Classification and Prediction Overview

* Introduction

L. X * Decision Trees
Data Mining Techniques: + Statistical Decision Theory
‘e . I ¢ Nearest Neighbor
Classification and Prediction - Bayesian Classification
* Artificial Neural Networks
¢ Support Vector Machines (SVMs)

Mirek Riedewald

Some slides based on presentations by ¢ Prediction
Han/Kamber, Tan/Steinbach/Kumar, and Andrew e Accuracy and Error Measures
Moore

* Ensemble Methods

Classification vs. Prediction Induction: Model Construction
* Assumption: after data preparation, have single data Classification
set where each record has attributes X,,..., X, and Y. i
. y ) Training a Algorithm
* Goal: learn a function f:(X,,...,X,)—>Y, then use this Data
function to predict y for a given input record (x,,...,X,). 1

— Classification: Y is a discrete attribute, called the class label \
* Usually a categorical attribute with small domain Model
(Function)

— Prediction: Y is a continuous attribute

. R Mike |Assistant Prof 3 no
¢ Called supervised learning, because true labels (Y- Mary |Assistant Prof 7 ves
values) are known for the initially provided data Bill Professor 2 ves

« Typical applications: credit approval, target marketing, Jim  |Associate Prof| 7 yes IF rank = “professor’

medical diagnosis, fraud detection Dave |AssistantProf | 6 no OR years > 6
Anne |Associate Prof| 3 no THEN tenured = ‘yes’
4
Deduction: Using the Model Classification and Prediction Overview

Statistical Decision Theory

- Bayesian Classification
Test f~——— Artificial Neural Networks
Data * Support Vector Machines (SVMs)
/ \ * Nearest Neighbor
(Jeff, Professor, 4) « Prediction
_ Tenured? 1 ¢ Accuracy and Error Measures

Tom Assistant Prof no
. e * Ensemble Methods
Merlisa |Associate Prof no

\
o
George [Professor yes Y(ﬂjSJ

Joseph |Assistant Prof yes

Introduction
Model
(Fun%tieon) \ * Decision Trees

EIESIRNIEN




Example of a Decision Tree

Splitting Attributes

Yes  |Single |125K  |No
No Married 100K [No
No Single  |70K No
Yes  |Married |120K  |No
No Divorced |95K Yes
No Married |60K No
Yes  |Divorced |220K  |No
No Single 85K Yes
No Married | 75K No
No Single | 90K Yes

Training Data Model: Decision Tree

Another Example of Decision Tree

Single
No Married
No Single
Yes  |Married
No Divorced
No Married
Yes  |Divorced
No Single
No Married | 75K No There could be more than one tree that
No Single | 90K Yes fits the same data!

Apply Model to Test Data

Test Data
Start from the root of tree.

Marital ~ Taxable
Status Income Cheat

v

Single, Di¥orced Married

[mwe] g6

< 80K > 80K

NO YES

Apply Model to Test Data

Test Data

Refund Marital |Taxable

-7 Status Income Cheat

No Married 80K ?

Married

NO

NO YES

Apply Model to Test Data

Test Data

Refund |Marital ~ Taxable

Income Cheat

Married

NO

Apply Model to Test Data

Test Data

Refund Marital | Taxable
Status  |Income Cheat




Apply Model to Test Data

Test Data

Refund |Marital ~ Taxable

Status  Income Cheat

‘ No lMamed ‘GOK ?

Il

Married

NO

Apply Model to Test Data

Test Data
Refund Marital | Taxable
Status  |Income Cheat
‘ No Married IBOK ?
i
Yes L
NO e
Married .~~~ Assign Cheat to “No”

NO YES

Decision Tree Induction

Basic greedy algorithm

— Top-down, recursive divide-and-conquer

— At start, all the training records are at the root

— Training records partitioned recursively based on split attributes

— Split attributes selected based on a heuristic or statistical
measure (e.g., information gain)

Conditions for stopping partitioning

— Pure node (all records belong

Yes, No
to same class)
— No remaining attributes for NO
further partitioning y Married

* Majority voting for classifying the leaf
— No cases left

NO YES

Decision Boundary

X; .
2 09 © v X]
08 v <0.43?
o7 o Yes, No
05 —
°© v
05 ©
v
0at v <
03 )
°
02 v
01 v o
3

Decision boundary = border between two neighboring regions of different classes.

For trees that split on a single attribute at a time, the decision boundary is parallel
to the axes.

How to Specify Split Condition?

Depends on attribute types
— Nominal

— Ordinal

— Numeric (continuous)

Depends on number of ways to split
— 2-way split
— Multi-way split

Splitting Nominal Attributes

* Multi-way split: use as many partitions as
distinct values.

Family Luxury
Sport

* Binary split: divides values into two subsets;
need to find optimal partitioning.

{Sports, @ OR {Family, @
Luxury} {Family} Luxury) {Sports}




Splitting Ordinal Attributes

* Multi-way split:

Small Large
Mediu

* Binary split:

{Small, @ OR {Medium, @
Medium} {Large} Large} {Small}
. . P
What about this split? sl Csize )
Large} {Medium}

Splitting Continuous Attributes

* Different options
— Discretization to form an ordinal categorical
attribute
* Static — discretize once at the beginning

* Dynamic — ranges found by equal interval bucketing,
equal frequency bucketing (percentiles), or clustering.

— Binary Decision: (A< v) or (A>V)
* Consider all possible splits, choose best one

Splitting Continuous Attributes

[10K,25K) [25K,50K)  [50K,80K)

(i) Binary split (i) Multi-way split

How to Determine Best Split

Before Splitting: 10 records of class 0,
10records of class 1

D) i) gt
Ngar? / Type? D2

Which test condition is the best?

How to Determine Best Split

* Greedy approach:

— Nodes with homogeneous class distribution are
preferred

* Need a measure of node impurity:

Cco Co: 9
C1 Cl1

Non-homogeneous, Homogeneous,

High degree of impurity Low degree of impurity

Attribute Selection Measure:
Information Gain

* Select attribute with highest information gain
* p, = probability that an arbitrary record in D belongs to class
C,i=1,..,m
* Expected information (entropy) needed to classify a record
in D: m
Info(D) =*Z P Ion(pi)
i-1
« Information needed after using attribute A to split D into v
partitions D,,..., D, v D, |
Info, (D) =>"—2"Info(D;)
j=1 | DI
* Information gained by splitting on attribute A:
Gain , (D) = Info(D) - Info,, (D)




Example

* Predict if somebody will buy a computer
| _Age [Income [Student|Credit_ratinglBuys_computer]

* Givendataset: 235 wgn N  Bad N
<30 High No Good No
31..40 High No Bad Yes
>40 Medium No Bad Yes
>40  Low Yes Bad Yes
>40  low Yes Good No
31..40 Llow Yes Good Yes
<30 Medium No Bad No
<30 low Yes Bad Yes
>40 Medium Yes Bad Yes
<30 Medium Yes Good Yes
31...40 Medium  No Good Yes
31..40 High Yes Bad Yes
>40 Medium No Good No

Information Gain Example

Class P: buys_computer = “yes”
Class N: buys_computer = “no”

4
Info,,(D) =— | @Y+5;140)

age!

Info(D) = 1(95) = — Iug, Iog, " 0940 *a ' (32)=0694
1 14
[_Age [ #yes | #no [ i(ives #no) | . 74 1(2,3) means “age < 30” has 5 out of 14
<30 2 3 0971 samples, with 2 yes'es and 3 no’s.
31%40N N4 T MO o — Similar for the other terms
>0 3 2 0971
|_Age |income|Student/Credit_ratinglBuys_computer] *  Hence
<30 High No Bad No Gain . (D) = Info(D) - Info,, (D) = 0.246
<30 High No  Good No
31.40 High No 8ad Yes «  Similarly,
>40 Medium No Bad Yes Gain,, o (D) = 0.029
540 low  Yes Bad Yes neome
>40  low  Yes Good No Gain g, (D) = 0.151
31.40 low Yes  Good Yes i -
<30 Medium No Bad No Galin iy ring (D) =0.048
<30 low  Yes 8ad Yes . .
e = = = lth;ﬁ?;e we choose age as the splitting
<30 Medium Yes  Good Yes
31.40Medium No  Good Yes
3140 High  Yes Bad Yes
>40 Medium No  Good No

Gain Ratio for Attribute Selection

* Information gain is biased towards attributes with a large
number of values

* Use gain ratio to normalize information gain:
— GainRatio,(D) = Gain,(D) / Splitinfo,(D)

. v |D, | D |
Splitinfo, (D) = - " log :
“O=2 o) "% o]
* E.g., splitinfo, (D) =— Iog214 14Iog214 14Iog2 =0.926

* GainRatio;.ome(D) = 0.029/0.926 = 0.031

* Attribute with maximum gain ratio is selected as splitting
attribute

Gini Index

Gini index, gini(D), is defined as gini( D) =17i p?

i=l

If data set D is split on A into v subsets Dl,.‘., DV, the gini
index gini,(D) is defined as

gini ,(D) = Z 10| g|n|(D )

* Reduction in Impurity:
Agini ,(D) = gini( D) —gini ,(D)

Attribute that provides smallest ginig,,(D) (= largest
reduction in impurity) is chosen to spllt the node

Comparing Attribute Selection
Measures

* No clear winner i
(and there are many more)
— Information gain:
* Biased towards multivalued attributes
— Gain ratio:

 Tends to prefer unbalanced splits where one partltlon is
much smaller than the others

— Gini index:
* Biased towards multivalued attributes

* Tends to favor tests that result in equal-sized partitions and
purity in both partitions

o

Michssifiatan

Practical Issues of Classification

Underfitting and overfitting
* Missing values
* Computational cost

Expressiveness




How Good is the Model?

* Training set error: compare prediction of
training record with true value

— Not a good measure for the error on unseen data.
(Discussed soon.)

* Test set error: for records that were not used
for training, compare model prediction and

true value

— Use holdout data from available data set

Training versus Test Set Error

* We'll create a training dataset

Output y = copy of e,
except a random 25%
of the records have y
set to the opposite of e

Five inputs, all bits, are
generated in all 32 possible
combinations

A

e ~

a b c d e y

o o o o o o
" [ [} [ [} 1 [}
g o o o 1 o o
o o ) o 1 1 1
o o o 1 o o 1
™

1 1 1 1 1 1

Test Data

* Generate test data using the same method: copy of e, but 25%

inverted.

* Some y’s that were corrupted in the training set will be uncorrupted
in the testing set.

* Some y’s that were uncorrupted in the training set will be corrupted

in the test set.

a b c d e y (training |y (test
data) data)
o o o o ) [} o
o o o ) 1 [} 1
o o o 1 o o 1
o o o 1 1 1 1
o 0 1 o o 1 1
1 1 1 1 1 1 1

Full Tree for The Training Data

25% of these leaf node labels will be corrupted
Each leaf contains exactly one record, hence no error in predicting the training data!

34

Testing The Tree with The Test Set

1/4 of the tree nodes are
corrupted

3/4 are fine

1/4 of the test set
records are corrupted

1/16 of the test set will
be correctly predicted for
the wrong reasons

3/16 of the test set will be
wrongly predicted because
the test record is corrupted

3/4 are fine

3/16 of the test
predictions will be wrong
because the tree node is
corrupted

9/16 of the test predictions
will be fine

In total, we expect to be wrong on 3/8 of the test set predictions

What'’s This Example Shown Us?

* Discrepancy between training and test set
error
* But more importantly

— ...itindicates that there is something we should do
about it if we want to predict well on future data.




Suppose We Had Less Data

Output y = copy of e, except a

These bits are hidden random 25% of the records
have y set to the opposite of e

A
r )
e Y
[} [
o) 1 o
B
5 [ [
O
Q 1 1
o
o [} 1
1 1

Tree Learned Without Access to The
Irrelevant Bits

These nodes will be unexpandable

Tree Learned Without Access to The
Irrelevant Bits

In about 12 of In about 12 of
the 16 records the 16 records
in this node the in this node the
output will be 0 output will be 1
So this will So this will
almost certainly almost certainly
predict 0 predict 1

Tree Learned Without Access to The
Irrelevant Bits

almost certainly almost certainly all
none of the tree are fine
nodes are
corrupted
1/4 of the test | n/a 1/4 of the test set
set records are will be wrongly
corrupted predicted because
the test record is
corrupted
3/4 are fine n/a 3/4 of the test
predictions will be
fine

In total, we expect to be wrong on only 1/4 of the test set predictions

40

Typical Observation

|
: Overfitting

Model M overfits the
training data if another
model M’ exists, such
that M has smaller
error than M’ over the
training examples, but

M’ has smaller error
— oy Testeet than M over the entire

| distribution of
1 instances.
[

1

1

Ermor (%)

0 50, 100 150 200 250 300
1 Number of nodes
|

Underfitting: when model is too simple, both training and test errors are large

Reasons for Overfitting

* Noise
— Too closely fitting the training data means the model’s
predictions reflect the noise as well
* Insufficient training data
— Not enough data to enable the model to generalize
beyond idiosyncrasies of the training records
 Data fragmentation (special problem for trees)
— Number of instances gets smaller as you traverse
down the tree
— Number of instances at a leaf node could be too small
to make any confident decision about class




Avoiding Overfitting

* General idea: make the tree smaller
— Addresses all three reasons for overfitting

* Prepruning: Halt tree construction early

— Do not split a node if this would result in the goodness measure
falling below a threshold

— Difficult to choose an appropriate threshold, e.g., tree for XOR

* Postpruning: Remove branches from a “fully grown” tree

— Use a set of data different from the training data to decide when
to stop pruning

* Validation data: train tree on training data, prune on validation data,
then test on test data

43

Minimum Description Length (MDL)

Xy Ty
X: | 1 ; %1
X 0 > Xz 2
§3 g A IS ., B Xs | 2
¢ 5 2 X | 2
X | 1 e
w | 2

Alternative to using validation data
— Motivation: data mining is about finding regular patterns in data;
regularity can be used to compress the data; method that achieves
greatest compression found most regularity and hence is best
Minimize Cost(Model,Data) = Cost(Model) + Cost(Data|Model)
— Cost is the number of bits needed for encoding.
« Cost(Data| Model) encodes the misclassification errors.
+ Cost(Model) uses node encoding plus splitting condition encoding.

44

MDL-Based Pruning Intuition

Cost

Cost(Model, Data)

Lowest total cost Cost(Model)=model size

Cost(Data|Model)=model errors

small large

. Tree size
Best tree size

Handling Missing Attribute Values

Missing values affect decision tree
construction in three different ways:
— How impurity measures are computed

— How to distribute instance with missing value to
child nodes

— How a test instance with missing value is classified

Distribute Instances

Tid | Refund | Marital ~ Taxable
S Income  Class

Tid Refund Marital Taxable
Income Class

10 (? Single 90K Yes

Yes No

‘ Class=Yes ‘ 0+3/9 ‘ ‘ Class=Yes ‘ 2+6/9 ‘
‘ Class=No ‘ 3 ‘ ‘ Class=No ‘ a ‘

Probability that Refund=Yes is 3/9
Probability that Refund=No is 6/9

Assign record to the left child with
weight = 3/9 and to the right child

Class=Yes ‘ ‘ Cheat:Yes‘ 2 ‘

0
3 with weight = 6/9

Class=No ‘ ‘ ‘Cheat:Nn‘ 4 ‘

Tid Refund Marital Taxable

© ® W o 0 & ® N =

10

Computing Impurity Measure

Split on Refund: assume records with
missing values are distributed as
discussed before

Status  Income Class

Yes Single 125K No

No Married |100K  [No 3/9 of record 10 go to Refund=Yes
No Single | 70K No 6/9 of record 10 go to Refund=No
Yes Married | 120K No Entropy(Refund=Yes)

No. - |Divorced 95K |Yes = -(1/3/10/3)log(L/3 / 10/3)

No Married | 60K No

v Iy . - (3/10/3)l0g(3/ 10/3) = 0.469
No Single  |85K Yes Entropy(Refund=No)

no  |vamed |7k o =-(8/3/ 20/3)log(8/3 / 20/3)

2 Single 90K Yes —(4/20/3)log(4/20/3) = 0.971

Befor

=-0.310g(0.3)-(0.7)l0g(0.7) = 0.881

Entropy(Children)
= 1/3*0.469 + 2/3*0.971 = 0.804

Gain = 0.881 - 0.804 = 0.077

e Splitting: Entropy(Parent)




Classify Instances

New record: Married | Single | Divorced | Total
Tid Refund Marital Taxable
Status  Income Class Class=No 3 1 0 4
— - Class=Yes |  6/9 1 1] 267
Total (\369 6.67
Yes N

Single,
Divorced

Probability that Marital Status
= Married is 3.67/6.67

NO YES Pro_bability_ that Mar_ital Status
={Single,Divorced} is 3/6.67

Tree Cost Analysis

* Finding an optimal decision tree is NP-complete
— Optimization goal: minimize expected number of binary tests to
uniquely identify any record from a given finite set
¢ Greedy algorithm
— Of(#attributes * #training_instances * log(#training_instances))
* At each tree depth, all instances considered
* Assume tree depth is logarithmic (fairly balanced splits)
* Need to test each attribute at each node
* What about binary splits?
— Sort data once on each attribute, use to avoid re-sorting subsets

— Incrementally maintain counts for class distribution as different split points
are explored

* In practice, trees are considered to be fast both for training
(when using the greedy algorithm) and making predictions

Tree Expressiveness

* Can represent any finite discrete-valued function

— But it might not do it very efficiently
* Example: parity function

— Class = 1 if there is an even number of Boolean attributes with
truth value = True

— Class = 0 if there is an odd number of Boolean attributes with
truth value = True

* For accurate modeling, must have a complete tree
* Not expressive enough for modeling continuous
attributes

— But we can still use a tree for them in practice; it just
cannot accurately represent the true function

Rule Extraction from a Decision Tree

« Onerule is created for each path from the root to a leaf
— Precondition: conjunction of all split predicates of nodes on path
— Consequent: class prediction from leaf

* Rules are mutually exclusive and exhaustive

* Example: Rule extraction from buys_computer decision-tree

— IF age = young AND student = no THEN buys_computer = no
— IF age = young AND student = yes THEN buys_computer = yes
— IF age = mid-age THEN buys_computer = yes

— IF age = old AND credit_rating = excellent THEN buys_computer = yes
— IF age = young AND credit_rating = fair ~ THEN buys_computer = no

<=30 31.‘40 >40
s 0
7 N\ 7N
excellent fair
E = A ;
no yes no yes

Classification in Large Databases

* Scalability: Classify data sets with millions of
examples and hundreds of attributes with
reasonable speed

* Why use decision trees for data mining?

— Relatively fast learning speed

— Can handle all attribute types

— Convertible to simple and easy to understand
classification rules

— Good classification accuracy, but not as good as newer
methods (but tree ensembles are top!)

Scalable Tree Induction

* High cost when the training data at a node does not fit in
memory

« Solution 1: special I/0-aware algorithm
— Keep only class list in memory, access attribute values on disk
— Maintain separate list for each attribute
— Use count matrix for each attribute

* Solution 2: Sampling
— Common solution: train tree on a sample that fits in memory
— More sophisticated versions of this idea exist, e.g., Rainforest

+ Build tree on sample, but do this for many bootstrap samples

* Combine all into a single new tree that is guaranteed to be almost
identical to the one trained from entire data set

* Can be computed with two data scans




Tree Conclusions

Very popular data mining tool
— Easy to understand
— Easy to implement

— Easy to use
« Little tuning, handles all attribute types and missing values

— Computationally cheap

Overfitting problem

Focused on classification, but easy to extend to
prediction (future lecture)

Classification and Prediction Overview

* Introduction

¢ Decision Trees

* Statistical Decision Theory

¢ Nearest Neighbor

* Bayesian Classification

« Artificial Neural Networks

¢ Support Vector Machines (SVMs)
¢ Prediction

¢ Accuracy and Error Measures

* Ensemble Methods

Theoretical Results

Trees make sense intuitively, but can we get
some hard evidence and deeper
understanding about their properties?
Statistical decision theory can give some
answers

Need some probability concepts first

Random Variables

* Intuitive version of the definition:
— Can take on one of possibly many values, each with a
certain probability (discrete versus continuous)
— These probabilities define the probability distribution of
the random variable
— E.g., let X be the outcome of a coin toss, then
Pr(X="heads’)=0.5 and Pr(X="tails’)=0.5; distribution is
uniform
* Consider a discrete random variable X with numeric
values x;,...,X
— Expectation: E[X] = Z x;*Pr(X=x;)
— Variance: Var(X) = E[(X — E[X])?] = E[X?] — (E[X])

Working with Random Variables

E[X + Y] = E[X] + E[Y]

Var(X +Y) = Var(X) + Var(Y) + 2 Cov(X,Y)

For constants a, b

— E[aX+b]=aE[X]+b

— Var(aX + b) = Var(aX) = a2 Var(X)

Iterated expectation:

— E[X] = Ex[ E\[Y]| X] ], where E,[Y] X] = Zy;*Pr(Y=y;| X=x)
is the expectation of Y for a given value of X, i.e., is a
function of X

— In general for any function f(X,Y):
Exy[f(XY)] = Ex[ Ey[f(X,Y)| X] ]

What is the Optimal Model f(X)?

Let X denotea real - valued random input variable and Y a real - valued random output variable
Thesquared error of trained model f(X)is E,, [C/ - f(X))Z]

Which function f(X) will minimize thesquared error?

Consider the error for a specific value of X and letY = E,[Y | X]:

E v - foxn? 1 x]=E [y -V +V - £ (x))? 1 x]

=& [y -Vt ix e, [ - foop X 2E, foy -7 - 1O 1]

=B/t =97 1 x]+ (7= 100 +27 - 1D [y V)1 X]

=g/ -2 I x]+ (- 1 (x))

(Notice:E, [(Y -V) | X|=E, [V | X]-E,[F | X]=¥Y -¥ =0)

10



Optimal Model f(X) (cont.)
The choice of f(X) does not affect E, [(Y -Y)?| Xl but (\7— f(X))Z is minimized for
(X) =V =E,[Y | X].
Notethat E ., [(Y - (X))2]=E [E, [(¥ - F(x))? | X ]| Hence
£ - 100 )= B e fv -7 X (- 100 ]
Hence the squared error is minimzed by choosing f(X) = E, [Y | X]for every X.

(Notice that for minimizing absoluteerror E, [|Y - f(X) |], one can show that thebest model is
f(X) = median( X |Y).)

Implications for Trees

* Best prediction for input X=x is the mean of the Y-values of all records
(x(i),y(i)) with x(i)=x
*  What about classification?
— Two classes: encode as 0 and 1, use squared error as before
* Getf(X)=E[Y| X=x] = 1*Pr(Y=1] X=x) + 0*Pr(Y=0| X=x) = Pr(Y=1| X=x)

— Kclasses: can show that for 0-1 loss (error = 0 if correct class, error = 1 if
wrong class predicted) the optimal choice is to return the majority class for a
given input X=x

+ Called the Bayes classifier
* Problem: How can we estimate E[Y| X=x] or the majority class for X=x from
the training data?

— Often there is just one or no training record for a given X=x

* Solution: approximate it
— Use Y-values from training records in neighborhood around X=x

— Tree: |eaf defines neighborhood in the data space; make sure there are
enough records in the leaf to obtain reliable estimate of correct answer

Bias-Variance Tradeoff

Let’s take this one step further and see if we can
understand overfitting through statistical decision
theory
* As before, consider two random variables X and Y
* From a training set D with n records, we want to
construct a function f(X) that returns good
approximations of Y for future inputs X
— Make dependence of f on D explicit by writing f(X; D)
* Goal: minimize mean squared error over all X, Y,
and D, i.e., Ex [ (Y - f(X; D))? ]

Bias-Variance Tradeoff Derivation

Ey o Y = F(X: D) ]= B¢ EoE, [Y - £(X: D)) | X, D] Now consider the inner term :

Eo, [V - 10D 1 X,D]= €, [E, [(v — EIY 1 X171 X, D+ (1 (: D)LY X)) ]

(Same derivation as before for optimal function f(X).)

=& [y - 1y x]e e ooy e xy]

(Thefirst termdoes not depend on D, hence E, [E, [ ~ ETY | X1 1 X, 0] = £, [(v - £1v | X7 ]

Consider the second term

Eol(1 0 D)~ EIY 1 X1 ]= £, (X D)~ Eo (X D)+ (Eo £ (X; D)1 E1Y X ]

=E,[10GD)-E, [ DI ]+ B, &, L 01— E1Y 1 XY ]
+2E,[(f(X; D) - Ep[ f (X;D))- (EoLf (X: D)~ ELY | X1))]

=E[(10D) - B[ (D) ]+ Eo L (X: D - DY | X
+2E,[f(X;D) = E, [ (X: D) (Eo [ f (X; D) -ELY | X])

= En[('(X;D)* ED['(X‘D)])Z]‘r(En[f(X;D)]* E[Y | X))

(The third term s zero, because ED[! (X;D)-E,[f(X; D)]: Eo[f(X;D)]-E,[f(X;D)]=0)

Overall we therefore obtain :
EconllY - FO6D)F |- B [EaL1 (X DI EIY 1 XY + B, (1 (% D) - £, L 0 DIF o oy — v 1 X0 1 X]

Bias-Variance Tradeoff and Overfitting

(Eo[f(X;D)]-ELY | X])’ :bias
Eo|(f(X: D)~ E, [ f (X; D) ]: variance
E, [(Y —E[Y | X)) X]:irreducibleerror (does not depend on f and is simply thevariance of Y given X.)

* Option 1: f(X;D) = E[Y| X,D]
— Bias: since Eg[ E[Y| X,D] ] = E[Y| X], bias is zero
— Variance: (E[Y] X,D]-E,[E[Y| X,D]1)? = (E[Y| X,D]-E[Y| X])? can be very large
since E[Y| X,D] depends heavily on D
Might overfit!
« Option 2: f(X;D)=X (or other function independent of D)
— Variance: (X-Ep[X])>=(X-X)>=0
— Bias: (Ep[X]-E[Y| X])2=(X-E[Y| X])? can be large, because E[Y| X] might be
completely different from X
— Might underfit!
« Find best compromise between fitting training data too closely (option 1)
and completely ignoring it (option 2)

Implications for Trees

* Bias decreases as tree becomes larger
— Larger tree can fit training data better
* Variance increases as tree becomes larger

— Sample variance affects predictions of larger tree
more

Find right tradeoff as discussed earlier
— Validation data to find best pruned tree
— MDL principle

11



Classification and Prediction Overview

.

Introduction

Decision Trees

Statistical Decision Theory

* Nearest Neighbor

Bayesian Classification

Artificial Neural Networks

* Support Vector Machines (SVMs)
¢ Prediction

Accuracy and Error Measures

* Ensemble Methods

.

.

.

.

Lazy vs. Eager Learning

Lazy learning: Simply stores training data (or only
minor processing) and waits until it is given a test
record

Eager learning: Given a training set, constructs a
classification model before receiving new (test)
data to classify

General trend: Lazy = faster training, slower
predictions

Accuracy: not clear which one is better!

— Lazy method: typically driven by local decisions

— Eager method: driven by global and local decisions

Nearest-Neighbor

* Recall our statistical decision theory analysis:
Best prediction for input X=x is the mean of
the Y-values of all records (x(i),y(i)) with x(i)=x
(majority class for classification)

* Problem was to estimate E[Y| X=x] or majority
class for X=x from the training data
* Solution was to approximate it

— Use Y-values from training records in
neighborhood around X=x

Nearest-Neighbor Classifiers

Unknown tuple

* Requires:
— — — Set of stored records

H — Distance metric for pairs of
+ K records

* Common choice: Euclidean

- d(p.a)=_>(p—a)°

— — Parameter k
* Number of nearest

— + _ neighbors to retrieve
- + _ - + * To classify a record:
+ + + — Find its k nearest neighbors

— + — Determine output based on
(distance-weighted) average

of neighbors’ output

Definition of Nearest Neighbor

+ LI + R s+
- Lt - 7 3 -/ +
& S-SR

- + + - \._.:"_ + — . + +
+ + + + + +

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points
that have the k smallest distance to x

Voronoi Diagram 0sp

1-Nearest Neighbor

\
zj

/
N

12



Nearest Neighbor Classification

* Choosing the value of k:
— k too small: sensitive to noise points

— k too large: neighborhood may include points from other
classes — +

Effect of Changing k

1-Nearest Neighbor Classifier 15-Nearest Neighbor Classifier

Qe

o

(|| e

Source: Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning

Explaining the Effect of k

Recall the bias-variance tradeoff

* Small k, i.e., predictions based on few
neighbors
— High variance, low bias

* Largek, e.g., average over entire data set
— Low variance, but high bias

* Need to find k that achieves best tradeoff

* Can do that using validation data

Scaling Issues

Attributes may have to be scaled to prevent

distance measures from being dominated by
one of the attributes

Example:

— Height of a person may vary from 1.5m to 1.8m

— Weight of a person may vary from 90Ib to 300lb
— Income of a person may vary from $10K to $1M

— Income difference would dominate record
distance

Other Problems

* Problem with Euclidean measure:
— High dimensional data: curse of dimensionality
— Can produce counter-intuitive results

(111111111110] (100000000000]

Vs

l011111111111]

[000000000001]
d=14142 d=1.4142
— Solution: Normalize the vectors to unit length
* Irrelevant attributes might dominate distance
— Solution: eliminate them

Computational Cost

Brute force: O(#trainingRecords)

— For each training record, compute distance to test record,
keep if among top-k

Pre-compute Voronoi diagram (expensive), then search

spatial index of Voronoi cells: if lucky

O(log(#trainingRecords))

Store training records in multi-dimensional search tree,

e.g., R-tree: if lucky O(log(#trainingRecords))

Bulk-compute predictions for many test records using

spatial join between training and test set

— Same worst-case cost as one-by-one predictions, but
usually much faster in practice

13



.

.

Classification and Prediction Overview

Introduction

Decision Trees

Statistical Decision Theory
Nearest Neighbor

Bayesian Classification

Artificial Neural Networks
Support Vector Machines (SVMs)
Prediction

Accuracy and Error Measures
Ensemble Methods

Bayesian Classification

Performs probabilistic prediction, i.e., predicts
class membership probabilities

Based on Bayes’ Theorem

Incremental training

— Update probabilities as new training records arrive
— Can combine prior knowledge with observed data
Even when Bayesian methods are
computationally intractable, they can provide a
standard of optimal decision making against
which other methods can be measured

Bayesian Theorem: Basics

X = random variable for data records (“evidence”)

H = hypothesis that specific record X=x belongs to class C
Goal: determine P(H| X=x)

— Probability that hypothesis holds given a record x

P(H) = prior probability

— The initial probability of the hypothesis

— E.g., person x will buy computer, regardless of age, income etc.
P(X=x) = probability that data record x is observed

P(X=x| H) = probability of observing record x, given that the
hypothesis holds

— E.g., given that x will buy a computer, what is the probability
that x is in age group 31...40, has medium income, etc.?

Bayes’ Theorem

Given data record x, the posterior probability of a hypothesis H,
P(H| X=x), follows from Bayes theorem:

P(H |xzx):7p(xg(’§lji')’('*)

Informally: posterior = likelihood * prior / evidence

Among all candidate hypotheses H, find the maximally probably
one, called maximum a posteriori (MAP) hypothesis

Note: P(X=x) is the same for all hypotheses

If all hypotheses are equally probable a priori, we only need to
compare P(X=x| H)

— Winning hypothesis is called the maximum likelihood (ML) hypothesis

Practical difficulties: requires initial knowledge of many
probabilities and has high computational cost

Towards Naive Bayes Classifier

Suppose there are m classes C,, C,,..., C,
Classification goal: for record x, find class C; that
has the maximum posterior probability P(C;| X=x)
Bayes’ theorem:

P Xy PX=XIGPE)

P(X=x)

Since P(X=x) is the same for all classes, only need
to find maximum of P(szlci)P(Ci)

Computing P(X=x|C,) and P(C,)

Estimate P(C;) by counting the frequency of class

C, in the training data

Can we do the same for P(X=x|C;)?

— Need very large set of training data

— Have [X;|*[X,|*...*|X4| *m different combinations of
possible values for X and C;

— Need to see every instance x many times to obtain
reliable estimates

Solution: decompose into lower-dimensional

problems

14



Example: Computing P(X=x|C;) and
P(C)

*  P(buys_computer = yes) = 9/14
¢ P(buys_computer = no) = 5/14
*  P(age>40, income=low, student=no, credit_rating=bad| buys_computer=yes) =0 ?

<30 High No Bad No

<30 High No Good No
31..40 High No Bad Yes
>40 Medium No Bad Yes
>40 Low Yes Bad Yes
>40 Low Yes Good No
31..40 Llow Yes Good Yes
<30 Medium No Bad No
<30 Llow Yes Bad Yes
>40 Medium Yes Bad Yes
<30 Medium Yes Good Yes
31...40 Medium  No Good Yes
31..40 High Yes Bad Yes
>40 Medium No Good No

Conditional Independence

X, Y, Z random variables
X is conditionally independent of Y, given Z, if
P(X] Y,2) = P(X] 2)
— Equivalent to: P(X,Y| Z) = P(X] Z) * P(Y]| 2)
Example: people with longer arms read better
— Confounding factor: age
* Young child has shorter arms and lacks reading skills of adult
— If age is fixed, observed relationship between arm
length and reading skills disappears

Derivation of Naive Bayes Classifier

* Simplifying assumption: all input attributes
conditionally independent, given class

* Each P(X,=x,| C) can be estimated robustly

— If X is categorical attribute
* P(X,=x| C) = #records in C; that have value x, for X,, divided
by #records of class C; in training data set
— If X, is continuous, we could discretize it
* Problem: interval selection
— Too many intervals: too few training cases per interval
— Too few intervals: limited choices for decision boundary

Estimating P(X,=x,| C,) for Continuous
Attributes without Discretization
P(X,=x,| C,) computed based on Gaussian
distribution with mean p and standard deviation

o: (=)’
202

1
g(X,y,a)zme

P(X,=xICj)= g(Xkl/uk.C, ’O_k.cl)
Estimate p, ; from sample mean of attribute X,
for all training records of class C,

Estimate o, (; similarly from sample

as

Naive Bayes Example

* Classes:
— C,:buys_computer = yes

— C,:buys_computer = no W [ S e e e e
<30 High No Bad No

<30 High No Good No

31..40 High No Bad Yes

>40 Medium No Bad Yes

. >40 low  Yes Bad Yes
Data Sample X >40  Low Yes Good No
— age < 30, 31..40 Low Yes Good Yes
<30 Medium No Bad No

— income = medium, <30 Llow Yes Bad Yes
>40 Medium Yes Bad Yes

— student = yes, and <30 Medium Yes Good Yes
. . . 31...40 Medium  No Good Yes

— credit_rating = fair 31..40 High  Yes Bad Yes
>40 Medium No Good No

Naive Bayesian Computation

Compute P(C) for each cl

=9/14=0.643
—  P(buys_computer = “no”) = 5/14= 0.357

Compute P(X,=x,| C) for each class
- “<30” | buys_computer = “y

") =2/9=0222
3/5=06

- X air” | buys_computer =

Compute P(X=x| C) using the Naive Bayes
~ (<30, medium, yes, fair |buys_computer = “yes”) = 0.222 * 0.444 * 0.667 * 0.667 = 0.044
~ (<30, medium, yes, fair | buys_computer = “no”) =0.6 * 0.4 * 0.2 * 0.4 = 0,019

Compute final result P(X=x| C)) *
~ P(X=x | buys_computer = “yes”

Therefore we predict buys_computer = “yes” for
input x = (age = “<30", income = “medium’”, student = “yes”, credit_rating = “fair”)

15



Zero-Probability Problem

* Naive Bayesian prediction requires each conditional probability to
be non-zero (why?)

* Example: 1000 records for buys_computer=yes with income=low
(0), income= medium (990), and income = high (10)
— For input with income=low, conditional probability is zero
* Use Laplacian correction (or Laplace estimator) by adding 1 dummy
record to each income level
* Prob(income = low) = 1/1003
* Prob(income = medium) = 991/1003
* Prob(income = high) = 11/1003
— “Corrected” probability estimates close to their “uncorrected”
counterparts, but none is zero

Naive Bayesian Classifier: Comments

Easy to implement
* Good results obtained in many cases
— Robust to isolated noise points

— Handles missing values by ignoring the instance during
probability estimate calculations

— Robust to irrelevant attributes
* Disadvantages

— Assumption: class conditional independence,
therefore loss of accuracy

— Practically, dependencies exist among variables
* How to deal with these dependencies?

Probabilities

Summary of elementary probability facts we have
used already and/or will need soon

Let X be a random variable as usual
Let A be some predicate over its possible values

— Alis true for some values of X, false for others

— E.g., X is outcome of throw of a die, A could be “value
is greater than 4”

P(A) is the fraction of possible worlds in which A
is true

— P(die value is greater than4)=2/6=1/3

Axioms

0<P(A)<1
P(True) =1
P(False) =0
P(A v B) = P(A) + P(B) - P(A A B)

Theorems from the Axioms

* 0<P(A)<1,P(True) =1, P(False) =0
* P(AvB)=P(A)+P(B)-P(AAB)

* From these we can prove:
—P(not A) =P(~A) =1-P(A)
—P(A) =P(A A B) + P(A A ~B)

Conditional Probability

* P(A|B) = Fraction of worlds in which B is true

that also have A true
H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
£ P(HIF) = 1/2

“Headaches are rare and flu
H is rarer, but if you're coming

down with flu there’s a 50-
50 chance you'll have a
headache.”

16



Definition of Conditional Probability

Corollary: the Chain Rule

P(A A B) = P(A| B) P(B)

Multivalued Random Variables

* Suppose X can take on more than 2 values

* Xis a random variable with arity k if it can take
on exactly one value out of {v,, v,,..., v}

* Thus
P(X=v,AX =v;)=0if i j

P(X=v,vX=v,v..vX=v)=1

Easy Fact about Multivalued Random
Variables

* Using the axioms of probability

— 0<P(A)<1,P(True) =1, P(False) =0

— P(Av B) =P(A) + P(B) - P(A A B)
* And assuming that X obeys

P(X=v,AX =v;)=0if i j
P(X=vy,vX=v,v..vX=v,)=1
* We can prove that i
P(X=V,vX=V,v..vX=V)=> P(X=V)

. K =t
And therefore: ZP(X =Vj) -1

=

Useful Easy-to-Prove Facts

P(A|B+P(~ A|B) =1

k
P(X =v,|B)=1
j=1

The Joint Distribution Example: Boolean

variables A, B, C

Recipe for making a joint distribution
of d variables:

The Joint Distribution Example: Boolean

variables A, B, C
c

Recipe for making a joint distribution
of d variables:

1. Make a truth table listing all
combinations of values of your
variables (has 29 rows for d
Boolean variables).

A B
0 0
0 [
0 1
0 1
1 [
1 0
1 1
1 1

17



The Joint Distribution

Example: Boolean
variables A, B, C

Prob

Recipe for making a joint distribution

030

of d variables:

0.05

010

1. Make a truth table listing all

0.05

combinations of values of your

0.05

variables (has 2¢ rows for d

010

Boolean variables).

025

A
o
o
o
o
1
1
1
1

2. For each combination of values,

B
o
o
1
1
o
o
1
1

el === ~=|n

0.10

say how probable it is.

The Joint Distribution  Example: Boolean

variables A, B, C
Prob

Recipe for making a joint distribution
of d variables:

1. Make a truth table listing all
combinations of values of your
variables (has 2¢ rows for d
Boolean variables).

2. For each combination of values,

(= =[=]ele]e]e]m

B
o
0
1
1
0
o
1
1

say how probable it is.

3. If you subscribe to the axioms of
probability, those numbers must
sumto 1.

: gender hours_worked wealth
USI ng the Female v0:40.5- poor 0253122 |
JO| nt D|St. fich  0.0245895 [
v1:40.5+ poor  0.0421768 [l
rch 00116293 |
Male  v0:40.5- poor 0331313 [
rich 00971295 [N
v1:40.5+ poor 0.134105 [N
rch  0.105933 [
Once you have the JD you P(E) = Z P(row)

can ask for the probability of
any logical expression
involving your attribute

rows matching E

gender hours_warked wealth
Female v0:40.5- poor 0253122 |
ch  0.0245895 [l
v140.5+ poor  0.0421768 Il
rich 00116293 |

Using the
Joint Dist.

V0:40.5-
0.0971295 [

v1:40.5+

0105933

P(Poor A Male) = 0.4654 P(E)= D P(row)

rows matching E

U S| ng th e gender hours_worked wealth

Joint Dist. rich

Esma\l v0:40.5- poor  0.253122 _

0.0245895 [l

K vi405+  poor 00421765 Ml

rich

0.0116293 |

rich

lale v0:40.5- 0.331213

o.0971295 I

vi405+ poor 0134106 JINN

rich

o.105823 I

P(Poor) = 0.7604 P(E) =

> P(row)

rows matching E

I n fe rence gender hours_worked wealth
W|t h th e Female v040.5- poor 0253122 |
rich  0.0245895
_J0| nt D|St. vid05+ poor  0.042176¢ [l
fch  0.0116293 |
Male  v040.5- poor  0.331213
rich  0.0971235 [N
vid0.6+ poor 0.i34106 [N
rch  o.i05923 [N
P(E.AE,) > P(row)
A rows matching E; and E,
P(E1 | Ez) = ; 2= e

P(E,) > P(row)

rows matching E,

18



I n fe rence gender hours_warked wealth
with the [Emwens o o d—

rich  0.0245895 Wl

JO|nt D|St_ K v1:40.5+ poor 00421765 Ml

rch  0.0116233 |

lale  v0:40.5- 0.331313

rich 00971295 [N

v1:405+ poor  0.134106

rieh 0105933 [
> P(row)

P(E | E ): P(El/\ Ez) __ rowsmatching E; and E,
th P(E,) > P(row)

rows matching E,

| P(Male | Poor) = 0.4654 / 0.7604 = 0.612 |

Joint Distributions

* Good news: Once you * Bad news: Impossible to
have a joint create joint distribution
distribution, you can for more than about ten
answer important attributes because
questions that involve there are so many
uncertainty. numbers needed when

you build it.

What Would Help?

* Full independence
— P(gender=g A hours_worked=h A wealth=w) =
P(gender=g) * P(hours_worked=h) * P(wealth=w)
— Can reconstruct full joint distribution from a few
marginals
* Full conditional independence given class value
— Naive Bayes
* What about something between Naive Bayes and
general joint distribution?

Bayesian Belief Networks

* Subset of the variables conditionally independent
* Graphical model of causal relationships

— Represents dependency among the variables

— Gives a specification of joint probability distribution

1 \ QO Nodes: random variables
Q Links: dependency
Q X and Y are the parents of Z, and Y is
the parent of P
Q Given Y, Z and P are independent
Q Has no loops or cycles

Bayesian Network Properties

* Each variable is conditionally independent of
its non-descendents in the graph, given its
parents

* Naive Bayes as a Bayesian network:

Bayesian Belief Network Example

Conditional probability table
(CPT) for variable LungCancer:

(FH,S) (FH,~S) (~FH, S) (~FH, ~S)

CPT shows the conditional probability for
each possible combination of its parents

Easy to compute joint distribution for
all attributes X, ..., X4, from CPT:

Bayesian Belief Networks (<= (e )= [P(X, = x |parents(x,))

134

19



Creating a Bayes Network

T: The lecture started on time
L: The lecturer arrives late

R: The lecture concerns data mining
M: The lecturer is Mike

@ S: It is snowing

"~

®

Computing with Bayes Net

[ |

P(L[M"S)=0.05
P(L|MA~S)=0.1
P(L|~MrS)=0.1
P(L|~-Mr~5)=0.2

T: The lecture started on time

L: The lecturer arrives late

R: The lecture concerns data mining
M: The lecturer is Mike

S: It is snowing

P(TAMRALASMAS)

=P(T | RALAMMAS)*P(MRALAMAS)
=P(T | U*P(RALAMAS)

=P(T | L)*P(R | LA~M A S)* p(LA~MAS)
=P(T| U*P(R | *M)* P(LA~MAS)

=P(T | U)*P(R | ~M)* P(L| M A S) * P(*M A 5)
=P(T | U)*P(*R | ~M) * P(L| M A S) * P(*M | 5) * P(5)
=p(T| 1) *P(R | M) * P(L|~M A 5) * P(*M) * P(S)

Computing with Bayes Net

P(L|M"S)=0.05
P(L|M"~S)=0.1
P(L|~M"S)=0.1
P(L|-M~-8)=0.2
T: The lecture started on time
L: T“e \lectturer arrives \a;et
R: The lecture concerns data minin
PR | TAns) W; The lecurer & Mike i
=P(RATA™S)/P(TA™S) S: It is snowing

=P(RATAS)/(PRATANS)+ P(MRATAS))

P(RATA~S): Computeas P(L A MARATA™S)+P(*LAMARATARS)
+P(LAMARATAS) +P(*LA M ARATA™S)

Compute P(~R A T A ~S) similarly

Any problem here? Yes, possibly many terms to be computed...

Inference with Bayesian Networks

* Want to compute P(C,| X=x)
— Assume the output attribute Y node’s parents are all input
attribute nodes and all these input values are given
— Then we have P(C;| X=x) = P(C;| parents(Y)), i.e., we can
read it directly from CPT
¢ What if values are given only for a subset of attributes?
— Can still compute it from the Bayesian network
— But: exact inference of probabilities in general for an
arbitrary Bayesian network is NP-hard
— Solutions: probabilistic inference, trade precision for
efficiency

Training Bayesian Networks

* Several scenarios:

— Given both the network structure and all variables are
observable: learn only the CPTs

— Network structure known, some hidden variables: gradient
descent (greedy hill-climbing) method, analogous to neural
network learning

— Network structure unknown, all variables observable:
search through the model space to reconstruct network
topology

— Unknown structure, all hidden variables: No good
algorithms known for this purpose

* Ref.: D. Heckerman: Bayesian networks for data mining

139

Classification and Prediction Overview

Introduction

Decision Trees

Statistical Decision Theory

* Nearest Neighbor

Bayesian Classification

Artificial Neural Networks

* Support Vector Machines (SVMs)
Prediction

Accuracy and Error Measures

* Ensemble Methods

.

20



Input  Weight ~ Weighted

Basic Building Block: Perceptron

For Example

f(x) :sign[bJriw,x,j

Called the bias

Xp —— Wy

X, — W, Z

A 1]

Activation

Output y

vector x  vector w sum function

Perceptron Decision Hyperplane

X Input: {(x;, %, y), ...}
2 Output: classification function f(x)
f(x) > 0: return +1

f(x) < 0: return = -1

b+WX;+WoX, = 0 + o+

Decision hyperplane: b+w-x =0

Note: b+w-x > 0, if and only if
d
> wx >-b
i=1

b represents a threshold for when the
perceptron “fires”.

Xy

Representing Boolean Functions

AND with two-input perceptron

— b=-0.8, w,=w,=0.5

OR with two-input perceptron

— b=-0.3, w;=w,=0.5

m-of-n function: true if at least m out of n inputs
are true

— Allinput weights 0.5, threshold weight b is set
accordingtom, n

Can also represent NAND, NOR
What about XOR?

Perceptron Training Rule

¢ Goal: correct +1/-1 output for each training record
Start with random weights, select constant 1 (learning
rate)
* For each training record (x, y)
— Let f,4(x) be the output of the current perceptron for x
— Set b:=b + Ab, where Ab =n(y - f 4(x) )
— Foralli, set w; := w; + Aw;, where Aw,; = 1(y - f 4(x))x;
* Keep iterating over training records until all are
correctly classified
« Converges to correct decision boundary, if the classes
are linearly separable and a small enough 1 is used
— Why?

.

Gradient Descent

If training records are not linearly separable, find best
fit approximation.

— Gradient descent to search the space of possible weight
vectors

— Basis for Backpropagation algorithm
Consider un-thresholded perceptron (no sign function
applied), i.e., u(x) = b + wx
Measure training error by squared error
1 2
Eb.w)=- > (y-u()
2 (x,y)eD

— D =training data

Gradient Descent Rule

Find weight vector that minimizes E(b,w) by altering it

in direction of steepest descent

— Set (b,w) := (b,w) + A(b,w), where A(b,w) =-n VE(b,w)
 -VE(b,w)=[ 0E/db, OE/dw,,..., OE/Ow,, ] is the gradient, hence

b::b—q%:b—n[— Z(V—u(x))J

(Xy)<D Ew,w,)

oE
W= W= —= =W, — y=u())-x)
ou n(x%;[() )
¢ Start with random weights,
iterate until convergence

— Will converge to global
minimum if 1 is small enough ———
1 :

Letwy:=b. ™




Gradient Descent Summary

* Epoch updating (aka batch mode)
— Do until satisfied with model
+ Compute gradient over entire training set
+ Update all weights based on gradient
* Case updating (aka incremental mode, stochastic gradient descent)
— Do until satisfied with model
* For each training record

~ Compute gradient for this single training record
~ Update all weights based on gradient

* Case updating can approximate epoch updating arbitrarily close if n
is small enough

* Perceptron training rule and case updating might seem identical

— Difference: error computation on thresholded vs. unthresholded
output

09
08
07
06
05
04
03
02
01

Multilayer Feedforward Networks

* Use another perceptron to combine
output of lower layer
— What about linear units only?
Can only construct linear functions!

— Need nonlinear component

« sign function: not differentiable

(gradient descent!)

* Use sigmoid: o(x)=1/(1+e™)

T(1+exp(-x)

Output layer

Hidden layer

/ Perceptron function:

/ 1

 Irerw

Input layer ‘

149

1-Hidden Layer Net Example

Niyp =2 Nuip =3

g is usually the
sigmoid function

150

Making Predictions

¢ Inputs: all input data attributes
— Record fed simultaneously into the units of the input layer
— Then weighted and fed simultaneously to a hidden layer

* Number of hidden layers is arbitrary, although usually only one

* Weighted outputs of the last hidden layer are the input
to the units in the output layer, which emits the
network's prediction

¢ The network is feed-forward

— None of the weights cycles back to an input unit or to an
output unit of a previous layer

Statistical point of view: neural networks perform

nonlinear regression

Backpropagation Algorithm

¢ We discussed gradient descent to find the best weights for

a single perceptron using simple un-thresholded function

— If sigmoid (or other differentiable) function is applied to
weighted sum, use complete function for gradient descent

¢ Multiple perceptrons: optimize over all weights of all

perceptrons

— Problems: huge search space, local minima
* Backpropagation

— Initialize all weights with small random values

— lterate many times

* Compute gradient, starting at output and working back

— Error of hidden unit h: how do we get the true output value? Use weighted
sum of errors of each unit influenced by h.

* Update all weights in the network

Overfitting

* When do we stop updating the weights?
— Might overfit to training data
* Overfitting tends to happen in later iterations
— Weights initially small random values
— Weights all similar => smooth decision surface
— Surface complexity increases as weights diverge
* Preventing overfitting

— Weight decay: decrease each weight by small factor
during each iteration, or

— Use validation data to decide when to stop iterating

22



Neural Network Decision Boundary

Neural Network - 10 Units, Weight Decay=0.02

Neural Network - 10 Units, No Weight Decay

Source: Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning

154

Backpropagation Remarks

* Computational cost

— Each interation costs O(|D|*|w]), with |D| training
records and |w| weights

— Number of iterations can be exponential in n, the
number of inputs (in practice often tens of thousands)

* Local minima can trap the gradient descent

algorithm

— Convergence guaranteed to local minimum, not global
* Backpropagation highly effective in practice

— Many variants to deal with local minima issue

— E.g., case updating might avoid local minimum

Defining a Network

1. Decide network topology
— #input units, # hidden layers, # units in each hidden layer, # output units
2. Normalize input values for each attribute to [0.0, 1.0]

— Transform nominal and ordinal attributes: one input unit per domain value,
each initialized to 0

— Why not map the attribute to a single input with domain [0.0, 1.0]?
3. Output for classification task with >2 classes: one output unit per class
4. Choose learning rate n

— Too small: can take days instead of minutes to converge

— Too large: diverges (MSE gets larger while the weights increase and usually
oscillate)

— Heuristic: set it to 1 / (#training iterations)

5.  If model accuracy is unacceptable, re-train with different network
topology, different set of initial weights, or different learning rate
— Might need a lot of trial-and-error

Representational Power

* Boolean functions
— Each can be represented by a 2-layer network
— Number of hidden units can grow exponentially with
number of inputs
* Create hidden unit for each input record
* Set its weights to activate only for that input
* Implement output unit as OR gate that only activates for desired
output patterns
* Continuous functions
— Every bounded continuous function can be approximated
arbitrarily close by a 2-layer network
* Any function can be approximated arbitrarily close by a
3-layer network

Neural Network as a Classifier

¢ Weaknesses
— Long training time
— Many non-trivial parameters, e.g., network topology

— Poor interpretability: What is the meaning behind learned
weights and hidden units?

* Note: hidden units are alternative representation of input values,
capturing their relevant features

* Strengths
— High tolerance to noisy data
— Well-suited for continuous-valued inputs and outputs
— Successful on a wide array of real-world data
— Techniques exist for extraction of rules from neural networks

Classification and Prediction Overview

* Introduction

¢ Decision Trees

« Statistical Decision Theory

* Nearest Neighbor

* Bayesian Classification

« Artificial Neural Networks

* Support Vector Machines (SVMs)
¢ Prediction

¢ Accuracy and Error Measures

* Ensemble Methods

23



SVM—Support Vector Machines

Newer and very popular classification method

Uses a nonlinear mapping to transform the
original training data into a higher dimension

Searches for the optimal separating
hyperplane (i.e., “decision boundary”) in the
new dimension

SVM finds this hyperplane using support
vectors (“essential” training records) and
margins (defined by the support vectors)

SVM—History and Applications

Vapnik and colleagues (1992)

— Groundwork from Vapnik & Chervonenkis’ statistical
learning theory in 1960s

Training can be slow but accuracy is high

— Ability to model complex nonlinear decision
boundaries (margin maximization)

Used both for classification and prediction

Applications: handwritten digit recognition,

object recognition, speaker identification,

benchmarking time-series prediction tests

Linear Classifiers

fix,w,b) = sign(w-x + b)
° denotes +1

° denotes -1

How would you
classify this data?

Linear Classifiers

fix,w,b) = sign(w-x + b)
° denotes +1

° denotes -1

How would you
classify this data?

Linear Classifiers

fix,w,b) = sign(w-x + b)
* denotes +1

° denotes -1

How would you
classify this data?

Linear Classifiers

fix,w,b) = sign(w-x + b)
* denotes +1

° denotes -1

How would you
classify this data?

24



Linear Classifiers

,w,b) = sign(w-x + b)

° denotes +1
° denotes -1

Any of these
would be fine..

oo ..but which is
best?

Classifier Margin

fix,w,b) = sign(w-x + b)
° denotes +1
Define the margin
of a linear
classifier as the
width that the
boundary could be
. increased by
oe before hitting a
data record.

° denotes -1

Maximum Margin

fix,w,b) = sign(w-x + b)
° denotes +1

Find the maximum
margin linear
classifier.

This is the
simplest kind of
SVM, called linear
SVM or LSVM.

° denotes -1

Maximum Margin

fix,w,b) = sign(w-x + b)
° denotes +1

° denotes -1

A

Support Vectors'Z |
are those
datapoints that
the margin
pushes up
against

Why Maximum Margin?

If we made a small error in the location of the
boundary, this gives us the least chance of
causing a misclassification.

Model is immune to removal of any non-
support-vector data records.

There is some theory (using VC dimension)
that is related to (but not the same as) the
proposition that this is a good thing.
Empirically it works very well.

Specifying a Line and Margin
Plus-Plane

Classifier Boundary
Minus-Plane

¢ Plus-plane = {x:wx+b=+1}
¢ Minus-plane= {x:wx+b=-1}
Classify as +1 if w-x+bx>1
-1 if wx+b<-1
what if -l1<wx+b<1?

25



Computing Margin Width

Yw = Margin Width

¢ Plus-plane = {x:wx+b=+1}
¢ Minus-plane= {x:wx+b=-1}
* Goal: compute M in terms of w and b
— Note: vector w is perpendicular to plus-plane

+ Consider two vectors u and v on plus-plane and show that w-(u-v)=0
* Hence it is also perpendicular to the minus-plane

Computing Margin Width

\/:4 = Margin Width

* Choose arbitrary point x on minus-plane
* Let x* be the point in plus-plane closest to x-

* Since vector w is perpendicular to these planes, it
holds that x* = x" + Aw, for some value of A

Putting It All Together

* We have so far:
—wxt+b=+landwx +b=-1
—xt=X +Aw
—|x*-x|=M

* Derivation:
—w:(x+Aw)+b=+1, hencewx +b+wiw=1
— This impliesAww =2, i.e, A=2/ww
—Since M = |x* x| = |Aw]| = A |w] = A(w-w)%5
— We obtain M =2 (w-w)%5/ w-w =2/ (w-w)">

Finding the Maximum Margin

* How do we find w and b such that the margin is
maximized and all training records are in the
correct zone for their class?

* Solution: Quadratic Programming (QP)

* QP is a well-studied class of optimization
algorithms to maximize a quadratic function of
some real-valued variables subject to linear
constraints.

— There exist algorithms for finding such constrained
quadratic optima efficiently and reliably.

Quadratic Programming

:
Find argmax c+d'u +& ——_~ Quadratic criterion
u 2

Subject to ajly +agUy +.. Uy, <
AU, + U, +..+ 3ypU, <D, nadditional linear
) inequality
constraints

a,U, +a,u, +...+a,,u, <b

nmTm —
And subject to
a(n+1)1u1 + a(n+1)2uZ +.o.t+ a(n+1)mum = b(n+1)
e additional
linear
equality

constraints
a(nére)lul + a(n+e)2uZ to.t a(n+e)mum = b

(n+e) 177

Qi 8zl o+ 8 U = b(n+2)

. What Are the SVM Constraints?

\u 10(@

* Consider n training
. records (x(k), y(k)),
where y(k) = +/- 1
* How many constraints
will we have?
+ What is the quadratic * What should they be?
optimization criterion?

26



) What Are the SVM Constraints?

\“ 10“6

A\

)
Necy
.
N
0~ .
W0 5
w&"“ P \«(,\’65 2
“ o0 . _
AJW-W

* What is the quadratic
optimization criterion?
— Minimize w-w

* Consider n training
records (x(k), y(k)),
where y(k) = +/- 1

* How many constraints
will we have? n.

* What should they be?

Foreach1<k<n:

w-x(k) +b>1, ify(k)=1

w-x(k) + b <-1, if y(k)=-1

Problem: Classes Not Linearly

Solution 17

° denotes +1

° denotes -1

* Find minimum w-w,
while also minimizing
number of training set
errors
— Not a well-defined

optimization problem
(cannot optimize two
things at the same time)

Separable
* denotes +1 * Inequalities for training
° denotes -1 records are not
. L satisfiable by any w and
LI . b
Solution 2?
* denotes +1 * Minimize w-w +
° denotes -1 C-(#trainSetErrors)
. ° — Cis a tradeoff parameter
ce L. * Problems:
1 . - o e — Cannot be expressed as
Le L e QP, hence finding
1 . I solution might be slow
° . — Does not distinguish
o between disastrous
o errors and near misses

Solution 3

° denotes +1

° denotes -1

* Minimize w-w +
C-(distance of error
records to their correct
place)

* This works!

* But still need to do
something about the
unsatisfiable set of
inequalities

What re the SVM Constraints?

A\

* Consider n training

. records (x(k), y(k)),
o ° where y(k) = +/- 1

“‘:&’i N * How many constraints
W M :% will we have? n.

* What should they be?
Foreach1<k<n:
w-x(k)+b > 1 - g, if y(k)=1
1 N w-x(k)+b < -1+g, if y(k)=-1
Zw-w+C) g £,20
2 =

* What is the quadratic
optimization criterion?
— Minimize

27



Facts About the New Problem
Formulation
* Original QP formulation had d+1 variables
— W, W,,...,, Wgand b
* New QP formulation has d+1+n variables
— Wy, Wy,..., Wy and b

— €, €500s &,
* Cis a new parameter that needs to be set for
the SVM

— Controls tradeoff between paying attention to
margin size versus misclassifications

Effect of Parameter C

C = 10000 C=0.01

Source: Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning

186

An Equivalent QP (The “Dual”)

Maximize Zn:ak —%iiaka, -y (k) - y(1)-x(k)-x(1)

k=1 1=1

Subject to these

: vk:0<q <C
constraints:

> ay(k) =0

Then define:

Then classify with:

w=3 -y X(K)

f(x,w,b) = sign(w-x + b)

b= AVG {l—x(k)w}
k:0<ey <C y(k)

Important Facts

* Dual formulation of QP can be optimized more
quickly, but result is equivalent

Data records with o, > 0 are the support vectors
— Those with 0 < o, < C lie on the plus- or minus-plane
— Those with oy = C are on the wrong side of the

classifier boundary (have g, > 0)
Computation for w and b only depends on those
records with o, > 0, i.e., the support vectors

Alternative QP has another major advantage, as
we will see now...

Easy To Separate

What would
SVMs do with
this data?

Easy To Separate

Not a big surprise

Positive “plane* CNegative “plane”

28



Harder To Separate

What can be
done about
this?

X (= %)

Harder To Separate

Non-linear basis
functions:

Original data: (X, Y)
Transformed: (X, X2, Y)

Think of X2 as a new

X attribute, e.g., X’

Now Separation Is Easy Again

X (= X2)

Corresponding “Planes” in Origina

Space

Region above plus-"plane”

N

Region below minus-"plane”

Common SVM Basis Functions

* Polynomial of attributes X,,..., X, of certain
max degree, e.g., X,+X,X;+X,2
* Radial basis function

— Symmetric around center, i.e.,
KernelFunction(|X - c| / kernelWidth)

* Sigmoid function of X, e.g., hyperbolic tangent
* Let ®@(x) be the transformed input record

— Previous example: ®( (x) ) = (x, x3)

D(x) =

J2x,
2%,

2%,
2
XZ
Xd
V2x,x,
V2xx,

N2xx
Vax,x,

V2xx
V2x 1%,

Constant Term

Linear Terms

H—ATJ

Pure
uadratic
Terms

W_/

Quadratic
Cross-Terms

S

Quadratic Basis
Functions

Number of terms
(assuming d input attributes):

(d+2)-choose-2
= (d+2)(d+1)/2
~d¥/2

Why did we choose this specific
transformation?

29



Dual QP With Basis Functions

MaX|m|zeZ(xk —fZZaka, y(k)-y(1)- @ (x(k))- ®(x(1))

k=1 k1|1

Subject to these

: vk:0<q <C
constraints:

30,y =0

Then define:

Then classify with:
f(x,w,b) = sign(w-@(x) + b)

w=3 0, y(0)-P(x(K)

1
b=AVG{——- k
k0<ak<0{ y( ) (D(X( )) }

Computation Challenge

Input vector x has d components (its d attribute

values)

The transformed input vector ®(x) has d?/2

components

* Hence computing ®(x(k))-®(x(l)) now costs order
d?/2 instead of order d operations (additions,
multiplications)

* ...oris there a better way to do this?

— Take advantage of properties of certain
transformations

L L 1 uadratic
V2a, Jab, } Q
V2a, V2b, N Dot
: : 2ab;
G ||/, % Products
a’ b’ +
a; b? n
: } Za|2b|2
@) o) = \/Ea;a * fbb,b
V2aa, | | Jabb, +
«/Ezlijad \/Ell)]bd .
ﬁazaz \/Ebzhz z Em:Za ab b
\/Eeliiad \/Etlnlbd
a2, VB, b,

Quadratic Dot Products

Now consider another function of a
and b:

(a-b+1)?

=(a-b)’+2a-b+1
@(a)-®(b) =

d 2 d
1+ Zia,b‘ +iaﬁbﬁ +i iZaIanlbl :(;a.b.] +2§a,b‘ +1
i1 i1 [EWET
d d d
=YY abajb +2) ab +1
i1 j= i=1

d d d d
=>(ab)?+2>" Y abab, +2> ab +1
i=1 i1 j=isl i1

Quadratic Dot Products

* The results of ®(a)-®(b) and of (a-b+1)? are identical
Computing ®(a)-®(b) costs about d2/2, while
computing (a-b+1)2 costs only about d+2 operations

* This means that we can work in the high-dimensional
space (d?/2 dimensions) where the training records are
more easily separable, but pay about the same cost as
working in the original space (d dimensions)

Savings are even greater when dealing with higher-
degree polynomials, i.e., degree g>2, that can be
computed as (a-b+1)9

.

Any Other Computation Problems?

W= 0, y(0)-@x(K) b= AVG | @(x(k))-w
k=1 k:0<ay <C (k)
* What about computing w?
— Finally need f(x,w,b) = sign(w-®(x) + b):

W-B(x) =3 0 y(K)- (x(k))- (%)

k=1
— Can be computed using the same trick as before
* Can apply the same trick again to b, because

(x(k))-w Za -y () @(x(k))-@(x(}))

"

30



SVM Kernel Functions

* For which transformations, called kernels,
does the same trick work?

* Polynomial: K(a,b)=(a - b +1)9
* Radial-Basis-style (RBF):

2
K(a,b) =exp 7@ o, k and § are magic
20 parameters that must
be chosen by a model
selection method.

— Neural-net-style sigmoidal:

K(a,b) =tanh(x-a-b-10)

Overfitting

.

With the right kernel function, computation in high
dimensional transformed space is no problem

* But what about overfitting? There are so many
parameters...

¢ Usually not a problem, due to maximum margin

approach

— Only the support vectors determine the model, hence SVM
complexity depends on number of support vectors, not
dimensions (still, in higher dimensions there might be
more support vectors)

— Minimizing w-w discourages extremely large weights,
which smoothes the function (recall weight decay for
neural networks!)

Different Kernels

SVM - Radial Kemel in Feature Space

SVM - Degree-4 Polynomial in Feature Space

Tran

Source: Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning

Multi-Class Classification

* SVMs can only handle two-class outputs (i.e. a
categorical output variable with arity 2).

* What can be done?

* Answer: with output arity N, learn N SVM’s

— SVM 1 learns “Output==1" vs “Output != 1"

— SVM 2 learns “Output==2" vs “Output != 2"

— SVM N learns “Output==N" vs “Output != N”

To predict the output for a new input, just predict

with each SVM and find out which one puts the

prediction the furthest into the positive region.

Why Is SVM Effective on High
Dimensional Data?

Complexity of trained classifier is characterized by the

number of support vectors, not dimensionality of the

data

« If all other training records are removed and training is
repeated, the same separating hyperplane would be
found

¢ The number of support vectors can be used to
compute an upper bound on the expected error rate of
the SVM, which is independent of data dimensionality

¢ Thus, an SVM with a small number of support vectors

can have good generalization, even when the

dimensionality of the data is high

.

SVM vs. Neural Network

* SVM * Neural Network
— Relatively new concept — Relatively old
— Deterministic algorithm — Nondeterministic
— Nice Generalization algorithm
properties — Generalizes well but

doesn’t have strong
mathematical foundation

— Hard to train — learned in
batch mode using
quadratic programming — Can easily be learned in
techniques incremental fashion

— Using kernels can learn
very complex functions

— To learn complex
functions—use multilayer
perceptron (not that trivial)

31



Classification and Prediction Overview

* Introduction

¢ Decision Trees

* Statistical Decision Theory

* Nearest Neighbor

* Bayesian Classification

« Artificial Neural Networks

* Support Vector Machines (SVMs)
* Prediction

¢ Accuracy and Error Measures

* Ensemble Methods

What Is Prediction?

« Essentially the same as classification, but output is
continuous, not discrete
— Construct a model
— Use model to predict continuous output value for a given
input
* Major method for prediction: regression

— Many variants of regression analysis in statistics literature;
not covered in this class

¢ Neural network and k-NN can do regression “out-of-
the-box”

¢ SVMs for regression exist
* What about trees?

Regression Trees and Model Trees

* Regression tree: proposed in CART system (Breiman et
al. 1984)
— CART: Classification And Regression Trees
— Each leaf stores a continuous-valued prediction
* Average output value for the training records that reach the leaf
* Model tree: proposed by Quinlan (1992)

— Each leaf holds a regression model—a multivariate linear
equation

* Training: like for classification trees, but uses variance
instead of purity measure for selecting split predicates

Classification and Prediction Overview

* Introduction

Decision Trees

Statistical Decision Theory

¢ Nearest Neighbor

Bayesian Classification

Artificial Neural Networks

* Support Vector Machines (SVMs)
Prediction

* Accuracy and Error Measures

* Ensemble Methods

Classifier Accuracy Measures

Predicted class total
buy_computer = yes | buy_computer = no
True class ‘ buy_computer = yes 6954 46 7000
‘ buy_computer = no 412 2588 3000
total 7366 2634 10000

* Accuracy of a classifier M, acc(M): percentage of
test records that are correctly classified by M
— Error rate (misclassification rate) of M = 1 — acc(M)
— Given m classes, CM[i,j], an entry in a confusion
matrix, indicates # of records in class i that are
labeled by the classifier as class j

Cl CZ
True positive | False negative
False positive | True negative

Kyl

Kyl

Precision and Recall

* Precision: measure of exactness
— t-pos / (t-pos + f-pos)

* Recall: measure of completeness
— t-pos / (t-pos + f-neg)

* F-measure: combination of precision and recall
— 2 * precision * recall / (precision + recall)

* Note: Accuracy = (t-pos + t-neg) / (t-pos + t-neg +
f-pos + f-neg)

32



Limitation of Accuracy

* Consider a 2-class problem
— Number of Class 0 examples = 9990
— Number of Class 1 examples = 10

* If model predicts everything to be class 0,
accuracy is 9990/10000 = 99.9 %

— Accuracy is misleading because model does not detect
any class 1 example

» Always predicting the majority class defines the
baseline

— A good classifier should do better than baseline

Cost-Sensitive Measures: Cost Matrix

PREDICTED CLASS

C(ilj) Class=Yes | Class=No

ACTUAL Class=Yes | C(Yes|Yes) | C(No|Yes)
CLASS

Class=No | C(Yes|No) | C(No|No)

C(i| j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost PREDICTED CLASS
Matrix
chly) | + -
ACTUAL N
CLASS + 1 100
- 1 0
Model M, | PREDICTED CLASS Model M, | PREDICTED CLASS
+ - + -
ACTUAL ACTUAL
CLASS + 150 | 40 CLASS + 250 | 45
= 60 | 250 = 5 200

Accuracy = 80%
Cost = 3910

Accuracy = 90%
Cost = 4255

Prediction Error Measures

Continuous output: it matters how far off the prediction is from the
true value

Loss function: distance between y and predicted value y’

— Absolute error: | y—vy’|

— Squared error: (y-y’)?
Test error (generalization error): average loss over the test set
Mean absolute error: Mean squared error:

23 1y0-y 0l 230 -y )

Relative absolute error:i\ y(i)-y'(i)| Relative squared error:z”:(y(i)_y-(i))2

SIyi-vl -7

Squared-error exaggerates the presence of outliers

Evaluating a Classifier or Predictor

* Holdout method
— The given data set is randomly partitioned into two sets
* Training set (e.g., 2/3) for model construction
* Test set (e.g., 1/3) for accuracy estimation
— Can repeat holdout multiple times
 Accuracy = avg. of the accuracies obtained

* Cross-validation (k-fold, where k = 10 is most popular)
— Randomly partition data into k mutually exclusive subsets,
each approximately equal size
— Ini-th iteration, use D; as test set and others as training set
— Leave-one-out: k folds where k = # of records
* Expensive, often results in high variance of performance metric

Learning Curve

N M Accuracy versus

Accuracy
@ N
® 3

@
3

=5

=0

45

sample size
4 ¢ Effect of small
sample size:
— Bias in estimate
— Variance of
1 estimate
* Helps determine how
much training data is
needed
— Still need to have
enough test and
validation data to
be representative

10 1t 10 10 of distribution

Sample Size

33



ROC (Receiver Operating
Characteristic)

* Developed in 1950s for signal detection theory to
analyze noisy signals
— Characterizes trade-off between positive hits and false

alarms

* ROC curve plots T-Pos rate (y-axis) against F-Pos
rate (x-axis)

* Performance of each classifier is represented as a
point on the ROC curve

— Changing the threshold of the algorithm, sample
distribution or cost matrix changes the location of the

ROC Curve

* 1-dimensional data set containing 2 classes (positive and negative)
— Any point located at x > t is classified as positive

Positive

Negative
Class

Class

At threshold t: f
TPR=0.5, FPR=0.12

point
ROC Curve
(TPR, FPR): e
* (0,0): declare everything to
be negative class

¢ (1,1): declare everything to
be positive class
¢ (1,0): ideal

< Diagonal line: !
— Random guessing

Diagonal Line for Random Guessing

* Classify a record as positive with fixed probability
p, irrespective of attribute values

» Consider test set with a positive and b negative
records

* True positives: p*a, hence true positive rate =

(p*a)/a=p

False positives: p*b, hence false positive rate =

(p*b)/b=p

* For every value 0<p<1, we get point (p,p) on ROC
curve

Using ROC for Model Comparison

“] '« Neither model
, consistently
’ 1 outperforms the
other
— M1 better for small
FPR

— M2 better for large
FPR

|+ Areaunder the ROC
1 curve
— Ideal: area =1

— Random guess:
area=0.5

How to Construct an ROC curve

* Use classifier that produces
record | P(+|x) | True Class A .1
T oo " posterior probability P(+|x)
for each test record x
2 0.93 + )
3 087 N * Sort records according to
2 | o8 N P(+|x) in decreasing order
5 | o085 - * Apply threshold at each
6 | 085 + unique value of P(+]x)
7 0.76 - — Count number of TP, FP, TN, FN
8 0.53 + at each threshold
9 0.43 - — TP rate, TPR = TP/(TP+FN)
10 | 025 + — FP rate, FPR = FP/(FP+TN)

34



How To Construct An ROC Curve

Threshold >=

W o o | [ ¢ 2

0 I S 2 s | =
— [ [ oe [os [ oe 05 [

— [

true positive rate

ROC Curve:

02

0 02 04 10  falsepositive rate

Test of Significance

* Given two models:
— Model M1: accuracy = 85%, tested on 30 instances

— Model M2: accuracy = 75%, tested on 5000
instances

* Can we say M1 is better than M2?

— How much confidence can we place on accuracy
of M1 and M2?

— Can the difference in accuracy be explained as a
result of random fluctuations in the test set?

Confidence Interval for Accuracy

* Classification can be regarded as a Bernoulli trial

— A Bernoulli trial has 2 possible outcomes, “correct” or
“wrong” for classification

— Collection of Bernoulli trials has a Binomial
distribution

* Probability of getting c correct predictions if model accuracy
is p (=probability to get a single prediction right):
N e pync
(Jpa-n
* Given c, or equivalently, ACC = ¢/ n and n (#test

records), can we predict p, the true accuracy of
the model?

Confidence Interval for Accuracy
Area=1-a

Binomial distribution for X="number of

correctly classified test records out of n”

— E(X)=pn, Var(X)=p(1-p)n
Accuracy =X/n

— E(ACC) = p, Var(ACC) = p(1-p) / n
For large test sets (n>30), Binomial
distribution is closely approximated by
normal distribution with same mean <
and variance

— ACC has a normal distribution with z
mean=p, variance=p(1-p)/n /2

Zl-a/Z
oz, < ACCp

<—<Z =l-a

a p(].— p)/n 1-al2

Confidence Interval for p: 5 -ACC+Z2,+./Z2,,+4n-ACC-4n-ACC?
p= « @

2n+22),)

Confidence Interval for Accuracy

* Consider a model that produces an accuracy of
80% when evaluated on 100 test instances
—n=100,ACC=0.8
— Let 1-a = 0.95 (95% confidence)

— From probability table, Z,, = 1.96 lo| Z
N 50 | 100 | 500 | 1000 | 5000 0.992.58
p(lower) | 0.670 | 0.711 | 0.763 | 0.774 | 0.789 0.98]2.33
p(upper) | 0.888 | 0.866 | 0.833 | 0.824 | 0.811 0.95/1.96
0.90|1.65
_ 2n-ACC+Z2, +/Z2,, +4n-ACC—4n-ACC’
- 2n+22,)

Comparing Performance of Two
Models

Given two models M1 and M2, which is better?
— M1 is tested on D, (size=n,), found error rate = e,
— M2 is tested on D, (size=n,), found error rate = e,
— Assume D, and D, are independent
— If n; and n, are sufficiently large, then
err, ~ N(x4,0,)
err, ~ N(,Uzro-z)
& (1_ei)

n

— Esti HEPN A
stimate i =e and O'i2 _

35



Testing Significance of Accuracy
Difference

* Consider random variable d = err,—err,

— Since err,, err, are normally distributed, so is their
difference

— Henced ~ N (d,, 5,) where d, is the true difference
* Estimator for d:

— E[d] = E[err,-err,] = E[err,] —E[err,] ~ e, - &,

— Since D, and D, are independent, variance adds up:

N N ., €&(-¢) e(l-e
O'[2=U12+O'22: 1( 1)+ z( z)
nl nZ

— At (1-a) confidence level, d, =E[d]+Z_,,6,

An lllustrative Example

¢ Given: M1:n,=30,e,=0.15
M2: n, = 5000, e, = 0.25
E[d]=|e,—e,| =0.1
2-sided test: d, = 0 versus d, # 0
62 = 0.15(1-0.15) . 0.25(1-0.25)
' 30 5000

* At 95% confidence level, Z,, = 1.96
d, =0.100+1.96+/0.0043 = 0.100+0.128

=0.0043

* Interval contains zero, hence difference may not be statistically
significant
« But: may reject null hypothesis (d, # 0) at lower confidence level

Significance Test for K-Fold Cross-
Validation

* Each learning algorithm produces k models:
— L1 produces M11, M12, ..., M1k
— L2 produces M21, M22, ..., M2k
* Both models are tested on the same test sets D,
D,,..., D,
— For each test set, compute d;=e;;— e,

— For large enough k, d; is normally distributed with

mean d, and variance G,
k

— Estimate: T2
z (d i d) t-distribution: get t coefficient
G2 =2 t1.qk1 from table by looking up
t k(k-1) confidence level (1-o) and

_ . degrees of freedom (k-1)
do=d+t_, .6

Classification and Prediction Overview

* Introduction

* Decision Trees

« Statistical Decision Theory

¢ Nearest Neighbor

* Bayesian Classification

« Artificial Neural Networks

* Support Vector Machines (SVMs)
¢ Prediction

¢ Accuracy and Error Measures

* Ensemble Methods

Ensemble Methods

* Construct a set of classifiers from the training
data

* Predict class label of previously unseen
records by aggregating predictions made by
multiple classifiers

General Idea

Original
D  Training data

i

Step 1:
Create Multiple
Data Sets

O
-]
O

o

-«—
«— o
—
«—

Step 2:

Build Multiple c, c, C., c,
Classifiers ‘ * *
Step 3:

Combine

Classifiers

36



Why Does It Work?

* Consider 2-class problem
* Suppose there are 25 base classifiers
— Each classifier has error rate € = 0.35
— Assume the classifiers are independent
* Return majority vote of the 25 classifiers
— Probability that the ensemble classifier makes a

wrong prediction:

z(zis}si(l— £)*7=0.06

i=13

240

Base Classifier vs. Ensemble Error

X

Ensemble classifier error
B oa
.

0.2 04 08 08 1
Base classifier error

Figure 5,30, Comparison between erors of base classifiers and errors of the ensemble classifier.

Model Averaging and Bias-Variance
Tradeoff

* Single model: lowering bias will usually increase
variance

— “Smoother” model has lower variance but might not
model function well enough

* Ensembles can overcome this problem

1. Let models overfit
* Low bias, high variance

2. Take care of the variance problem by averaging
many of these models

* This is the basic idea behind bagging

Bagging: Bootstrap Aggregation

* Given training set with n records, sample n
records randomly with replacement

Original Data 2 3 [ 4 7] 8 1
Bagging (Round 1) 0 | 8 10 | 10
Bagging (Round 2) 2 9 | 1 2 | 7
Bagging (Round 3) 5 | 10 9 | 6

* Train classifier for each bootstrap sample

* Note: each training record has probability
1-(1-1/n)" of being selected at least once in
a sample of size n

Bagged Trees

* Create k trees from training data
— Bootstrap sample, grow large trees

* Design goal: independent models, high
variability between models

* Ensemble prediction = average of individual
tree predictions (or majority vote)

* Works the same way for other classifiers

(1/k)- /<\ + (1/k)- /<\ +.4 (1/k)- /<\

Typical Result

o 'BCR2T housefin precicion petormance
06
085 e S
04
g om|
o2
081
as!
v 0w = % @ w7 @ 6w
e of bagged rees

37



Typical Result

BCRE housetn predicton performance
oa2 ]
04

2o

036! 1
034 ]
SR m W W % W m @ W w

Pumoar of bagged roes

246

Typical Result

‘BCRZ7 housetin preciction perorance
02 ]
as!
Som
086 d|
o84 ]
‘o 10 El EJ 40 50 60 70 o B0 100
numoer of bagosd rees

Bagging Challenges

 |deal case: all models independent of each other
* Train on independent data samples
— Problem: limited amount of training data
* Training set needs to be representative of data distribution
— Bootstrap sampling allows creation of many “almost”
independent training sets
« Diversify models, because similar sample might result
in similar tree
— Random Forest: limit choice of split attributes to small
random subset of attributes (new selection of subset for
each node) when training tree

— Use different model types in same ensemble: tree, ANN,
SVM, regression models

248

Additive Grove

* Ensemble technique for predicting continuous output
« Instead of individual trees, train additive models
— Prediction of single Grove model = sum of tree predictions
« Prediction of ensemble = average of individual Grove predictions
* Combines large trees and additive models

— Challenge: how to train the additive models without having the first
trees fit the training data too well
* Next tree is trained on residuals of previously trained trees in same Grove
model

+ If previously trained trees capture training data too well, next tree is mostly
trained on noise

(1/k)- K\{--’f,(\ﬂuk)- K\{*f/(\ +ot (1/K)- K\{K\

249

Training Groves

A+ A EA P LT SN AOVOONN

A+A > A ViTeRdiTe)

Typical Grove Performance

* Root mean squared
: error
— Lower is better
* Horizontal axis: tree
size
— Fraction of training
e data when to stop
splitting
* Vertical axis: number
of trees in each
single Grove model
s * 100 bagging
- o iterations




Boosting

FinarL CLASSIFIER
Gx) = sign [Z:,’_\ Gy [l]]
- Gulx) .
* |terative procedure to
adaptively change distribution
of training data by focusing
more on previously
misclassified records
— Initially, all n records are
assigned equal weights

— Record weights may change at
the end of each boosting round

- Galx)

w . Gylx)

Boosting

* Records that are wrongly classified will have their
weights increased

* Records that are classified correctly will have
their weights decreased

Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2
Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

* Assume record 4 is hard to classify

* Its weight is increased, therefore it is more likely
to be chosen again in subsequent rounds

Example: AdaBoost

* Base classifiers: C;, C,,..., C;

* Error rate (n training
records, w; are weights that

AdaBoost Details

i & .

* Weight update: e _Wiﬁ)_ s if C,(x;)=y;
i - i

Lo 1ifC(x) =y,

where Z; is the normalization factor

* Weights initialized to 1/n
* Z ensures that weights add to 1
« If any intermediate rounds produce error rate higher
than 50%, the weights are reverted back to 1/n and the
resampling procedure is repeated
* Final classification: T
C*(x)=argmax y_a;5(C,(x) =)
y

i=1l

sum to 1): =
n * .
& :ZWJ5(Ci(Xi)¢yj) s
=1 |
* Importance of a classifier: 1 :
w=In 1_‘9i e e u
=
i
254
Illustrating AdaBoost
Initial weights for each data point Data points
for training
Original 0.1 0.1 0.1
++|+ 1= -] +]+
o [+ [ [] +[]
New weights
B1
0.0094 0.0094 0.4623
Boosting 1
Roundl _*++ 3} == =- = =~ o =1.9459
1
1

Note: The numbers appear to be wrong, but they convey the right idea... ...

[llustrating AdaBoost

0.0094 | 0.0094 0.4623
Boosting |
Round 1 Jr. + ! . - . - . -. o =1.9459
:
B2
. 0.0009 1 0.0422
Boosting 03037 :
Round2 || -i-] - -|-] - gt o =2.9323
|
B3
0.0276 0.1819 0.0038 1
Boosting H
Round3 _*++ A A+ A, 0=3.8744
]
1
Overall +++ it e 5

Note: The numbers appear to be wrong, but they convey the right idea... ..,

39



Bagging vs. Boosting

¢ Analogy

— Bagging: diagnosis based on multiple doctors’ majority vote

— Boosting: weighted vote, based on doctors’ previous diagnosis accuracy
* Sampling procedure

— Bagging: records have same weight; easy to train in parallel

— Boosting: weights record higher if model predicts it wrong; inherently

sequential process

« Overfitting

— Bagging robust against overfitting

— Boosting susceptible to overfitting: make sure individual models do not overfit
* Accuracy usually significantly better than a single classifier

— Best boosted model often better than best bagged model
* Additive Grove

— Combines strengths of bagging and boosting (additive models)

— Shown empirically to make better predictions on many data sets

— Training more tricky, especially when data is very noisy

Classification/Prediction Summary

* Forms of data analysis that can be used to train models
from data and then make predictions for new records

Effective and scalable methods have been developed
for decision tree induction, Naive Bayesian
classification, Bayesian networks, rule-based classifiers,
Backpropagation, Support Vector Machines (SVM),
nearest neighbor classifiers, and many other
classification methods

* Regression models are popular for prediction.
Regression trees, model trees, and ANNs are also used
for prediction.

Classification/Prediction Summary

* K-fold cross-validation is a popular method for accuracy estimation,
but determining accuracy on large test set is equally accepted
— If test sets are large enough, a significance test for finding the best
model is not necessary
* Area under ROC curve and many other common performance
measures exist
* Ensemble methods like bagging and boosting can be used to
increase overall accuracy by learning and combining a series of
individual models
— Often state-of-the-art in prediction quality, but expensive to train,
store, use
* No single method is superior over all others for all data sets
— Issues such as accuracy, training and prediction time, robustness,
interpretability, and scalability must be considered and can involve
trade-offs

40



