needed

– DBMS is general-purpose, and extreme challenges require
more customized solutions

18

NoSQL Movement

• Growing popularity of non-relational data stores
– Document stores, key-value stores, eventually consistent stores,

graph DB, object-oriented DB, XML DB

• Examples: MongoDB, CouchDB, Google’s BigTable,
Amazon’s Dynamo

• Many of them driven by performance challenges
– Inherent tradeoff between consistency, availability, and

tolerance to network partitions (Eric Brewer, UC Berkeley)
• Maintaining consistent state across 100s of machines requires

expensive agreement (communication)
• Failures reduce availability, unless consistency is weakened (1000

machines => failures happen all the time)

• Solutions: weaker consistency guarantees or tailored
solution for specific workload

19

SQL MapReduce vs. DBMS

• Google’s answer to data processing challenges
• Programming paradigm for distributed computation on large

clusters
• Two phases

– Map: map each input record independently to a set of (key, value)
pairs

– Reduce: process set of all values with the same key together

• Read what two DBMS luminaries think and how readers reacted
– http://databasecolumn.vertica.com/database-innovation/mapreduce-

a-major-step-backwards/
– http://databasecolumn.vertica.com/database-innovation/mapreduce-

ii/
– Links seem broken now, but a snapshot of their content will be on

Blackboard

• Active research area in databases to combine best of both worlds

20

Exciting Times

• Worldwide relational DBMS software revenue $15.2B in
2006 (source: Gartner)
– Dominant players: Oracle, IBM, Microsoft, Teradata

• Smaller companies with specialized data management
solutions
– Vertica, Greenplum, Netezza, and many more

• Virtually every enterprise relies on DBMS
• Close relative of data warehousing
• Mushrooming of noSQL alternatives and

parallel/distributed data management solutions
• Knowing the principles of relational DBMS is essential for

understanding these trends.

21

Summary

• DBMS used to maintain and query large
datasets

• Benefits include recovery from system
crashes, concurrent access, quick application
development, data integrity and security

• Levels of abstraction give data independence

• DBMS R&D is a broad and very exciting area in
CS

22

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/

