
1

Data Mining Techniques:
Classification and Prediction

Mirek Riedewald

Some slides based on presentations by
Han/Kamber, Tan/Steinbach/Kumar, and Andrew

Moore

Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods

2

2

Classification vs. Prediction

• Assumption: after data preparation, have single data
set where each record has attributes X1,…,Xn, and Y.

• Goal: learn a function f:(X1,…,Xn)Y, then use this
function to predict y for a given input record (x1,…,xn).
– Classification: Y is a discrete attribute, called the class label

• Usually a categorical attribute with small domain

– Prediction: Y is a continuous attribute

• Called supervised learning, because true labels (Y-
values) are known for the initially provided data

• Typical applications: credit approval, target marketing,
medical diagnosis, fraud detection

3

Induction: Model Construction

4

Training

Data

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification

Algorithm

IF rank = ‘professor’

OR years > 6

THEN tenured = ‘yes’

Model

(Function)

3

Deduction: Using the Model

5

Test

Data

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Merlisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?

Model

(Function)

Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Nearest Neighbor
• Prediction
• Accuracy and Error Measures
• Ensemble Methods

6

4

Example of a Decision Tree

7

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model: Decision Tree

Another Example of Decision Tree

8

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

MarSt

Refund

TaxInc

YESNO

NO

NO

Yes No

Married
Single,

Divorced

< 80K > 80K

There could be more than one tree that

fits the same data!

5

Apply Model to Test Data

9

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Start from the root of tree.

Apply Model to Test Data

10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

6

Apply Model to Test Data

11

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Apply Model to Test Data

12

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

7

Apply Model to Test Data

13

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Apply Model to Test Data

14

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Assign Cheat to “No”

8

Decision Tree Induction

• Basic greedy algorithm
– Top-down, recursive divide-and-conquer
– At start, all the training records are at the root
– Training records partitioned recursively based on split attributes
– Split attributes selected based on a heuristic or statistical

measure (e.g., information gain)

• Conditions for stopping partitioning
– Pure node (all records belong

to same class)
– No remaining attributes for

further partitioning
• Majority voting for classifying the leaf

– No cases left

15

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Decision Boundary

16

X2

< 0.33?

 : 0

 : 3

 : 4

 : 0

X2

< 0.47?

 : 4

 : 0

 : 0

 : 4

X1

< 0.43?

Yes

Yes

No

No Yes No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

Decision boundary = border between two neighboring regions of different classes.

For trees that split on a single attribute at a time, the decision boundary is parallel

to the axes.

9

How to Specify Split Condition?

• Depends on attribute types

– Nominal

– Ordinal

– Numeric (continuous)

• Depends on number of ways to split

– 2-way split

– Multi-way split

17

Splitting Nominal Attributes

• Multi-way split: use as many partitions as
distinct values.

• Binary split: divides values into two subsets;
need to find optimal partitioning.

18

CarType
Family

Sports

Luxury

CarType
{Family,

Luxury} {Sports}

CarType
{Sports,

Luxury} {Family} OR

10

Splitting Ordinal Attributes

• Multi-way split:

• Binary split:

• What about this split?

19

Size
Small

Medium

Large

Size
{Medium,

Large} {Small}

Size
{Small,

Medium} {Large}
OR

Size
{Small,

Large} {Medium}

Splitting Continuous Attributes

• Different options

– Discretization to form an ordinal categorical
attribute

• Static – discretize once at the beginning

• Dynamic – ranges found by equal interval bucketing,
equal frequency bucketing (percentiles), or clustering.

– Binary Decision: (A < v) or (A  v)

• Consider all possible splits, choose best one

20

11

Splitting Continuous Attributes

21

Taxable

Income

> 80K?

Yes No

Taxable

Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K

How to Determine Best Split

22

Own

Car?

C0: 6

C1: 4

C0: 4

C1: 6

C0: 1

C1: 3

C0: 8

C1: 0

C0: 1

C1: 7

Car

Type?

C0: 1

C1: 0

C0: 1

C1: 0

C0: 0

C1: 1

Student

ID?

...

Yes No Family

Sports

Luxury c
1

c
10

c
20

C0: 0

C1: 1
...

c
11

Before Splitting: 10 records of class 0,

10 records of class 1

Which test condition is the best?

12

How to Determine Best Split

• Greedy approach:

– Nodes with homogeneous class distribution are
preferred

• Need a measure of node impurity:

23

C0: 5

C1: 5

C0: 9

C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

Attribute Selection Measure:
Information Gain

• Select attribute with highest information gain
• pi = probability that an arbitrary record in D belongs to class

Ci, i=1,…,m
• Expected information (entropy) needed to classify a record

in D:

• Information needed after using attribute A to split D into v
partitions D1,…, Dv:

• Information gained by splitting on attribute A:

24

)(log)Info(2

1

i

m

i

i ppD 




)Info(
||

||
)(Info

1

j

v

j

j

A D
D

D
D 





(D)(D)(D) AA InfoInfoGain 

13

Example

• Predict if somebody will buy a computer

• Given data set:

25

Age Income Student Credit_rating Buys_computer
 30 High No Bad No
 30 High No Good No

31…40 High No Bad Yes
> 40 Medium No Bad Yes
> 40 Low Yes Bad Yes
> 40 Low Yes Good No

31...40 Low Yes Good Yes
 30 Medium No Bad No
 30 Low Yes Bad Yes
> 40 Medium Yes Bad Yes
 30 Medium Yes Good Yes

31...40 Medium No Good Yes
31...40 High Yes Bad Yes

> 40 Medium No Good No

Information Gain Example

• Class P: buys_computer = “yes”
• Class N: buys_computer = “no”

• means “age  30” has 5 out of 14
samples, with 2 yes’es and 3 no’s.

– Similar for the other terms

• Hence

• Similarly,

• Therefore we choose age as the splitting
attribute

26

694.0)2,3(
14

5

)0,4(
14

4
)3,2(

14

5
)(Infoage





I

IID

048.0)(Gain

151.0)(Gain

029.0)(Gain

ingcredit_rat

student

income







D

D

D

246.0)(Info)Info()(Gain ageage  DDD

)3,2(
14

5
I

940.0
14

5
log

14

5

14

9
log

14

9
)5,9()Info(22  ID

Age #yes #no I(#yes, #no)
 30 2 3 0.971

31…40 4 0 0
>40 3 2 0.971

Age Income Student Credit_rating Buys_computer
 30 High No Bad No
 30 High No Good No

31…40 High No Bad Yes
> 40 Medium No Bad Yes
> 40 Low Yes Bad Yes
> 40 Low Yes Good No

31...40 Low Yes Good Yes
 30 Medium No Bad No
 30 Low Yes Bad Yes
> 40 Medium Yes Bad Yes
 30 Medium Yes Good Yes

31...40 Medium No Good Yes
31...40 High Yes Bad Yes

> 40 Medium No Good No

14

Gain Ratio for Attribute Selection

• Information gain is biased towards attributes with a large
number of values

• Use gain ratio to normalize information gain:
– GainRatioA(D) = GainA(D) / SplitInfoA(D)

• E.g.,

• GainRatioincome(D) = 0.029/0.926 = 0.031
• Attribute with maximum gain ratio is selected as splitting

attribute

27









 

 ||

||
log

||

||
)(SplitInfo 2

1 D

D

D

D
D

j
v

j

j

A

926.0
14

4
log

14

4

14

6
log

14

6

14

4
log

14

4
)(SplitInfo 222income D

Gini Index

• Gini index, gini(D), is defined as

• If data set D is split on A into v subsets D1,…, Dv, the gini
index giniA(D) is defined as

• Reduction in Impurity:

• Attribute that provides smallest ginisplit(D) (= largest
reduction in impurity) is chosen to split the node

28





m

i

ipD
1

21)gini(

)gini(
||

||
)(gini

1

j

v

j

j

A D
D

D
D 





)(gini)gini()(gini DDD AA 

15

Comparing Attribute Selection
Measures

• No clear winner
(and there are many more)
– Information gain:

• Biased towards multivalued attributes

– Gain ratio:
• Tends to prefer unbalanced splits where one partition is

much smaller than the others

– Gini index:
• Biased towards multivalued attributes

• Tends to favor tests that result in equal-sized partitions and
purity in both partitions

29

Practical Issues of Classification

• Underfitting and overfitting

• Missing values

• Computational cost

• Expressiveness

30

16

How Good is the Model?

• Training set error: compare prediction of
training record with true value

– Not a good measure for the error on unseen data.
(Discussed soon.)

• Test set error: for records that were not used
for training, compare model prediction and
true value

– Use holdout data from available data set

31

Training versus Test Set Error

• We’ll create a training dataset

32

a b c d e y

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 1 1 1

0 0 1 0 0 1

: : : : : :

1 1 1 1 1 1

Five inputs, all bits, are
generated in all 32 possible
combinations

Output y = copy of e,
except a random 25%
of the records have y
set to the opposite of e

3
2
 r

e
co

rd
s

17

Test Data

• Generate test data using the same method: copy of e, but 25%
inverted.

• Some y’s that were corrupted in the training set will be uncorrupted
in the testing set.

• Some y’s that were uncorrupted in the training set will be corrupted
in the test set.

33

a b c d e y (training
data)

y (test
data)

0 0 0 0 0 0 0

0 0 0 0 1 0 1

0 0 0 1 0 0 1

0 0 0 1 1 1 1

0 0 1 0 0 1 1

: : : : : : :

1 1 1 1 1 1 1

Full Tree for The Training Data

34

Root

e=0

a=0 a=1

e=1

a=0 a=1

25% of these leaf node labels will be corrupted

Each leaf contains exactly one record, hence no error in predicting the training data!

18

Testing The Tree with The Test Set

35

1/4 of the tree nodes are
corrupted

3/4 are fine

1/4 of the test set
records are corrupted

1/16 of the test set will
be correctly predicted for
the wrong reasons

3/16 of the test set will be
wrongly predicted because
the test record is corrupted

3/4 are fine 3/16 of the test
predictions will be wrong
because the tree node is
corrupted

9/16 of the test predictions
will be fine

In total, we expect to be wrong on 3/8 of the test set predictions

What’s This Example Shown Us?

• Discrepancy between training and test set
error

• But more importantly

– …it indicates that there is something we should do
about it if we want to predict well on future data.

36

19

Suppose We Had Less Data

37

a b c d e y

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 1 1 1

0 0 1 0 0 1

: : : : : :

1 1 1 1 1 1

These bits are hidden

Output y = copy of e, except a
random 25% of the records
have y set to the opposite of e

3
2
 r

e
co

rd
s

Tree Learned Without Access to The
Irrelevant Bits

38

e=0 e=1

Root

These nodes will be unexpandable

20

Tree Learned Without Access to The
Irrelevant Bits

39

e=0 e=1

Root

In about 12 of
the 16 records
in this node the
output will be 0

So this will
almost certainly
predict 0

In about 12 of
the 16 records
in this node the
output will be 1

So this will
almost certainly
predict 1

Tree Learned Without Access to The
Irrelevant Bits

40

e=0 e=1

Root almost certainly
none of the tree
nodes are
corrupted

almost certainly all
are fine

1/4 of the test
set records are
corrupted

n/a 1/4 of the test set
will be wrongly
predicted because
the test record is
corrupted

3/4 are fine n/a 3/4 of the test
predictions will be
fine

In total, we expect to be wrong on only 1/4 of the test set predictions

21

Typical Observation

41

Overfitting

Underfitting: when model is too simple, both training and test errors are large

Model M overfits the
training data if another
model M’ exists, such
that M has smaller
error than M’ over the
training examples, but
M’ has smaller error
than M over the entire
distribution of
instances.

Reasons for Overfitting

• Noise
– Too closely fitting the training data means the model’s

predictions reflect the noise as well

• Insufficient training data
– Not enough data to enable the model to generalize

beyond idiosyncrasies of the training records

• Data fragmentation (special problem for trees)
– Number of instances gets smaller as you traverse

down the tree
– Number of instances at a leaf node could be too small

to make any confident decision about class

42

22

Avoiding Overfitting

• General idea: make the tree smaller
– Addresses all three reasons for overfitting

• Prepruning: Halt tree construction early
– Do not split a node if this would result in the goodness measure

falling below a threshold
– Difficult to choose an appropriate threshold, e.g., tree for XOR

• Postpruning: Remove branches from a “fully grown” tree
– Use a set of data different from the training data to decide when

to stop pruning
• Validation data: train tree on training data, prune on validation data,

then test on test data

43

Minimum Description Length (MDL)

• Alternative to using validation data
– Motivation: data mining is about finding regular patterns in data;

regularity can be used to compress the data; method that achieves
greatest compression found most regularity and hence is best

• Minimize Cost(Model,Data) = Cost(Model) + Cost(Data|Model)
– Cost is the number of bits needed for encoding.

• Cost(Data|Model) encodes the misclassification errors.
• Cost(Model) uses node encoding plus splitting condition encoding.

44

A B

A?

B?

C?

10

0

1

Yes No

B1 B2

C1 C2

X y

X1 1

X2 0

X3 0

X4 1

… …
Xn 1

X y

X1 ?

X2 ?

X3 ?

X4 ?

… …
Xn ?

23

MDL-Based Pruning Intuition

45

largesmall

Tree size

Cost

Cost(Model, Data)

Cost(Model)=model size

Cost(Data|Model)=model errors

Best tree size

Lowest total cost

Handling Missing Attribute Values

• Missing values affect decision tree
construction in three different ways:

– How impurity measures are computed

– How to distribute instance with missing value to
child nodes

– How a test instance with missing value is classified

46

24

Distribute Instances

47

Class=Yes 0 + 3/9

Class=No 3

Tid Refund Marital
Status

Taxable
Income Class

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No
10

Refund
Yes No

Class=Yes 0

Class=No 3

Cheat=Yes 2

Cheat=No 4

Refund
Yes

Tid Refund Marital
Status

Taxable
Income Class

10 ? Single 90K Yes
10

No

Class=Yes 2 + 6/9

Class=No 4

Probability that Refund=Yes is 3/9

Probability that Refund=No is 6/9

Assign record to the left child with

weight = 3/9 and to the right child

with weight = 6/9

Computing Impurity Measure

48

Tid Refund Marital
Status

Taxable
Income Class

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 ? Single 90K Yes
10

Split on Refund: assume records with

missing values are distributed as

discussed before

3/9 of record 10 go to Refund=Yes

6/9 of record 10 go to Refund=No

Entropy(Refund=Yes)

= -(1/3 / 10/3)log(1/3 / 10/3)

– (3 / 10/3)log(3 / 10/3) = 0.469

Entropy(Refund=No)

= -(8/3 / 20/3)log(8/3 / 20/3)

– (4 / 20/3)log(4 / 20/3) = 0.971

Entropy(Children)

= 1/3*0.469 + 2/3*0.971 = 0.804

Gain = 0.881 – 0.804 = 0.077

Before Splitting: Entropy(Parent)

= -0.3 log(0.3)-(0.7)log(0.7) = 0.881

25

Classify Instances

49

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes
No

Married
Single,

Divorced

< 80K > 80K

Married Single Divorced Total

Class=No 3 1 0 4

Class=Yes 6/9 1 1 2.67

Total 3.67 2 1 6.67

Tid Refund Marital
Status

Taxable
Income Class

11 No ? 85K ?
10

New record:

Probability that Marital Status

= Married is 3.67/6.67

Probability that Marital Status

={Single,Divorced} is 3/6.67

Tree Cost Analysis

• Finding an optimal decision tree is NP-complete
– Optimization goal: minimize expected number of binary tests to

uniquely identify any record from a given finite set

• Greedy algorithm
– O(#attributes * #training_instances * log(#training_instances))

• At each tree depth, all instances considered
• Assume tree depth is logarithmic (fairly balanced splits)
• Need to test each attribute at each node
• What about binary splits?

– Sort data once on each attribute, use to avoid re-sorting subsets
– Incrementally maintain counts for class distribution as different split points

are explored

• In practice, trees are considered to be fast both for training
(when using the greedy algorithm) and making predictions

50

26

Tree Expressiveness

• Can represent any finite discrete-valued function
– But it might not do it very efficiently

• Example: parity function
– Class = 1 if there is an even number of Boolean attributes with

truth value = True
– Class = 0 if there is an odd number of Boolean attributes with

truth value = True

• For accurate modeling, must have a complete tree

• Not expressive enough for modeling continuous
attributes
– But we can still use a tree for them in practice; it just

cannot accurately represent the true function

53

Rule Extraction from a Decision Tree

• One rule is created for each path from the root to a leaf
– Precondition: conjunction of all split predicates of nodes on path
– Consequent: class prediction from leaf

• Rules are mutually exclusive and exhaustive
• Example: Rule extraction from buys_computer decision-tree

– IF age = young AND student = no THEN buys_computer = no
– IF age = young AND student = yes THEN buys_computer = yes
– IF age = mid-age THEN buys_computer = yes
– IF age = old AND credit_rating = excellent THEN buys_computer = yes
– IF age = young AND credit_rating = fair THEN buys_computer = no

55

age?

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fairexcellentyesno

27

Classification in Large Databases

• Scalability: Classify data sets with millions of
examples and hundreds of attributes with
reasonable speed

• Why use decision trees for data mining?
– Relatively fast learning speed

– Can handle all attribute types

– Convertible to simple and easy to understand
classification rules

– Good classification accuracy, but not as good as newer
methods (but tree ensembles are top!)

56

Scalable Tree Induction

• High cost when the training data at a node does not fit in
memory

• Solution 1: special I/O-aware algorithm
– Keep only class list in memory, access attribute values on disk
– Maintain separate list for each attribute
– Use count matrix for each attribute

• Solution 2: Sampling
– Common solution: train tree on a sample that fits in memory
– More sophisticated versions of this idea exist, e.g., Rainforest

• Build tree on sample, but do this for many bootstrap samples
• Combine all into a single new tree that is guaranteed to be almost

identical to the one trained from entire data set
• Can be computed with two data scans

57

28

Tree Conclusions

• Very popular data mining tool

– Easy to understand

– Easy to implement

– Easy to use

• Little tuning, handles all attribute types and missing values

– Computationally cheap

• Overfitting problem

• Focused on classification, but easy to extend to
prediction (future lecture)

58

Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods

60

29

Theoretical Results

• Trees make sense intuitively, but can we get
some hard evidence and deeper
understanding about their properties?

• Statistical decision theory can give some
answers

• Need some probability concepts first

61

Random Variables

• Intuitive version of the definition:
– Can take on one of possibly many values, each with a

certain probability (discrete versus continuous)
– These probabilities define the probability distribution of

the random variable
– E.g., let X be the outcome of a coin toss, then

Pr(X=‘heads’)=0.5 and Pr(X=‘tails’)=0.5; distribution is
uniform

• Consider a discrete random variable X with numeric
values x1,...,xk

– Expectation: E[X] =  xi*Pr(X=xi)
– Variance: Var(X) = E[(X – E[X])2] = E[X2] – (E[X])2

62

30

Working with Random Variables

• E[X + Y] = E[X] + E[Y]
• Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X,Y)
• For constants a, b

– E[aX + b] = a E[X] + b
– Var(aX + b) = Var(aX) = a2 Var(X)

• Iterated expectation:
– E[X] = EX[EY[Y| X]], where EY[Y| X] = yi*Pr(Y=yi| X=x)

is the expectation of Y for a given value of X, i.e., is a
function of X

– In general for any function f(X,Y):
EX,Y[f(X,Y)] = EX[EY[f(X,Y)| X]]

63

What is the Optimal Model f(X)?

64

 

   
     

     

   

     )0|E|E|)(E :(Notice

)(|)(E

|)(E))((2)(|)(E

|))()((E2|))((E|)(E

|))((E|))((E

:]|[Elet and of valuespecific afor error heConsider t

error? squared theminimize willfunction Which

.))((E is model trainedoferror squared The

iableoutput var random valued-real a and ableinput vari random valued-real a denote Let

22

22

22

22

2















YYXYXYXYY

XfYXYY

XYYXfYXfYXYY

XXfYYYXXfYXYY

XXfYYYXXfY

XYYX

f(X)

XfYf(X)

YX

YYY

Y

YY

YYY

YY

Y

X,Y

31

Optimal Model f(X) (cont.)

65

   

    

      

 

).)|median(

is modelbest that theshowcan one,|)(|Eerror absolute minimizingfor that (Notice

X.every for]|[E choosingby minimzed iserror squared theHence

)(|)(EE))((E

Hence .|))((EE))((E that Note

].|[E

for minimized is)(but ,|)(Eaffect not does of choice The

222

22

22

YXf(X)

XfY

XYf(X)

XfYXYYXfY

XXfYXfY

XYYf(X)

XfYXYYf(X)

X,Y

Y

YXX,Y

YXX,Y

Y

Y















Implications for Trees

• Best prediction for input X=x is the mean of the Y-values of all records
(x(i),y(i)) with x(i)=x

• What about classification?
– Two classes: encode as 0 and 1, use squared error as before

• Get f(X) = E[Y| X=x] = 1*Pr(Y=1| X=x) + 0*Pr(Y=0| X=x) = Pr(Y=1| X=x)

– K classes: can show that for 0-1 loss (error = 0 if correct class, error = 1 if
wrong class predicted) the optimal choice is to return the majority class for a
given input X=x

• Called the Bayes classifier

• Problem: How can we estimate E[Y| X=x] or the majority class for X=x from
the training data?
– Often there is just one or no training record for a given X=x

• Solution: approximate it
– Use Y-values from training records in neighborhood around X=x
– Tree: leaf defines neighborhood in the data space; make sure there are

enough records in the leaf to obtain reliable estimate of correct answer

66

32

Bias-Variance Tradeoff

• Let’s take this one step further and see if we can
understand overfitting through statistical decision
theory

• As before, consider two random variables X and Y

• From a training set D with n records, we want to
construct a function f(X) that returns good
approximations of Y for future inputs X
– Make dependence of f on D explicit by writing f(X; D)

• Goal: minimize mean squared error over all X, Y,
and D, i.e., EX,D,Y[(Y - f(X; D))2]

67

Bias-Variance Tradeoff Derivation

68

     
        

     
      

        
     

     

    

   

    

 

           XXYEYEDXfEDXfEXYEDXfEEDXfYE

DXfEDXfEDXfEDXfE

XYEDXfEDXfEDXfE

XYEDXfEDXfEDXfE

XYEDXfEDXfEDXfE

XYEDXfEDXfEDXfE

XYEDXfEEDXfEDXfE

XYEDXfEDXfEDXfEXYEDXfE

XXYEYEDXXYEYEE

XYEDXfEXXYEYE

XYEDXfDXXYEYEEDXDXfYEE

DXDXfYEEEDXfYE

YDDDXYDX

DDDD

DDD

DDD

DDD

DDD

DDDD

DDDD

YYD

DY

YDYD

YDXYDX

|]|[)];([);(]|[)];([);(

:obtain therefore weOverall

.)0)];([)];([);([);(because zero, is term third(The

]|[)];([)];([);(

]|[)];([);([);(2

]|[)];([)];([);(

]|[)];([);([);(2

]|[)];([)];([);(

]|[)];([);([);(]|[);(

: termsecond heConsider t

.)|]|[,|]|[hence D,on dependnot does first term (The

]|[);(|]|[

f(X).)function optimalfor before as derivation (Same

]|[);(,|]|[,|);(

:inner term heconsider t Now .,|);();(

2222

,,

22

22

22

22

22

22

222

22

,,

























33

Bias-Variance Tradeoff and Overfitting

• Option 1: f(X;D) = E[Y| X,D]
– Bias: since ED[E[Y| X,D]] = E[Y| X], bias is zero
– Variance: (E[Y| X,D]-ED[E[Y| X,D]])2 = (E[Y| X,D]-E[Y| X])2 can be very large

since E[Y| X,D] depends heavily on D
– Might overfit!

• Option 2: f(X;D)=X (or other function independent of D)
– Variance: (X-ED[X])2=(X-X)2=0
– Bias: (ED[X]-E[Y| X])2=(X-E[Y| X])2 can be large, because E[Y| X] might be

completely different from X
– Might underfit!

• Find best compromise between fitting training data too closely (option 1)
and completely ignoring it (option 2)

69

 

  
   X.)given Y of variancesimply the is and fon dependnot (does :|]|[

 :)];([);(

 :]|[)];([

2

2

2

error eirreducibl

variance

bias

XXYEYE

DXfEDXfE

XYEDXfE

Y

DD

D







Implications for Trees

• Bias decreases as tree becomes larger

– Larger tree can fit training data better

• Variance increases as tree becomes larger

– Sample variance affects predictions of larger tree
more

• Find right tradeoff as discussed earlier

– Validation data to find best pruned tree

– MDL principle

70

34

Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods

71

Lazy vs. Eager Learning

• Lazy learning: Simply stores training data (or only
minor processing) and waits until it is given a test
record

• Eager learning: Given a training set, constructs a
classification model before receiving new (test)
data to classify

• General trend: Lazy = faster training, slower
predictions

• Accuracy: not clear which one is better!
– Lazy method: typically driven by local decisions
– Eager method: driven by global and local decisions

72

35

Nearest-Neighbor

• Recall our statistical decision theory analysis:
Best prediction for input X=x is the mean of
the Y-values of all records (x(i),y(i)) with x(i)=x
(majority class for classification)

• Problem was to estimate E[Y| X=x] or majority
class for X=x from the training data

• Solution was to approximate it
– Use Y-values from training records in

neighborhood around X=x

73

Nearest-Neighbor Classifiers

• Requires:
– Set of stored records
– Distance metric for pairs of

records
• Common choice: Euclidean

– Parameter k
• Number of nearest

neighbors to retrieve

• To classify a record:
– Find its k nearest neighbors
– Determine output based on

(distance-weighted) average
of neighbors’ output

74

Unknown tuple

 
i

ii qpd 2)(),(qp

36

Definition of Nearest Neighbor

75

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points

that have the k smallest distance to x

1-Nearest Neighbor

76

Voronoi Diagram

37

Nearest Neighbor Classification

• Choosing the value of k:
– k too small: sensitive to noise points

– k too large: neighborhood may include points from other
classes

77

X

Effect of Changing k

78

Source: Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning

38

Explaining the Effect of k

• Recall the bias-variance tradeoff

• Small k, i.e., predictions based on few
neighbors

– High variance, low bias

• Large k, e.g., average over entire data set

– Low variance, but high bias

• Need to find k that achieves best tradeoff

• Can do that using validation data

79

Scaling Issues

• Attributes may have to be scaled to prevent
distance measures from being dominated by
one of the attributes

• Example:
– Height of a person may vary from 1.5m to 1.8m

– Weight of a person may vary from 90lb to 300lb

– Income of a person may vary from $10K to $1M

– Income difference would dominate record
distance

80

39

Other Problems

• Problem with Euclidean measure:
– High dimensional data: curse of dimensionality

– Can produce counter-intuitive results

– Solution: Normalize the vectors to unit length

• Irrelevant attributes might dominate distance
– Solution: eliminate them

81

1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

vs

d = 1.4142 d = 1.4142

Computational Cost

• Brute force: O(#trainingRecords)
– For each training record, compute distance to test record,

keep if among top-k

• Pre-compute Voronoi diagram (expensive), then search
spatial index of Voronoi cells: if lucky
O(log(#trainingRecords))

• Store training records in multi-dimensional search tree,
e.g., R-tree: if lucky O(log(#trainingRecords))

• Bulk-compute predictions for many test records using
spatial join between training and test set
– Same worst-case cost as one-by-one predictions, but

usually much faster in practice

82

40

Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods

99

Bayesian Classification

• Performs probabilistic prediction, i.e., predicts
class membership probabilities

• Based on Bayes’ Theorem
• Incremental training

– Update probabilities as new training records arrive
– Can combine prior knowledge with observed data

• Even when Bayesian methods are
computationally intractable, they can provide a
standard of optimal decision making against
which other methods can be measured

100

41

Bayesian Theorem: Basics

• X = random variable for data records (“evidence”)
• H = hypothesis that specific record X=x belongs to class C
• Goal: determine P(H| X=x)

– Probability that hypothesis holds given a record x

• P(H) = prior probability
– The initial probability of the hypothesis
– E.g., person x will buy computer, regardless of age, income etc.

• P(X=x) = probability that data record x is observed
• P(X=x| H) = probability of observing record x, given that the

hypothesis holds
– E.g., given that x will buy a computer, what is the probability

that x is in age group 31...40, has medium income, etc.?

101

Bayes’ Theorem

• Given data record x, the posterior probability of a hypothesis H,
P(H| X=x), follows from Bayes theorem:

• Informally: posterior = likelihood * prior / evidence
• Among all candidate hypotheses H, find the maximally probably

one, called maximum a posteriori (MAP) hypothesis
• Note: P(X=x) is the same for all hypotheses
• If all hypotheses are equally probable a priori, we only need to

compare P(X=x| H)
– Winning hypothesis is called the maximum likelihood (ML) hypothesis

• Practical difficulties: requires initial knowledge of many
probabilities and has high computational cost

102

)(
)()|(

)|(
xX

xX
xX





P

HPHP
HP

42

Towards Naïve Bayes Classifier

• Suppose there are m classes C1, C2,…, Cm

• Classification goal: for record x, find class Ci that
has the maximum posterior probability P(Ci| X=x)

• Bayes’ theorem:

• Since P(X=x) is the same for all classes, only need
to find maximum of

103

)(

)()|(
)|(

xX

X
xX






P
i

CP
i

CxP

i
CP

)()|(
i

CP
i

CP xX

Computing P(X=x|Ci) and P(Ci)

• Estimate P(Ci) by counting the frequency of class
Ci in the training data

• Can we do the same for P(X=x|Ci)?
– Need very large set of training data

– Have |X1|*|X2|*…*|Xd|*m different combinations of
possible values for X and Ci

– Need to see every instance x many times to obtain
reliable estimates

• Solution: decompose into lower-dimensional
problems

104

43

Example: Computing P(X=x|Ci) and
P(Ci)

• P(buys_computer = yes) = 9/14
• P(buys_computer = no) = 5/14
• P(age>40, income=low, student=no, credit_rating=bad| buys_computer=yes) = 0 ?

105

Age Income Student Credit_rating Buys_computer
 30 High No Bad No
 30 High No Good No

31…40 High No Bad Yes
> 40 Medium No Bad Yes
> 40 Low Yes Bad Yes
> 40 Low Yes Good No

31...40 Low Yes Good Yes
 30 Medium No Bad No
 30 Low Yes Bad Yes
> 40 Medium Yes Bad Yes
 30 Medium Yes Good Yes

31...40 Medium No Good Yes
31...40 High Yes Bad Yes

> 40 Medium No Good No

Conditional Independence

• X, Y, Z random variables

• X is conditionally independent of Y, given Z, if
P(X| Y,Z) = P(X| Z)

– Equivalent to: P(X,Y| Z) = P(X| Z) * P(Y| Z)

• Example: people with longer arms read better

– Confounding factor: age

• Young child has shorter arms and lacks reading skills of adult

– If age is fixed, observed relationship between arm
length and reading skills disappears

106

44

Derivation of Naïve Bayes Classifier

• Simplifying assumption: all input attributes
conditionally independent, given class

• Each P(Xk=xk| Ci) can be estimated robustly
– If Xk is categorical attribute

• P(Xk=xk| Ci) = #records in Ci that have value xk for Xk, divided
by #records of class Ci in training data set

– If Xk is continuous, we could discretize it
• Problem: interval selection

– Too many intervals: too few training cases per interval
– Too few intervals: limited choices for decision boundary

107

)|()|()|()|()|),,((2211

1

1 iddii

d

k

ikkid CxXPCxXPCxXPCxXPCxxP  


X

Estimating P(Xk=xk| Ci) for Continuous
Attributes without Discretization

• P(Xk=xk| Ci) computed based on Gaussian
distribution with mean μ and standard deviation
σ:

as

• Estimate k,Ci from sample mean of attribute Xk
for all training records of class Ci

• Estimate k,Ci similarly from sample

108

),,()|P(,, ii CkCkkkk xgCixX 

2

2

2

)(

2

1
),,(











x

exg

45

Naïve Bayes Example

• Classes:
– C1:buys_computer = yes

– C2:buys_computer = no

• Data sample x
– age  30,

– income = medium,

– student = yes, and

– credit_rating = fair

109

Age Income Student Credit_rating Buys_computer
 30 High No Bad No
 30 High No Good No

31…40 High No Bad Yes
> 40 Medium No Bad Yes
> 40 Low Yes Bad Yes
> 40 Low Yes Good No

31...40 Low Yes Good Yes
 30 Medium No Bad No
 30 Low Yes Bad Yes
> 40 Medium Yes Bad Yes
 30 Medium Yes Good Yes

31...40 Medium No Good Yes
31...40 High Yes Bad Yes

> 40 Medium No Good No

Naïve Bayesian Computation

• Compute P(Ci) for each class:
– P(buys_computer = “yes”) = 9/14 = 0.643
– P(buys_computer = “no”) = 5/14= 0.357

• Compute P(Xk=xk| Ci) for each class
– P(age = “ 30” | buys_computer = “yes”) = 2/9 = 0.222
– P(age = “ 30” | buys_computer = “no”) = 3/5 = 0.6
– P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
– P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
– P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
– P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
– P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
– P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

• Compute P(X=x| Ci) using the Naive Bayes assumption
– P(30, medium, yes, fair |buys_computer = “yes”) = 0.222 * 0.444 * 0.667 * 0.667 = 0.044
– P(30, medium, yes, fair | buys_computer = “no”) = 0.6 * 0.4 * 0.2 * 0.4 = 0.019

• Compute final result P(X=x| Ci) * P(Ci)
– P(X=x | buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
– P(X=x | buys_computer = “no”) * P(buys_computer = “no”) = 0.007

• Therefore we predict buys_computer = “yes” for
input x = (age = “30”, income = “medium”, student = “yes”, credit_rating = “fair”)

110

46

Zero-Probability Problem

• Naïve Bayesian prediction requires each conditional probability to
be non-zero (why?)

• Example: 1000 records for buys_computer=yes with income=low
(0), income= medium (990), and income = high (10)
– For input with income=low, conditional probability is zero

• Use Laplacian correction (or Laplace estimator) by adding 1 dummy
record to each income level

• Prob(income = low) = 1/1003
• Prob(income = medium) = 991/1003
• Prob(income = high) = 11/1003

– “Corrected” probability estimates close to their “uncorrected”
counterparts, but none is zero

111

)|()|()|()|()|),,((2211

1

1 iddii

d

k

ikkid CxXPCxXPCxXPCxXPCxxP  


X

Naïve Bayesian Classifier: Comments

• Easy to implement
• Good results obtained in many cases

– Robust to isolated noise points
– Handles missing values by ignoring the instance during

probability estimate calculations
– Robust to irrelevant attributes

• Disadvantages
– Assumption: class conditional independence,

therefore loss of accuracy
– Practically, dependencies exist among variables

• How to deal with these dependencies?

112

47

Probabilities

• Summary of elementary probability facts we have
used already and/or will need soon

• Let X be a random variable as usual

• Let A be some predicate over its possible values
– A is true for some values of X, false for others

– E.g., X is outcome of throw of a die, A could be “value
is greater than 4”

• P(A) is the fraction of possible worlds in which A
is true
– P(die value is greater than 4) = 2 / 6 = 1/3

113

Axioms

• 0  P(A)  1

• P(True) = 1

• P(False) = 0

• P(A  B) = P(A) + P(B) - P(A  B)

114

48

Theorems from the Axioms

• 0  P(A)  1, P(True) = 1, P(False) = 0

• P(A  B) = P(A) + P(B) - P(A  B)

• From these we can prove:

– P(not A) = P(~A) = 1 - P(A)

– P(A) = P(A  B) + P(A  ~B)

115

Conditional Probability

• P(A|B) = Fraction of worlds in which B is true
that also have A true

116

F

H

H = “Have a headache”

F = “Coming down with Flu”

P(H) = 1/10

P(F) = 1/40

P(H|F) = 1/2

“Headaches are rare and flu

is rarer, but if you’re coming

down with flu there’s a 50-

50 chance you’ll have a

headache.”

49

Definition of Conditional Probability

117

P(A  B)

P(A| B) = ------------

P(B)

P(A  B) = P(A| B) P(B)

Corollary: the Chain Rule

Multivalued Random Variables

• Suppose X can take on more than 2 values

• X is a random variable with arity k if it can take
on exactly one value out of {v1, v2,…, vk}

• Thus

118

jivXvXP ji  if 0)(

1)...(21  kvXvXvXP

50

Easy Fact about Multivalued Random
Variables

• Using the axioms of probability
– 0  P(A)  1, P(True) = 1, P(False) = 0

– P(A  B) = P(A) + P(B) - P(A  B)

• And assuming that X obeys

• We can prove that

• And therefore:

119

)()...(
1

21 



i

j

ji vXPvXvXvXP

jivXvXP ji  if 0)(

1)...(21  kvXvXvXP

1)(
1




k

j

jvXP

Useful Easy-to-Prove Facts

120

1)|(~)|( BAPBAP

1)|(
1




k

j

j BvXP

51

The Joint Distribution

121

Recipe for making a joint distribution

of d variables:

Example: Boolean

variables A, B, C

The Joint Distribution

122

Recipe for making a joint distribution

of d variables:

1. Make a truth table listing all

combinations of values of your

variables (has 2d rows for d

Boolean variables).

Example: Boolean

variables A, B, C

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

52

The Joint Distribution

123

Recipe for making a joint distribution

of d variables:

1. Make a truth table listing all

combinations of values of your

variables (has 2d rows for d

Boolean variables).

2. For each combination of values,

say how probable it is.

Example: Boolean

variables A, B, C

A B C Prob

0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 0.10

The Joint Distribution

124

Recipe for making a joint distribution

of d variables:

1. Make a truth table listing all

combinations of values of your

variables (has 2d rows for d

Boolean variables).

2. For each combination of values,

say how probable it is.

3. If you subscribe to the axioms of

probability, those numbers must

sum to 1.

Example: Boolean

variables A, B, C

A B C Prob

0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 0.10

A

B

C0.05
0.25

0.10 0.050.05

0.10

0.10
0.30

53

Using the
Joint Dist.

125

Once you have the JD you

can ask for the probability of

any logical expression

involving your attribute


E

PEP
 matching rows

)row()(

Using the
Joint Dist.

126

P(Poor  Male) = 0.4654 
E

PEP
 matching rows

)row()(

54

Using the
Joint Dist.

127

P(Poor) = 0.7604 
E

PEP
 matching rows

)row()(

Inference
with the

Joint Dist.

128









2

 2 1

 matching rows

 and matching rows

2

21
21

)row(

)row(

)(

)(
)|(

E

EE

P

P

EP

EEP
EEP

55

Inference
with the

Joint Dist.

129









2

 2 1

 matching rows

 and matching rows

2

21
21

)row(

)row(

)(

)(
)|(

E

EE

P

P

EP

EEP
EEP

P(Male | Poor) = 0.4654 / 0.7604 = 0.612

Joint Distributions

• Good news: Once you
have a joint
distribution, you can
answer important
questions that involve
uncertainty.

• Bad news: Impossible to
create joint distribution
for more than about ten
attributes because
there are so many
numbers needed when
you build it.

130

56

What Would Help?

• Full independence

– P(gender=g  hours_worked=h  wealth=w) =
P(gender=g) * P(hours_worked=h) * P(wealth=w)

– Can reconstruct full joint distribution from a few
marginals

• Full conditional independence given class value

– Naïve Bayes

• What about something between Naïve Bayes and
general joint distribution?

131

Bayesian Belief Networks

• Subset of the variables conditionally independent

• Graphical model of causal relationships

– Represents dependency among the variables

– Gives a specification of joint probability distribution

132

X Y

Z
P

 Nodes: random variables

 Links: dependency

 X and Y are the parents of Z, and Y is

the parent of P

 Given Y, Z and P are independent

 Has no loops or cycles

57

Bayesian Network Properties

• Each variable is conditionally independent of
its non-descendents in the graph, given its
parents

• Naïve Bayes as a Bayesian network:

133

Y

X1 X2 Xn

Bayesian Belief Network Example

134

Family

History

LungCancer

PositiveXRay

Smoker

Emphysema

Dyspnea

LC

~LC

(FH, S) (FH, ~S) (~FH, S) (~FH, ~S)

0.8

0.2

0.5

0.5

0.7

0.3

0.1

0.9

Bayesian Belief Networks

Conditional probability table
(CPT) for variable LungCancer:

   



d

i

iiid XxXPxxP
1

1)parents(|),...,(X

CPT shows the conditional probability for
each possible combination of its parents

Easy to compute joint distribution for
all attributes X1,…, Xd, from CPT:

58

Creating a Bayes Network

135

T: The lecture started on time
L: The lecturer arrives late
R: The lecture concerns data mining
M: The lecturer is Mike
S: It is snowing

S

M

R

L

T

?

Computing with Bayes Net

P(T ^ ~R ^ L ^ ~M ^ S)
= P(T  ~R ^ L ^ ~M ^ S) * P(~R ^ L ^ ~M ^ S)
= P(T  L) * P(~R ^ L ^ ~M ^ S)
= P(T  L) * P(~R  L ^ ~M ^ S) * P(L^~M^S)
= P(T  L) * P(~R  ~M) * P(L ^ ~M ^ S)
= P(T  L) * P(~R  ~M) * P(L~M ^ S) * P(~M ^ S)
= P(T  L) * P(~R  ~M) * P(L~M ^ S) * P(~M | S) * P(S)
= P(T  L) * P(~R  ~M) * P(L~M ^ S) * P(~M) * P(S)

136

S M

R

L

T

P(S)=0.3
P(M)=0.6

P(RM)=0.3

P(R~M)=0.6

P(TL)=0.3

P(T~L)=0.8

P(LM^S)=0.05

P(LM^~S)=0.1

P(L~M^S)=0.1

P(L~M^~S)=0.2
T: The lecture started on time
L: The lecturer arrives late
R: The lecture concerns data mining
M: The lecturer is Mike
S: It is snowing

59

Computing with Bayes Net

P(R  T ^ ~S)
= P(R ^ T ^ ~S) / P(T ^ ~S)
= P(R ^ T ^ ~S) / (P(R ^ T ^ ~S) + P(~R ^ T ^ ~S))

P(R ^ T ^ ~S): Compute as P(L ^ M ^ R ^ T ^ ~S) + P(~L ^ M ^ R ^ T ^ ~S)
+ P(L ^ ~M ^ R ^ T ^ ~S) + P(~L ^ ~M ^ R ^ T ^ ~S)

Compute P(~R ^ T ^ ~S) similarly

Any problem here? Yes, possibly many terms to be computed...

137

S M

R

L

T

P(S)=0.3
P(M)=0.6

P(RM)=0.3

P(R~M)=0.6

P(TL)=0.3

P(T~L)=0.8

P(LM^S)=0.05

P(LM^~S)=0.1

P(L~M^S)=0.1

P(L~M^~S)=0.2
T: The lecture started on time
L: The lecturer arrives late
R: The lecture concerns data mining
M: The lecturer is Mike
S: It is snowing

Inference with Bayesian Networks

• Want to compute P(Ci| X=x)
– Assume the output attribute Y node’s parents are all input

attribute nodes and all these input values are given

– Then we have P(Ci| X=x) = P(Ci| parents(Y)), i.e., we can
read it directly from CPT

• What if values are given only for a subset of attributes?
– Can still compute it from the Bayesian network

– But: exact inference of probabilities in general for an
arbitrary Bayesian network is NP-hard

– Solutions: probabilistic inference, trade precision for
efficiency

138

60

Training Bayesian Networks

• Several scenarios:
– Given both the network structure and all variables are

observable: learn only the CPTs

– Network structure known, some hidden variables: gradient
descent (greedy hill-climbing) method, analogous to neural
network learning

– Network structure unknown, all variables observable:
search through the model space to reconstruct network
topology

– Unknown structure, all hidden variables: No good
algorithms known for this purpose

• Ref.: D. Heckerman: Bayesian networks for data mining

139

Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods

141

61

Basic Building Block: Perceptron

142









 



d

i

ii xwbf
1

sign)(

ExampleFor

x

f

Weighted

sum

Input

vector x

Output y

Activation

function

Weight

vector w



w1

w2

wd

x1

x2

xd

Called the bias

+b

Perceptron Decision Hyperplane

143

Input: {(x1, x2, y), …}

Output: classification function f(x)

f(x) > 0: return +1

f(x) ≤ 0: return = -1

Decision hyperplane: b+w∙x = 0

Note: b+w∙x > 0, if and only if

b represents a threshold for when the
perceptron “fires”.

x1

x2

b+w1x1+w2x2 = 0





d

i

ii bxw
1

62

Representing Boolean Functions

• AND with two-input perceptron
– b=-0.8, w1=w2=0.5

• OR with two-input perceptron
– b=-0.3, w1=w2=0.5

• m-of-n function: true if at least m out of n inputs
are true
– All input weights 0.5, threshold weight b is set

according to m, n

• Can also represent NAND, NOR
• What about XOR?

144

Perceptron Training Rule

• Goal: correct +1/-1 output for each training record
• Start with random weights, select constant  (learning

rate)
• For each training record (x, y)

– Let fold(x) be the output of the current perceptron for x
– Set b:= b + b, where b = (y - fold(x))
– For all i, set wi := wi + wi, where wi = (y - fold(x))xi

• Keep iterating over training records until all are
correctly classified

• Converges to correct decision boundary, if the classes
are linearly separable and a small enough  is used
– Why?

145

63

Gradient Descent

• If training records are not linearly separable, find best
fit approximation.
– Gradient descent to search the space of possible weight

vectors
– Basis for Backpropagation algorithm

• Consider un-thresholded perceptron (no sign function
applied), i.e., u(x) = b + w∙x

• Measure training error by squared error

– D = training data

146

 
2

),(

)u(
2

1
),E(




Dy

yb
x

xw

Gradient Descent Rule

• Find weight vector that minimizes E(b,w) by altering it
in direction of steepest descent
– Set (b,w) := (b,w) + (b,w), where (b,w) = - E(b,w)

• -E(b,w)=[E/b, E/w1,…, E/wn] is the gradient, hence

• Start with random weights,
iterate until convergence
– Will converge to global

minimum if  is small enough

147

 )()u(
E

:
),(

i

Dy

i

i

ii xyw
w

ww 



 

x

x

 


















 

Dy

yb
b

bb
),(

)u(
E

:
x

x

Let w0 := b.

64

Gradient Descent Summary

• Epoch updating (aka batch mode)
– Do until satisfied with model

• Compute gradient over entire training set
• Update all weights based on gradient

• Case updating (aka incremental mode, stochastic gradient descent)
– Do until satisfied with model

• For each training record
– Compute gradient for this single training record
– Update all weights based on gradient

• Case updating can approximate epoch updating arbitrarily close if 
is small enough

• Perceptron training rule and case updating might seem identical
– Difference: error computation on thresholded vs. unthresholded

output

148

Multilayer Feedforward Networks

• Use another perceptron to combine
output of lower layer
– What about linear units only?

Can only construct linear functions!
– Need nonlinear component

• sign function: not differentiable
(gradient descent!)

• Use sigmoid: (x)=1/(1+e-x)

149

Perceptron function:

xw


be
y

1

1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-4 -2 0 2 4

1/(1+exp(-x))

Input layer

Hidden layer

Output layer

65

1-Hidden Layer Net Example

150

NINP = 2 NHID = 3

x1

x2

w11

w21

w31

w1

w2

w3

w32

w22

w12

g is usually the
sigmoid function










































INS

INS

INS

N

k

kk

N

k

kk

N

k

kk

xwgv

xwgv

xwgv

1

33

1

22

1

11









 



HIDN

k

kkvWg
1

Out

Making Predictions

• Inputs: all input data attributes
– Record fed simultaneously into the units of the input layer
– Then weighted and fed simultaneously to a hidden layer

• Number of hidden layers is arbitrary, although usually only one

• Weighted outputs of the last hidden layer are the input
to the units in the output layer, which emits the
network's prediction

• The network is feed-forward
– None of the weights cycles back to an input unit or to an

output unit of a previous layer

• Statistical point of view: neural networks perform
nonlinear regression

151

66

Backpropagation Algorithm

• We discussed gradient descent to find the best weights for
a single perceptron using simple un-thresholded function
– If sigmoid (or other differentiable) function is applied to

weighted sum, use complete function for gradient descent

• Multiple perceptrons: optimize over all weights of all
perceptrons
– Problems: huge search space, local minima

• Backpropagation
– Initialize all weights with small random values
– Iterate many times

• Compute gradient, starting at output and working back
– Error of hidden unit h: how do we get the true output value? Use weighted

sum of errors of each unit influenced by h.

• Update all weights in the network

152

Overfitting

• When do we stop updating the weights?
– Might overfit to training data

• Overfitting tends to happen in later iterations
– Weights initially small random values

– Weights all similar => smooth decision surface

– Surface complexity increases as weights diverge

• Preventing overfitting
– Weight decay: decrease each weight by small factor

during each iteration, or

– Use validation data to decide when to stop iterating

153

67

Neural Network Decision Boundary

154

Source: Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning

Backpropagation Remarks

• Computational cost
– Each interation costs O(|D|*|w|), with |D| training

records and |w| weights
– Number of iterations can be exponential in n, the

number of inputs (in practice often tens of thousands)

• Local minima can trap the gradient descent
algorithm
– Convergence guaranteed to local minimum, not global

• Backpropagation highly effective in practice
– Many variants to deal with local minima issue
– E.g., case updating might avoid local minimum

155

68

Defining a Network

1. Decide network topology
– # input units, # hidden layers, # units in each hidden layer, # output units

2. Normalize input values for each attribute to [0.0, 1.0]
– Transform nominal and ordinal attributes: one input unit per domain value,

each initialized to 0
– Why not map the attribute to a single input with domain [0.0, 1.0]?

3. Output for classification task with >2 classes: one output unit per class
4. Choose learning rate 

– Too small: can take days instead of minutes to converge
– Too large: diverges (MSE gets larger while the weights increase and usually

oscillate)
– Heuristic: set it to 1 / (#training iterations)

5. If model accuracy is unacceptable, re-train with different network
topology, different set of initial weights, or different learning rate
– Might need a lot of trial-and-error

156

Representational Power

• Boolean functions
– Each can be represented by a 2-layer network
– Number of hidden units can grow exponentially with

number of inputs
• Create hidden unit for each input record
• Set its weights to activate only for that input
• Implement output unit as OR gate that only activates for desired

output patterns

• Continuous functions
– Every bounded continuous function can be approximated

arbitrarily close by a 2-layer network

• Any function can be approximated arbitrarily close by a
3-layer network

157

69

Neural Network as a Classifier

• Weaknesses
– Long training time
– Many non-trivial parameters, e.g., network topology
– Poor interpretability: What is the meaning behind learned

weights and hidden units?
• Note: hidden units are alternative representation of input values,

capturing their relevant features

• Strengths
– High tolerance to noisy data
– Well-suited for continuous-valued inputs and outputs
– Successful on a wide array of real-world data
– Techniques exist for extraction of rules from neural networks

158

Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods

160

70

SVM—Support Vector Machines

• Newer and very popular classification method

• Uses a nonlinear mapping to transform the
original training data into a higher dimension

• Searches for the optimal separating
hyperplane (i.e., “decision boundary”) in the
new dimension

• SVM finds this hyperplane using support
vectors (“essential” training records) and
margins (defined by the support vectors)

161

SVM—History and Applications

• Vapnik and colleagues (1992)
– Groundwork from Vapnik & Chervonenkis’ statistical

learning theory in 1960s

• Training can be slow but accuracy is high
– Ability to model complex nonlinear decision

boundaries (margin maximization)

• Used both for classification and prediction

• Applications: handwritten digit recognition,
object recognition, speaker identification,
benchmarking time-series prediction tests

162

71

Linear Classifiers

163

denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

How would you
classify this data?

Linear Classifiers

164

denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

How would you
classify this data?

72

Linear Classifiers

165

denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

How would you
classify this data?

Linear Classifiers

166

denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

How would you
classify this data?

73

Linear Classifiers

167

denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

Any of these
would be fine..

..but which is
best?

Classifier Margin

168

denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

Define the margin
of a linear
classifier as the
width that the
boundary could be
increased by
before hitting a
data record.

74

Maximum Margin

169

denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

Find the maximum
margin linear
classifier.

This is the
simplest kind of
SVM, called linear
SVM or LSVM.

Maximum Margin

170

denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

Support Vectors
are those
datapoints that
the margin
pushes up
against

75

Why Maximum Margin?

• If we made a small error in the location of the
boundary, this gives us the least chance of
causing a misclassification.

• Model is immune to removal of any non-
support-vector data records.

• There is some theory (using VC dimension)
that is related to (but not the same as) the
proposition that this is a good thing.

• Empirically it works very well.

171

Specifying a Line and Margin

• Plus-plane = { x : wx + b = +1 }
• Minus-plane = { x : wx + b = -1 }

172

Classify as +1 if w x + b  1

-1 if wx + b  -1

what if -1 < wx + b < 1 ?

Plus-Plane

Minus-Plane

Classifier Boundary

76

Computing Margin Width

• Plus-plane = { x : wx + b = +1 }
• Minus-plane = { x : wx + b = -1 }
• Goal: compute M in terms of w and b

– Note: vector w is perpendicular to plus-plane
• Consider two vectors u and v on plus-plane and show that w(u-v)=0
• Hence it is also perpendicular to the minus-plane

173

M = Margin Width

Computing Margin Width

• Choose arbitrary point x- on minus-plane

• Let x+ be the point in plus-plane closest to x-

• Since vector w is perpendicular to these planes, it
holds that x+ = x- + w, for some value of 

174

M = Margin Width

x-

x+

77

Putting It All Together

• We have so far:
– wx+ + b = +1 and wx- + b = -1

– x+ = x- + w

– |x+- x-| = M

• Derivation:
– w(x- + w) + b = +1, hence wx- + b + ww = 1

– This implies ww = 2, i.e.,  = 2 / ww

– Since M = |x+- x-| = |w| =  |w| = (ww)0.5

– We obtain M = 2 (ww)0.5/ ww = 2 / (ww)0.5

175

Finding the Maximum Margin

• How do we find w and b such that the margin is
maximized and all training records are in the
correct zone for their class?

• Solution: Quadratic Programming (QP)

• QP is a well-studied class of optimization
algorithms to maximize a quadratic function of
some real-valued variables subject to linear
constraints.
– There exist algorithms for finding such constrained

quadratic optima efficiently and reliably.

176

78

Quadratic Programming

177

2
maxarg

uu
ud

u

R
c

T
T Find

nmnmnn

mm

mm

buauaua

buauaua

buauaua







...

:

...

...

2211

22222121

11212111

)()(22)(11)(

)2()2(22)2(11)2(

)1()1(22)1(11)1(

...

:

...

...

enmmenenen

nmmnnn

nmmnnn

buauaua

buauaua

buauaua












And subject to

n additional linear
inequality
constraints

e additional
linear
equality
constraints

Quadratic criterion

Subject to

What Are the SVM Constraints?

• What is the quadratic
optimization criterion?

• Consider n training
records (x(k), y(k)),
where y(k) = +/- 1

• How many constraints
will we have?

• What should they be?

178

ww 


2
M

79

What Are the SVM Constraints?

• What is the quadratic
optimization criterion?

– Minimize ww

• Consider n training
records (x(k), y(k)),
where y(k) = +/- 1

• How many constraints
will we have? n.

• What should they be?

For each 1  k  n:

wx(k) + b  1, if y(k)=1

wx(k) + b  -1, if y(k)=-1

179

ww 


2
M

Problem: Classes Not Linearly
Separable

• Inequalities for training
records are not
satisfiable by any w and
b

180

denotes +1

denotes -1

80

Solution 1?

• Find minimum ww,
while also minimizing
number of training set
errors

– Not a well-defined
optimization problem
(cannot optimize two
things at the same time)

181

denotes +1

denotes -1

Solution 2?

• Minimize ww +
C(#trainSetErrors)
– C is a tradeoff parameter

• Problems:
– Cannot be expressed as

QP, hence finding
solution might be slow

– Does not distinguish
between disastrous
errors and near misses

182

denotes +1

denotes -1

81

Solution 3

• Minimize ww +
C(distance of error
records to their correct
place)

• This works!

• But still need to do
something about the
unsatisfiable set of
inequalities

183

denotes +1

denotes -1

What Are the SVM Constraints?

• What is the quadratic
optimization criterion?
– Minimize

• Consider n training
records (x(k), y(k)),
where y(k) = +/- 1

• How many constraints
will we have? n.

• What should they be?

For each 1  k  n:

wx(k)+b  1 - k, if y(k)=1

wx(k)+b  -1+k, if y(k)=-1

k  0

184

7

11

2





n

k

kεC
12

1
ww

ww 


2
M

82

Facts About the New Problem
Formulation

• Original QP formulation had d+1 variables
– w1, w2,..., wd and b

• New QP formulation has d+1+n variables
– w1, w2,..., wd and b

– 1, 2,..., n

• C is a new parameter that needs to be set for
the SVM
– Controls tradeoff between paying attention to

margin size versus misclassifications

185

Effect of Parameter C

186

Source: Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning

83

An Equivalent QP (The “Dual”)

187

Maximize)()()()(
2

1

1 11

lklykyααα
n

k

n

l

lk

n

k

k xx  
 

Subject to these
constraints:

Cαk k  0:

Then define:





n

k

k kkyα
1

)()(xw












wx)(
)(

1
AVG
0:

k
ky

b
Ck k

Then classify with:

f(x,w,b) = sign(wx + b)

0)(
1




n

k

k kyα

Important Facts

• Dual formulation of QP can be optimized more
quickly, but result is equivalent

• Data records with k > 0 are the support vectors
– Those with 0 < k < C lie on the plus- or minus-plane

– Those with k = C are on the wrong side of the
classifier boundary (have k > 0)

• Computation for w and b only depends on those
records with k > 0, i.e., the support vectors

• Alternative QP has another major advantage, as
we will see now...

188

84

Easy To Separate

189

What would
SVMs do with
this data?

Easy To Separate

190

Not a big surprise

Positive “plane” Negative “plane”

85

Harder To Separate

191

What can be
done about
this?

Harder To Separate

192

Non-linear basis
functions:

Original data: (X, Y)

Transformed: (X, X2, Y)

Think of X2 as a new
attribute, e.g., X’X

X’ (= X2)

86

Now Separation Is Easy Again

193

X’ (= X2)

X

Corresponding “Planes” in Original
Space

194

Region below minus-”plane”

Region above plus-”plane”

87

Common SVM Basis Functions

• Polynomial of attributes X1,..., Xd of certain
max degree, e.g., X2+X1X3+X4

2

• Radial basis function

– Symmetric around center, i.e.,
KernelFunction(|X - c| / kernelWidth)

• Sigmoid function of X, e.g., hyperbolic tangent

• Let (x) be the transformed input record

– Previous example: ((x)) = (x, x2)

195

Quadratic Basis
Functions

196



































































 dd

d

d

d

d

xx

xx

xx

xx

xx

xx

x

x

x

x

x

x

1

1

32

1

31

21

2

2

2

2

1

2

1

2

:

2

:

2

2

:

2

2

:

2

:

2

2

1

)(xΦ

Constant Term

Linear Terms

Pure
Quadratic

Terms

Quadratic
Cross-Terms

Number of terms
(assuming d input attributes):

(d+2)-choose-2

= (d+2)(d+1)/2

 d2/2

Why did we choose this specific
transformation?

88

Dual QP With Basis Functions

197

Maximize    )()()()(
2

1

1 11

lklykyααα
n

k

n

l

lk

n

k

k xΦxΦ  
 

Subject to these
constraints:

Then define:

 



n

k

k kkyα
1

)()(xΦw

 











wxΦ)(
)(

1
AVG
0:

k
ky

b
Ck k

Then classify with:

f(x,w,b) = sign(w(x) + b)

0)(
1




n

k

k kyαCαk k  0:

Computation Challenge

• Input vector x has d components (its d attribute
values)

• The transformed input vector (x) has d2/2
components

• Hence computing (x(k))(x(l)) now costs order
d2/2 instead of order d operations (additions,
multiplications)

• ...or is there a better way to do this?
– Take advantage of properties of certain

transformations

198

89

Quadratic
Dot

Products

199





































































































































 dd

d

d

d

d

dd

d

d

d

d

bb

bb

bb

bb

bb

bb

b

b

b

b

b

b

aa

aa

aa

aa

aa

aa

a

a

a

a

a

a

1

1

32

1

31

21

2

2

2

2

1

2

1

1

1

32

1

31

21

2

2

2

2

1

2

1

2

:

2

:

2

2

:

2

2

:

2

:

2

2

1

2

:

2

:

2

2

:

2

2

:

2

:

2

2

1

)()(bΦaΦ

1




m

i

iiba
1

2




m

i

ii ba
1

22


 

m

i

m

ij

jiji bbaa
1 1

2

+

+

+

Quadratic Dot Products

200

)()(bΦaΦ


 


d

i

d

ij

jiji

d

i

ii

d

i

ii bbaababa
1 11

22

1

221

Now consider another function of a
and b:

2)1(ba

12)(2  baba

12
1

2

1









 



d

i

ii

d

i

ii baba

12
11 1

 
 

d

i

ii

d

i

d

j

jjii bababa

122)(
11 11

2  
 

d

i

ii

d

i

d

ij

jjii

d

i

ii babababa

90

Quadratic Dot Products

• The results of (a)(b) and of (ab+1)2 are identical

• Computing (a)(b) costs about d2/2, while
computing (ab+1)2 costs only about d+2 operations

• This means that we can work in the high-dimensional
space (d2/2 dimensions) where the training records are
more easily separable, but pay about the same cost as
working in the original space (d dimensions)

• Savings are even greater when dealing with higher-
degree polynomials, i.e., degree q>2, that can be
computed as (ab+1)q

201

Any Other Computation Problems?

• What about computing w?
– Finally need f(x,w,b) = sign(w(x) + b):

– Can be computed using the same trick as before

• Can apply the same trick again to b, because

202

 



n

k

k kkyα
1

)()(xΦw  











wxΦ)(
)(

1
AVG
0:

k
ky

b
Ck k

 )()()()(
1

xΦxΦxΦw  


n

k

k kkyα

     )()()()(
1

jkjyαk
n

j

j xΦxΦwxΦ  


91

SVM Kernel Functions

• For which transformations, called kernels,
does the same trick work?

• Polynomial: K(a,b)=(a  b +1)q

• Radial-Basis-style (RBF):

– Neural-net-style sigmoidal:

203








 


2

2

2

)(
exp),K(



ba
ba

)tanh(),K(  baba

,  and  are magic
parameters that must
be chosen by a model
selection method.

Overfitting

• With the right kernel function, computation in high
dimensional transformed space is no problem

• But what about overfitting? There are so many
parameters...

• Usually not a problem, due to maximum margin
approach
– Only the support vectors determine the model, hence SVM

complexity depends on number of support vectors, not
dimensions (still, in higher dimensions there might be
more support vectors)

– Minimizing ww discourages extremely large weights,
which smoothes the function (recall weight decay for
neural networks!)

204

92

Different Kernels

205

Source: Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning

Multi-Class Classification

• SVMs can only handle two-class outputs (i.e. a
categorical output variable with arity 2).

• What can be done?
• Answer: with output arity N, learn N SVM’s

– SVM 1 learns “Output==1” vs “Output != 1”
– SVM 2 learns “Output==2” vs “Output != 2”
– :
– SVM N learns “Output==N” vs “Output != N”

• To predict the output for a new input, just predict
with each SVM and find out which one puts the
prediction the furthest into the positive region.

206

93

Why Is SVM Effective on High
Dimensional Data?

• Complexity of trained classifier is characterized by the
number of support vectors, not dimensionality of the
data

• If all other training records are removed and training is
repeated, the same separating hyperplane would be
found

• The number of support vectors can be used to
compute an upper bound on the expected error rate of
the SVM, which is independent of data dimensionality

• Thus, an SVM with a small number of support vectors
can have good generalization, even when the
dimensionality of the data is high

207

SVM vs. Neural Network

• SVM

– Relatively new concept

– Deterministic algorithm

– Nice Generalization
properties

– Hard to train – learned in
batch mode using
quadratic programming
techniques

– Using kernels can learn
very complex functions

• Neural Network

– Relatively old

– Nondeterministic
algorithm

– Generalizes well but
doesn’t have strong
mathematical foundation

– Can easily be learned in
incremental fashion

– To learn complex
functions—use multilayer
perceptron (not that trivial)

209

94

Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods

210

What Is Prediction?

• Essentially the same as classification, but output is
continuous, not discrete
– Construct a model
– Use model to predict continuous output value for a given

input

• Major method for prediction: regression
– Many variants of regression analysis in statistics literature;

not covered in this class

• Neural network and k-NN can do regression “out-of-
the-box”

• SVMs for regression exist
• What about trees?

211

95

Regression Trees and Model Trees

• Regression tree: proposed in CART system (Breiman et
al. 1984)
– CART: Classification And Regression Trees

– Each leaf stores a continuous-valued prediction
• Average output value for the training records that reach the leaf

• Model tree: proposed by Quinlan (1992)
– Each leaf holds a regression model—a multivariate linear

equation

• Training: like for classification trees, but uses variance
instead of purity measure for selecting split predicates

212

Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods

213

96

Classifier Accuracy Measures

• Accuracy of a classifier M, acc(M): percentage of
test records that are correctly classified by M
– Error rate (misclassification rate) of M = 1 – acc(M)
– Given m classes, CM[i,j], an entry in a confusion

matrix, indicates # of records in class i that are
labeled by the classifier as class j

214

Predicted class total

buy_computer = yes buy_computer = no

True class buy_computer = yes 6954 46 7000

buy_computer = no 412 2588 3000

total 7366 2634 10000

C1 C2

C1 True positive False negative

C2 False positive True negative

Precision and Recall

• Precision: measure of exactness
– t-pos / (t-pos + f-pos)

• Recall: measure of completeness
– t-pos / (t-pos + f-neg)

• F-measure: combination of precision and recall
– 2 * precision * recall / (precision + recall)

• Note: Accuracy = (t-pos + t-neg) / (t-pos + t-neg +
f-pos + f-neg)

215

97

Limitation of Accuracy

• Consider a 2-class problem
– Number of Class 0 examples = 9990
– Number of Class 1 examples = 10

• If model predicts everything to be class 0,
accuracy is 9990/10000 = 99.9 %
– Accuracy is misleading because model does not detect

any class 1 example

• Always predicting the majority class defines the
baseline
– A good classifier should do better than baseline

216

Cost-Sensitive Measures: Cost Matrix

217

PREDICTED CLASS

ACTUAL
CLASS

C(i|j) Class=Yes Class=No

Class=Yes C(Yes|Yes) C(No|Yes)

Class=No C(Yes|No) C(No|No)

C(i| j): Cost of misclassifying class j example as class i

98

Computing Cost of Classification

218

Cost
Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(i|j) + -

+ -1 100

- 1 0

Model M1 PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 150 40

- 60 250

Model M2 PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 250 45

- 5 200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Prediction Error Measures

• Continuous output: it matters how far off the prediction is from the
true value

• Loss function: distance between y and predicted value y’
– Absolute error: | y – y’|
– Squared error: (y – y’)2

• Test error (generalization error): average loss over the test set
• Mean absolute error: Mean squared error:

• Relative absolute error: Relative squared error:

• Squared-error exaggerates the presence of outliers

219





n

i

iyiy
n 1

|)(')(|
1

 



n

i

iyiy
n 1

2
)(')(

1













n

i

n

i

yiy

iyiy

1

1

|)(|

|)(')(|













n

i

n

i

yiy

iyiy

1

2

1

2

))((

))(')((

99

Evaluating a Classifier or Predictor

• Holdout method
– The given data set is randomly partitioned into two sets

• Training set (e.g., 2/3) for model construction
• Test set (e.g., 1/3) for accuracy estimation

– Can repeat holdout multiple times
• Accuracy = avg. of the accuracies obtained

• Cross-validation (k-fold, where k = 10 is most popular)
– Randomly partition data into k mutually exclusive subsets,

each approximately equal size
– In i-th iteration, use Di as test set and others as training set
– Leave-one-out: k folds where k = # of records

• Expensive, often results in high variance of performance metric

220

Learning Curve

• Accuracy versus
sample size

• Effect of small
sample size:
– Bias in estimate
– Variance of

estimate

• Helps determine how
much training data is
needed
– Still need to have

enough test and
validation data to
be representative
of distribution

221

100

ROC (Receiver Operating
Characteristic)

• Developed in 1950s for signal detection theory to
analyze noisy signals
– Characterizes trade-off between positive hits and false

alarms

• ROC curve plots T-Pos rate (y-axis) against F-Pos
rate (x-axis)

• Performance of each classifier is represented as a
point on the ROC curve
– Changing the threshold of the algorithm, sample

distribution or cost matrix changes the location of the
point

222

ROC Curve

• 1-dimensional data set containing 2 classes (positive and negative)
– Any point located at x > t is classified as positive

223

At threshold t:

TPR=0.5, FPR=0.12

101

ROC Curve
(TPR, FPR):

• (0,0): declare everything to
be negative class

• (1,1): declare everything to
be positive class

• (1,0): ideal

• Diagonal line:

– Random guessing

224

Diagonal Line for Random Guessing

• Classify a record as positive with fixed probability
p, irrespective of attribute values

• Consider test set with a positive and b negative
records

• True positives: p*a, hence true positive rate =
(p*a)/a = p

• False positives: p*b, hence false positive rate =
(p*b)/b = p

• For every value 0p1, we get point (p,p) on ROC
curve

225

102

Using ROC for Model Comparison

• Neither model
consistently
outperforms the
other
– M1 better for small

FPR
– M2 better for large

FPR

• Area under the ROC
curve
– Ideal: area = 1
– Random guess:

area = 0.5

226

How to Construct an ROC curve

• Use classifier that produces
posterior probability P(+|x)
for each test record x

• Sort records according to
P(+|x) in decreasing order

• Apply threshold at each
unique value of P(+|x)
– Count number of TP, FP, TN, FN

at each threshold
– TP rate, TPR = TP/(TP+FN)
– FP rate, FPR = FP/(FP+TN)

227

record P(+|x) True Class

1 0.95 +

2 0.93 +

3 0.87 -

4 0.85 -

5 0.85 -

6 0.85 +

7 0.76 -

8 0.53 +

9 0.43 -

10 0.25 +

103

How To Construct An ROC Curve

228false positive rate

Class + - + - + - - - + +

P
0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 0.95 1.00

TP 5 4 4 3 3 2 2 1 0

FP 5 5 4 4 3 1 0 0 0

TN 0 0 1 1 2 4 5 5 5

FN 0 1 1 2 2 3 3 4 5

TPR 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0

FPR 1 1 0.8 0.8 0.6 0.2 0 0 0

Threshold >=

ROC Curve:

1.0

0.4

0.2

true positive rate

0 0.2 0.4 1.0

Test of Significance

• Given two models:

– Model M1: accuracy = 85%, tested on 30 instances

– Model M2: accuracy = 75%, tested on 5000
instances

• Can we say M1 is better than M2?

– How much confidence can we place on accuracy
of M1 and M2?

– Can the difference in accuracy be explained as a
result of random fluctuations in the test set?

229

104

Confidence Interval for Accuracy

• Classification can be regarded as a Bernoulli trial
– A Bernoulli trial has 2 possible outcomes, “correct” or

“wrong” for classification
– Collection of Bernoulli trials has a Binomial

distribution
• Probability of getting c correct predictions if model accuracy

is p (=probability to get a single prediction right):

• Given c, or equivalently, ACC = c / n and n (#test
records), can we predict p, the true accuracy of
the model?

230

cnc pp
c

n









)1(

Confidence Interval for Accuracy

• Binomial distribution for X=“number of
correctly classified test records out of n”
– E(X)=pn, Var(X)=p(1-p)n

• Accuracy = X / n
– E(ACC) = p, Var(ACC) = p(1-p) / n

• For large test sets (n>30), Binomial
distribution is closely approximated by
normal distribution with same mean
and variance
– ACC has a normal distribution with

mean=p, variance=p(1-p)/n

• Confidence Interval for p:

231

 


















  1

/)1(

ACC
P 2/12/ Z

npp

p
Z

Area = 1 - 

Z/2 Z1-  /2

)(2

ACC4ACC4ACC2
2

2/

22

2/

2

2/





Zn

nnZZn
p






105

Confidence Interval for Accuracy

• Consider a model that produces an accuracy of
80% when evaluated on 100 test instances
– n = 100, ACC = 0.8

– Let 1- = 0.95 (95% confidence)

– From probability table, Z/2 = 1.96

232

1- Z

0.99 2.58

0.98 2.33

0.95 1.96

0.90 1.65

N 50 100 500 1000 5000

p(lower) 0.670 0.711 0.763 0.774 0.789

p(upper) 0.888 0.866 0.833 0.824 0.811

)(2

ACC4ACC4ACC2
2

2/

22

2/

2

2/





Zn

nnZZn
p






Comparing Performance of Two
Models

• Given two models M1 and M2, which is better?

– M1 is tested on D1 (size=n1), found error rate = e1

– M2 is tested on D2 (size=n2), found error rate = e2

– Assume D1 and D2 are independent

– If n1 and n2 are sufficiently large, then

– Estimate:

233

 

 222

111

,~err

,~err





N

N

i

ii
iii

n

ee
e

)1(
ˆ and ˆ 2 
 

106

Testing Significance of Accuracy
Difference

• Consider random variable d = err1– err2
– Since err1, err2 are normally distributed, so is their

difference
– Hence d ~ N (dt, t) where dt is the true difference

• Estimator for dt:
– E[d] = E[err1-err2] = E[err1] – E[err2]  e1 - e2

– Since D1 and D2 are independent, variance adds up:

– At (1-) confidence level,

234

2

22

1

112

2

2

1

2)1()1(
ˆˆˆ

n

ee

n

ee
t





 

tt Zdd 
ˆ]E[2/

An Illustrative Example

• Given: M1: n1 = 30, e1 = 0.15
M2: n2 = 5000, e2 = 0.25

• E[d] = |e1 – e2| = 0.1
• 2-sided test: dt = 0 versus dt  0

• At 95% confidence level, Z/2 = 1.96

• Interval contains zero, hence difference may not be statistically
significant

• But: may reject null hypothesis (dt  0) at lower confidence level

235

0043.0
5000

)25.01(25.0

30

)15.01(15.0
ˆ 2 





t

128.0100.00043.096.1100.0 td

107

Significance Test for K-Fold Cross-
Validation

• Each learning algorithm produces k models:
– L1 produces M11 , M12, …, M1k
– L2 produces M21 , M22, …, M2k

• Both models are tested on the same test sets D1,
D2,…, Dk
– For each test set, compute dj = e1,j – e2,j

– For large enough k, dj is normally distributed with
mean dt and variance t

– Estimate:

236
tkt

k

j

j

t

tdd

kk

dd






ˆ

)1(

)(

ˆ

1,1

1

2

2













 t-distribution: get t coefficient
t1-,k-1 from table by looking up
confidence level (1-) and
degrees of freedom (k-1)

Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods

237

108

Ensemble Methods

• Construct a set of classifiers from the training
data

• Predict class label of previously unseen
records by aggregating predictions made by
multiple classifiers

238

General Idea

Original

Training data

....
D

1
D

2 D
t-1

D
t

D

Step 1:

Create Multiple

Data Sets

C
1

C
2

C
t -1

C
t

Step 2:

Build Multiple

Classifiers

C*

Step 3:

Combine

Classifiers

239

109

Why Does It Work?

• Consider 2-class problem

• Suppose there are 25 base classifiers

– Each classifier has error rate  = 0.35

– Assume the classifiers are independent

• Return majority vote of the 25 classifiers

– Probability that the ensemble classifier makes a
wrong prediction:

240




 






25

13

25 06.0)1(
25

i

ii

i


Base Classifier vs. Ensemble Error

241

110

Model Averaging and Bias-Variance
Tradeoff

• Single model: lowering bias will usually increase
variance
– “Smoother” model has lower variance but might not

model function well enough

• Ensembles can overcome this problem
1. Let models overfit

• Low bias, high variance

2. Take care of the variance problem by averaging
many of these models

• This is the basic idea behind bagging

242

Bagging: Bootstrap Aggregation

• Given training set with n records, sample n
records randomly with replacement

• Train classifier for each bootstrap sample

• Note: each training record has probability
1 – (1 – 1/n)n of being selected at least once in
a sample of size n

243

Original Data 1 2 3 4 5 6 7 8 9 10

Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9

Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2

Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

111

Bagged Trees

• Create k trees from training data
– Bootstrap sample, grow large trees

• Design goal: independent models, high
variability between models

• Ensemble prediction = average of individual
tree predictions (or majority vote)

• Works the same way for other classifiers

244

(1/k)· + (1/k)· +…+ (1/k)·

Typical Result

245

112

Typical Result

246

Typical Result

247

113

Bagging Challenges

• Ideal case: all models independent of each other
• Train on independent data samples

– Problem: limited amount of training data
• Training set needs to be representative of data distribution

– Bootstrap sampling allows creation of many “almost”
independent training sets

• Diversify models, because similar sample might result
in similar tree
– Random Forest: limit choice of split attributes to small

random subset of attributes (new selection of subset for
each node) when training tree

– Use different model types in same ensemble: tree, ANN,
SVM, regression models

248

Additive Grove

• Ensemble technique for predicting continuous output
• Instead of individual trees, train additive models

– Prediction of single Grove model = sum of tree predictions

• Prediction of ensemble = average of individual Grove predictions
• Combines large trees and additive models

– Challenge: how to train the additive models without having the first
trees fit the training data too well

• Next tree is trained on residuals of previously trained trees in same Grove
model

• If previously trained trees capture training data too well, next tree is mostly
trained on noise

249

+…+(1/k)· + (1/k)· +…+ (1/k)·+…+ +…+

114

Training Groves

250

+ +

+

+ +

+

+ +

+

0.13

0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0

1

2

3

4

5

6

7

8

9

10

Typical Grove Performance

• Root mean squared
error
– Lower is better

• Horizontal axis: tree
size
– Fraction of training

data when to stop
splitting

• Vertical axis: number
of trees in each
single Grove model

• 100 bagging
iterations

251

115

Boosting

• Iterative procedure to
adaptively change distribution
of training data by focusing
more on previously
misclassified records
– Initially, all n records are

assigned equal weights

– Record weights may change at
the end of each boosting round

252

Boosting

• Records that are wrongly classified will have their
weights increased

• Records that are classified correctly will have
their weights decreased

• Assume record 4 is hard to classify
• Its weight is increased, therefore it is more likely

to be chosen again in subsequent rounds

253

Original Data 1 2 3 4 5 6 7 8 9 10

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3

Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2

Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

116

Example: AdaBoost

• Base classifiers: C1, C2,…, CT

• Error rate (n training
records, wj are weights that
sum to 1):

• Importance of a classifier:

254

 



n

j

jjiji yxCw
1

)(










 


i

i
i






1
ln

AdaBoost Details

• Weight update:

• Weights initialized to 1/n
• Zi ensures that weights add to 1
• If any intermediate rounds produce error rate higher

than 50%, the weights are reverted back to 1/n and the
resampling procedure is repeated

• Final classification:

255

factorion normalizat theis where

)(if1

)(if
1

)(

)1(

i

jji

jji

i

i

i

i

ji

j

Z

yxC

yxC

Z

w
w



















 



T

i

ii
y

yxCxC
1

)(maxarg)(* 

117

Illustrating AdaBoost

256

Boosting

Round 1 + + + -- - - - - -
0.0094 0.0094 0.4623

B1

 = 1.9459

Data points

for training

Initial weights for each data point

Original

Data + + + -- - - - + +

0.1 0.1 0.1

Note: The numbers appear to be wrong, but they convey the right idea…

New weights

Illustrating AdaBoost

257

Boosting

Round 1 + + + -- - - - - -

Boosting

Round 2 - - - -- - - - + +

Boosting

Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

 = 1.9459

 = 2.9323

 = 3.8744

Note: The numbers appear to be wrong, but they convey the right idea…

118

Bagging vs. Boosting

• Analogy
– Bagging: diagnosis based on multiple doctors’ majority vote
– Boosting: weighted vote, based on doctors’ previous diagnosis accuracy

• Sampling procedure
– Bagging: records have same weight; easy to train in parallel
– Boosting: weights record higher if model predicts it wrong; inherently

sequential process

• Overfitting
– Bagging robust against overfitting
– Boosting susceptible to overfitting: make sure individual models do not overfit

• Accuracy usually significantly better than a single classifier
– Best boosted model often better than best bagged model

• Additive Grove
– Combines strengths of bagging and boosting (additive models)
– Shown empirically to make better predictions on many data sets
– Training more tricky, especially when data is very noisy

258

Classification/Prediction Summary

• Forms of data analysis that can be used to train models
from data and then make predictions for new records

• Effective and scalable methods have been developed
for decision tree induction, Naive Bayesian
classification, Bayesian networks, rule-based classifiers,
Backpropagation, Support Vector Machines (SVM),
nearest neighbor classifiers, and many other
classification methods

• Regression models are popular for prediction.
Regression trees, model trees, and ANNs are also used
for prediction.

259

119

Classification/Prediction Summary

• K-fold cross-validation is a popular method for accuracy estimation,
but determining accuracy on large test set is equally accepted
– If test sets are large enough, a significance test for finding the best

model is not necessary

• Area under ROC curve and many other common performance
measures exist

• Ensemble methods like bagging and boosting can be used to
increase overall accuracy by learning and combining a series of
individual models
– Often state-of-the-art in prediction quality, but expensive to train,

store, use

• No single method is superior over all others for all data sets
– Issues such as accuracy, training and prediction time, robustness,

interpretability, and scalability must be considered and can involve
trade-offs

260

