Database Management Systems

Mirek Riedewald

Some slides based on presentation by Ramakrishnan and
Gehrke

Logistics

Go to http://www.ccs.neu.edu/~mirek/classes/2012-S-
CS3200 for all course-related information
Grading

— Homework: 50%

— Midterm: 20%

— Final exam: 25%

— Participation: 5%

TA: Bahar Qarabaqi

Office hours will be announced soon

Can always email us with questions or to set up
appointments

Project

* Work with a real DBMS: Postgres
* Work with database using SQL and Java (JDBC)
* Deliverables: code and reports
* We have a database server set up
— You can install client GUI tool to connect to it
* You can also install a server on your own
machine
— We cannot provide support for that

Goals for This Course

Learn about the fundamentals of relational DBMS

— Declarative programming: specify WHAT you want, not HOW to
getit

— Set-oriented processing and query optimization

— Data independence

— Transactions and recovery from crashes

Be able to create, access, and manipulate a database

through SQL and from an application

Work with a real DBMS

— Acquire enough background to more quickly become an expert
on any other DBMS

Be better able to understand and critically evaluate

features of competing data management offerings

What This Course Cannot Do

* Make you a DB admin or SQL guru
— Requires a lot of practice, but you will get the basics

* Make you an expert on the DBMS from vendor
XYZ

— Course provides general fundamentals, future
employers can train you for their specific environment

* Provide details about DBMS internals
— That’s a whole different course

Any Questions So Far?

What Is a DBMS?

* Database = very large, e.g., terabytes,

integrated collection of data.

— Entities (e.g., students, courses)
— Relationships (e.g., Joe is taking CS 3200)

Database Management System (DBMS) =
software package designed to store and
manage databases.

Why Study Databases?

* Ubiquitous in enterprises and daily life

— ATMs, banking, retail transactions, flight
booking, customer databases

* Shift from computation to information

— Simplify data management tasks
— Enable efficient data processing at large scale

» Datasets increasing in diversity and volume.

— Digital libraries, Human Genome project, Sloan Digital
Sky Survey

* DBMS encompasses most of CS

— 08, languages, theory, Al, multimedia, logic

Files vs. DBMS

File example: Find all young customers (age < 25) in a large customer file

— Solution 1: simple sequential scan of entire file
— Solution 2: if the file is already sorted by age, scan from beginning and stop
when first “old” customer is found
* Note: sorting a file costs more than scanning it completely

— Solution 3: if an index on age exists, it directly points to the right customers in
the file

« This is only efficient if the number of young customers is a small fraction
— Best solution depends on data properties (fraction of young customers), query
properties (age range selected), and physical data layout (sorted file, index)

— Once your program finally works, what if data layout or file size changes...?
Writing code for managing very large files is difficult
— Application must stage large datasets between main memory and secondary

storage (e.g., buffering, page-oriented access)

Protect data from inconsistency due to multiple concurrent users
Crash recovery, security, access control,...

Data Models

Data model = collection of concepts for
describing data.

Schema = description of a particular collection of
data, using a given data model.

The relational data model is the most widely used
model today.

— Main concept: relation, basically a table with rows and
columns.

— Every relation has a schema, which describes the
columns, or fields.

Levels of Abstraction

Many views, single
conceptual (logical)
schema and physical

schema. Conceptual Schema
l

— Views describe how users

[View 1] [View 2] [View 3]

Physical Schema

see the data.

— Conceptual schema

defines logical structure

— Physical schema describes

the files and indexes used.

Example: University Database

* Conceptual schema:

— Students(sid: string, name: string, login: string,
age: integer, gpa: real)

— Courses(cid: string, cname: string, credits: integer)

— Enrolled(sid: string, cid: string, grade: string)

* Physical schema:

— Relations stored as unordered files
— Index on first column of Students

* External Schema (View):

— Course_info(cid: string, enrollment: integer)

Data Independence

* One of the most important benefits of using a DBMS

* Applications insulated from how data is structured and
stored

* Logical data independence: Protection from changes in
logical structure of data
— If logical structure changes, create view with old structure
— Works fine for queries, but might be tricky for updates

* Physical data independence: Protection from changes
in physical structure of data
— Query and update logical structure, not physical structure

Concurrency Control

* Concurrent execution of user programs is essential for

good DBMS performance.

— Because disk accesses are frequent and relatively slow, the
CPU can work on several user programs concurrently

Interleaving actions of different user programs can lead

to inconsistency

— E.g., check is cleared while account balance is being
computed

DBMS ensures such problems do not arise: users and

programmers can pretend they are using a single-user

system

Transaction = Atomic DB Program

* Transaction = atomic sequence of database actions
(reads, writes)

* Each transaction, executed completely, must leave the
DB in a consistent state if DB is consistent when the
transaction begins

— Users can specify integrity constraints on the data, and the
DBMS will enforce these constraints

— Beyond this, the DBMS does not really understand the
semantics of the data

* E.g., it does not understand how the interest on a bank account is
computed.

— Thus, ensuring that a transaction (run alone) preserves
consistency is ultimately the user’s responsibility!

Ensuring Atomicity

DBMS ensures atomicity (all-or-nothing property)
even if system crashes in the middle of a Xact

Idea: Keep a log (history) of all actions carried out

by the DBMS while executing a set of Xacts:

— Before a change is made to the database, the
corresponding log entry is forced to a safe location

— After a crash, the effects of partially executed
transactions are undone using the log

Databases And Startups

* DBMS perfect as data management system for startups
* LAMP stack: Linux OS, Apache Web server, MySQL

DBMS, PHP (or Perl, Python)
* Why LAMP?

— The price is right

— Easy to code using MySQL and scripting language

— Easy to deploy

* Set up LAMP on laptop, build app locally, then deploy on the Web

— Ubiquitous hosting
* Even cheapest Web hosting options usually allow running PHP,
MysQL

Example: eBay

* 1995—1997: GDBM (GNU library of DB functions)

¢ 1997—1999: Oracle (biggest DBMS vendor)

e 1999—2001: still Oracle, but now multiple servers

e 2001—present: split DBs by functionality, pull most
functionality from DBMS up into application layer

* DBMS still important component
— Initially the data management entity, scaling well...
— ...until eBay grew so much that customized solutions were

needed

— DBMS is general-purpose, and extreme challenges require
more customized solutions

NoSQL Movement

Growing popularity of non-relational data stores

— Document stores, key-value stores, eventually consistent stores,
graph DB, object-oriented DB, XML DB

Examples: MongoDB, CouchDB, Google’s BigTable,

Amazon’s Dynamo

Many of them driven by performance challenges

— Inherent tradeoff between consistency, availability, and
tolerance to network partitions (Eric Brewer, UC Berkeley)

* Maintaining consistent state across 100s of machines requires
expensive agreement (communication)

* Failures reduce availability, unless consistency is weakened (1000
machines => failures happen all the time)
Solutions: weaker consistency guarantees or tailored
solution for specific workload

MapReduce vs. DBMS

Google’s answer to data processing challenges

Programming paradigm for distributed computation on large
clusters
Two phases

— Map: map each input record independently to a set of (key, value)

pairs

— Reduce: process set of all values with the same key together
Read what two DBMS luminaries think and how readers reacted

— http://databasecolumn.vertica.com/database-innovation/mapreduce-
a-major-step-backwards/

— http://databasecolumn.vertica.com/database-innovation/mapreduce-
i/

— Links seem broken now, but a snapshot of their content will be on
Blackboard

Active research area in databases to combine best of both worlds

Exciting Times

Worldwide relational DBMS software revenue $15.2B in
2006 (source: Gartner)
— Dominant players: Oracle, IBM, Microsoft, Teradata

Smaller companies with specialized data management
solutions

— Vertica, Greenplum, Netezza, and many more

Virtually every enterprise relies on DBMS

Close relative of data warehousing

Mushrooming of noSQL alternatives and
parallel/distributed data management solutions
Knowing the principles of relational DBMS is essential for
understanding these trends.

Summary

DBMS used to maintain and query large
datasets

Benefits include recovery from system
crashes, concurrent access, quick application
development, data integrity and security
Levels of abstraction give data independence

DBMS R&D is a broad and very exciting area in
cs

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/

