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Now let’s look at important program “design 
patterns” for MapReduce. 

MapReduce Design Patterns 

• This section is based on the book by Jimmy Lin 
and Chris Dyer 

 

• Programmer can control program execution 
only through implementation of mapper, 
reducer, combiner, and partitioner 

• No explicit synchronization primitives 

• So how can a programmer control execution 
and data flow? 
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Taking Control of MapReduce 

• Store and communicate partial results through 
complex data structures for keys and values 

• Run appropriate initialization code at beginning of task 
and termination code at end of task 

• Preserve state in mappers and reducers across multiple 
input splits and intermediate keys, respectively 

• Control sort order of intermediate keys to control 
processing order at reducers 

• Control set of keys assigned to a reducer 

• Use “driver” program 
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(1) Local Aggregation 

• Reduce size of intermediate results passed 
from mappers to reducers 

– Important for scalability: recall Amdahl’s Law 

• Various options using combiner function and 
ability to preserve mapper state across 
multiple inputs 

• For example, consider Word Count with the 
document-based version of Map 
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Word Count Baseline Algorithm 

• Problem: frequent terms are emitted many 
times with count 1 
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map(docID a, doc d) 
  for all term t in doc d do 
    Emit(term t, count 1) 

reduce(term t, counts [c1, c2,…]) 
  sum = 0 
  for all count c in counts do 
    sum += c 
  Emit(term t, count sum); 

Tally Counts Per Document 

• Same Reduce function as before 
• Limitation: Map only aggregates counts within a single 

document 
• Depending on split size and document size, a Map task 

might receive many documents 
• Can we aggregate across all documents in the same 

Map task? 
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map(docID a, doc d) 
  H = new hashMap 
  for all term t in doc d do 
    H{t} ++ 
  for all term t in H do 
    Emit(term t, count H{t}) 



Tally Counts Across Documents 

• Data structure H is a private member 
of the Mapper class 
– Local to a single task, i.e., does not 

introduce task synchronization issues 

• Initialize is called when the task starts, 
i.e., before all map calls 
– Configure() in old API 
– Setup() in new API 

• Close is called after the last document 
from the Map task has been 
processed 
– Close() in old API 
– Cleanup() in new API 
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Class Mapper { 
  initialize() { 
    H = new hashMap 
  } 
 
  map(docID a, doc d) { 
    for all term t in doc d do 
      H{t} ++ 
  } 
 
  close() { 
    for all term t in H do 
      Emit(term t, count H{t}) 
  } 
} 

Design Pattern for Local Aggregation 

• In-mapper combining 
– Done by preserving state across map calls in the same task 

• Advantages over using combiners 
– Combiner does not guarantee if, when or how often it is 

executed 
– Combiner combines data after it was generated, in-

mapper combining avoids generating it! 

• Drawbacks 
– Introduces complexity and hence probability for bugs 
– Higher memory consumption for managing state 

• Might have to write memory-management code to page data to 
disk 
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(2) Counting of Combinations 

• Needed for computing correlations, 
associations, confusion matrix (how many 
times does a classifier confuse Yi with Yj) 

• Co-occurrence matrix for a text corpus: how 
many times do two terms appear near each 
other 

• Main idea: compute partial counts for some 
combinations, then aggregate them 
– At what granularity should Map work? 
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Pairs Design Pattern 

• Can use combiner or in-mapper combining 
• Good: easy to implement and understand 
• Bad: huge intermediate-key space 

– Quadratic in number of distinct terms 
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map(docID a, doc d) 
  for all term w in doc d do 
    for all term u NEAR w do 
      Emit(pair (w, u), count 1) 
 
reduce(pair p, counts [c1, c2,…]) 
  sum = 0 
  for all count c in counts do 
    sum += c 
  Emit(pair p, count sum) 

w v u 

w 

v 

u 

Stripes Design Pattern 

• Can use combiner or in-mapper combining 
• Good: much smaller intermediate-key space 

– Linear in number of distinct terms 

• Bad: more difficult to implement, Map needs to hold entire stripe in 
memory 
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map(docID a, doc d) 
  for all term w in doc d do 
    H = new hashMap 
    for all term u NEAR w do  H{u} ++ 
    Emit(term w, stripe H) 
 
reduce(term w, stripes [H1, H2,…]) 
  Hout = new hashMap 
  for all stripe H in stripes do  Hout = ElementWiseSum(Hout, H) 
  Emit(term w, stripe Hout) 

w v u 

w 

v 
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Note About Stripes Map Code 

• Pairs’ Map code only needs a single sequential scan of the 
document, keeping the current term w and a “sliding 
window” of the nearby terms to its left and right 

• Stripes can do the same, but then it does not aggregate 
counts across multiple occurrences of the same term w in 
document d, i.e., would mostly produce counts of 1 in the 
hash map 

• To aggregate across all occurrences of w in d, Stripes would 
have to repeatedly scan the document, once for each 
distinct term w in d 
– Could create an index to find repeated occurrences of w faster 

• Or use a two-dim. hash map H[w][u] in the Map function, 
allowing a single-scan solution at higher memory cost 
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Pairs versus Stripes 

• Without combiner or in-mapper combining, 
Pairs could produce significantly more mapper 
output 

– ((w,u),1) per pair for Pairs, versus per-document 
aggregates for Stripes 

• …but it would need a lot less memory 

– Pairs essentially needs no extra storage beyond 
the current “window” of nearby words, while 
Stripes has to store the hash map H  
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Pairs versus Stripes (cont.) 

• With combiner or in-mapper combining, Map 
would produce about the same amount of 
data in both cases 
– Two-dimensional index Pairs[w][u] with per-task 

counts for each pair (w,u) is the same as one-
dimensional index of one-dimensional indexes 
(Stripes[w])[u] 

• …and would also require about the same 
amount of memory to store the two-
dimensional count data structure 
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Pairs versus Stripes (cont.) 

• Does the number of keys matter? 
– Assume we use the same number of tasks, then Pairs just 

assigns more keys per task 
– Master works with tasks, hence no conceptual difference 

between Pairs and Stripes 

• More fine-grained keys of Pairs allow more flexibility in 
assigning keys to tasks 
– Pairs can emulate Stripes’ row-wise key assignment to tasks 
– Stripes cannot emulate all Pairs assignments, e.g., 

“checkerboard” pattern for two tasks 

• Greater number of distinct keys per task in Pairs tends to 
increase sorting cost, even if total data size is the same 
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Beyond Pairs and Stripes 

• In general, it is not clear which approach is better 

– Some experiments indicate stripes win for co-
occurrence matrix computation 

• Pairs and Stripes are special cases of shapes for 
covering the entire matrix 

– Could use sub-stripes, or partition matrix horizontally 
and vertically into more square-like shapes etc. 

• Can also be applied to higher-dimensional arrays 

• Will see interesting version of this idea for joins 
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(3) Relative Frequencies 

• Important for data mining 
• E.g., for each species and color, estimate the 

probability of the color for that species 
– Probability of Northern Cardinal being red: 

P(color = red | species = N.C.) 
• Count f(N.C.) = the frequency of observations for N.C. 

(marginal) 
• Count f(N.C., red) = the frequency of observations for red 

N.C.’s (joint event) 
• Estimate P(red | N.C.) as f(N.C., red) / f(N.C.) 

• Similarly: normalize word co-occurrence vector 
for word w 
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Bird Probabilities Using Stripes 

• Use species as intermediate key 
– One stripe per species, e.g., stripe[N.C.] 
– (stripe[species])[color] stores f(species, color) 

• Map: for each observation of (species S, color C) 
in an observation event, increment (stripe[S])[C] 
– Output (S, stripe[S]) 

• Reduce: for each species S, add all stripes for S 
– Result: stripeSum[S] with total counts for each color 

for S 
– Can get f(S) by adding all color-counts in stripeSum[S] 
– Emit (stripeSum[S])[C] / f(S) for each color C 
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Discussion, Part 1 

• Stripe is great fit for relative frequency 
computation 

• All values for computing the final result are in 
the stripe 

• Any smaller unit would miss some of the joint 
events needed for computing f(S), the 
marginal for the species 

– So, this would be a problem for the pairs pattern 
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Bird Probabilities Using Pairs 

• Intermediate key is (species, color) 

• Map produces partial counts for each species-
color combination in the input 

• Reduce can compute f(species, color), the 
total count of each species-color combination 

• But: it cannot compute the marginal f(S) 

– Reduce needs to sum f(S, color) for all colors for 
species S 
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Pairs-Based Solution, Take 1 

• Make sure all values f(S, color) for the same 
species end up in the same reduce task 

– Define custom partitioning function on species 

• Maintain state across different keys in the same 
reduce task: keep stripe[S] in memory as a 
variable in the Reduce task 

– This essentially simulates the stripes approach in the 
reduce task, requiring to keep a stripe in memory 

• Can we avoid keeping a stripe? 
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Discussion, Part 2 

• Pairs-based algorithm would work fine if marginal 
f(S) was known already 

– A Reduce function call computes f(species, color) and 
then outputs f(species, color) / f(species) 

• We could compute the species marginals 
f(species) in a separate MapReduce job first 

• Better: fold this into a single MapReduce job 

– Problem: easy to compute f(S) from all f(S, color), but 
how do we compute f(S) before knowing f(S, color)? 
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Bird Probabilities Using Pairs, Take 2 

• Map: for each observation event, emit ((species S, color C), 
1) and ((species S, dummyColor), 1) for each species-color 
combination encountered 

• Use custom partitioner that partitions based on the species 
component only 

• Use custom key comparator such that (S, dummyColor) is 
before all (S, C) for real colors C 
– Reduce call for dummyColor happens first and computes f(S) 

before any of the f(S, C) 
• Reducer needs to keep f(S) for the duration of the entire task 

– Reducer then computes f(S, C) for each C, outputting f(S, C) / 
f(S) 

• Only needs counter f(S), not the entire stripe, in memory 
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Pairs-Based Code 
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map(…, observation: (species S, color C)) 
  Emit( (S, dummy), 1 ) 
  Emit( (S, C), 1 ) 
 
Partitioner: partition by species 
 
Key comparator for (species, color): 
- Sort by species first 
- Make sure color “dummy” comes 
  before all real colors 

Class Reducer { 
  int marginal 
 
  reduce((S, C), counts [c1, c2,…]) { 
    if C = dummy // Compute marginal 
      marginal = 0 
      for all c in counts do 
        marginal += c 
    else  // Real color 
      colorCnt = 0 
      for all c in counts do 
        colorCnt += c 
      Emit( (S, C), colorCnt / marginal ) 
  } 
} 



Order Inversion Design Pattern 

• Occurs surprisingly often during data analysis 
• Solution 1: use complex data structures that bring the 

right results together 
– Array structure used by Stripes pattern 

• Solution 2: turn synchronization into ordering problem 
– Key sort order enforces computation order 
– Partitioner for key space assigns appropriate partial results 

to each reduce task 
– Reducer maintains task-level state across Reduce 

invocations 
– Enables use of simpler data structures and less reducer 

memory 
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(4) Secondary Sorting 

• Recall the weather data: for simplicity assume 
observations are (date, temperature) 

• Goal: find max temperature for each year 
– Reduce task should have all temperatures for a year: 

year as intermediate key 

– Temperatures in reduce input value list should be 
sorted in decreasing order by temperature 

• Year as key does not sort by temperature 

• (Year, temperature) as key creates different 
reduce calls for each temperature in a year 
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Can Hadoop Do The Sorting? 

• We want to use year to partition the data, but 
(year, temperature) for sorting 

• General value-to-key conversion design 
pattern 
– To partition by X and then sort each X-group by Y, 

make (X, Y) the key 

– Define key comparator to order by composite key 
(X, Y) 

– Define partitioner and grouping comparator for (X, 
Y) to consider only X for partitioning and grouping 
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Code for Secondary Sort 
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public class MaxTemperatureUsingSecondarySort 
  extends Configured implements Tool { 
   
  static class MaxTemperatureMapper 
    extends Mapper<LongWritable, Text, IntPair, NullWritable> { 
   
    private NcdcRecordParser parser = new NcdcRecordParser(); 
     
    @Override 
    protected void map(LongWritable key, Text value, 
        Context context) throws IOException, InterruptedException { 
       
      parser.parse(value); 
      if (parser.isValidTemperature()) { 
        context.write(new IntPair(parser.getYearInt(), parser.getAirTemperature()), 
            NullWritable.get()); 
      } 
    } 
  } 

No value is output, because the year and temperature are in the key. 
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  static class MaxTemperatureReducer 
    extends Reducer<IntPair, NullWritable, IntPair, NullWritable> { 
   
    @Override 
    protected void reduce(IntPair key, Iterable<NullWritable> values, 
        Context context) throws IOException, InterruptedException { 
       
      context.write(key, NullWritable.get()); 
    } 
  } 

The reducer only emits the first key, which due to secondary sorting, is the 
(year, temperature) pair with the maximum temperature for that year. 

To get all temperatures for the year, we would have to emit temperatures as values 
in the map function. 
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  public static class FirstPartitioner extends Partitioner<IntPair, NullWritable> { 
 
    public int getPartition(IntPair key, NullWritable value, int numPartitions) { 
 
      // multiply by 127 to perform some mixing 
      return Math.abs(key.getFirst() * 127) % numPartitions; 
    } 
  } 

Make sure all records for the same year end up in the same partition. 
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  // Controls how keys are sorted before they are passed to the reducer 
  public static class KeyComparator extends WritableComparator { 
    protected KeyComparator() { 
      super(IntPair.class, true); 
    } 
    public int compare(WritableComparable w1, WritableComparable w2) { 
      IntPair ip1 = (IntPair) w1; IntPair ip2 = (IntPair) w2; 
      int cmp = IntPair.compare(ip1.getFirst(), ip2.getFirst()); 
      if (cmp != 0) { 
        return cmp; 
      } 
      return -IntPair.compare(ip1.getSecond(), ip2.getSecond()); //reverse 
    } } 
   
// Controls which keys are grouped into a single call of the reduce function   
public static class GroupComparator extends WritableComparator { 
    protected GroupComparator() { 
      super(IntPair.class, true); 
    } 
    public int compare(WritableComparable w1, WritableComparable w2) { 
      IntPair ip1 = (IntPair) w1; IntPair ip2 = (IntPair) w2; 
 
      return IntPair.compare(ip1.getFirst(), ip2.getFirst()); 
    } } 32 

  @Override 
  public int run(String[] args) throws Exception { 
    Job job = JobBuilder.parseInputAndOutput(this, getConf(), args); 
    if (job == null) { 
      return -1; 
    } 
     
    job.setMapperClass(MaxTemperatureMapper.class); 
    job.setPartitionerClass(FirstPartitioner.class); 
    job.setSortComparatorClass(KeyComparator.class); 
    job.setGroupingComparatorClass(GroupComparator.class); 
    job.setReducerClass(MaxTemperatureReducer.class); 
    job.setOutputKeyClass(IntPair.class); 
    job.setOutputValueClass(NullWritable.class); 
     
    return job.waitForCompletion(true) ? 0 : 1; 
  } 
   
  public static void main(String[] args) throws Exception { 
    int exitCode = ToolRunner.run(new MaxTemperatureUsingSecondarySort(), args); 
    System.exit(exitCode); 
  } 
} 

Design Pattern Summary 

• In-mapper combining: do work of combiner in 
mapper 

• Pairs and stripes: for keeping track of joint 
events 

• Order inversion: convert sequencing of 
computation into sorting problem 

• Value-to-key conversion: scalable solution for 
secondary sorting, without writing sort code 
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Tools for Synchronization 

• Cleverly-constructed data structures for key 
and values to bring data together 

• Preserving state in mappers and reducers, 
together with capability to add initialization 
and termination code for entire task 

• Sort order of intermediate keys to control 
order in which reducers process keys 

• Custom partitioner to control which reducer 
processes which keys 
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Issues and Tradeoffs 

• Number of key-value pairs 
– Object creation overhead 
– Time for sorting and shuffling pairs across the network 

• Size of each key-value pair 
– (De-)serialization overhead 

• Local aggregation 
– Opportunities to perform local aggregation vary 
– Combiners can make a big difference 
– Combiners vs. in-mapper combining 
– RAM vs. disk vs. network 
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