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Data Mining Techniques:
Classification and Prediction

Mirek Riedewald

Some slides based on presentations by
Han/Kamber, Tan/Steinbach/Kumar, and Andrew 

Moore

Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods
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Classification vs. Prediction

• Assumption: after data preparation, have single data 
set where each record has attributes X1,…,Xn, and Y.

• Goal: learn a function f:(X1,…,Xn)Y, then use this 
function to predict y for a given input record (x1,…,xn).
– Classification: Y is a discrete attribute, called the class label

• Usually a categorical attribute with small domain

– Prediction: Y is a continuous attribute

• Called supervised learning, because true labels (Y-
values) are known for the initially provided data

• Typical applications: credit approval, target marketing, 
medical diagnosis, fraud detection
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Induction: Model Construction
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Training

Data

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification

Algorithm

IF rank = ‘professor’

OR years > 6

THEN tenured = ‘yes’ 

Model

(Function)
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Deduction: Using the Model
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Test

Data

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Merlisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?

Model

(Function)

Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Nearest Neighbor
• Prediction
• Accuracy and Error Measures
• Ensemble Methods
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Example of a Decision Tree

7

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model: Decision Tree

Another Example of Decision Tree
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Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

MarSt

Refund

TaxInc

YESNO

NO

NO

Yes No

Married
Single, 

Divorced

< 80K > 80K

There could be more than one tree that 

fits the same data!
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Apply Model to Test Data

9

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data

Start from the root of tree.

Apply Model to Test Data

10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data
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Apply Model to Test Data

11

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data

Apply Model to Test Data
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Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data
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Apply Model to Test Data

13

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data

Apply Model to Test Data
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Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data

Assign Cheat to “No”
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Decision Tree Induction

• Basic greedy algorithm
– Top-down, recursive divide-and-conquer
– At start, all the training records are at the root
– Training records partitioned recursively based on split attributes
– Split attributes selected based on a heuristic or statistical 

measure (e.g., information gain)

• Conditions for stopping partitioning
– Pure node (all records belong

to same class)
– No remaining attributes for

further partitioning
• Majority voting for classifying the leaf

– No cases left

15

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Decision Boundary

16

X2

< 0.33?

     : 0

     : 3

     : 4

     : 0

X2

< 0.47?

    : 4

    : 0

     : 0

     : 4

X1

< 0.43?

Yes

Yes

No

No Yes No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

Decision boundary = border between two neighboring regions of different classes.

For trees that split on a single attribute at a time, the decision boundary is parallel 

to the axes.
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How to Specify Split Condition?

• Depends on attribute types

– Nominal

– Ordinal

– Numeric (continuous)

• Depends on number of ways to split

– 2-way split

– Multi-way split

17

Splitting Nominal Attributes

• Multi-way split: use as many partitions as 
distinct values. 

• Binary split: divides values into two subsets; 
need to find optimal partitioning.

18

CarType
Family

Sports

Luxury

CarType
{Family, 

Luxury} {Sports}

CarType
{Sports, 

Luxury} {Family} OR
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Splitting Ordinal Attributes

• Multi-way split:

• Binary split:

• What about this split?

19

Size
Small

Medium

Large

Size
{Medium, 

Large} {Small}

Size
{Small, 

Medium} {Large}
OR

Size
{Small, 

Large} {Medium}

Splitting Continuous Attributes

• Different options

– Discretization to form an ordinal categorical 
attribute

• Static – discretize once at the beginning

• Dynamic – ranges found by equal interval bucketing, 
equal frequency bucketing (percentiles), or clustering.

– Binary Decision: (A < v) or (A  v)

• Consider all possible splits, choose best one

20
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Splitting Continuous Attributes

21

Taxable

Income

> 80K?

Yes No

Taxable

Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K

How to Determine Best Split

22

Own

Car?

C0: 6

C1: 4

C0: 4

C1: 6

C0: 1

C1: 3

C0: 8

C1: 0

C0: 1

C1: 7

Car

Type?

C0: 1

C1: 0

C0: 1

C1: 0

C0: 0

C1: 1

Student

ID?

...

Yes No Family

Sports

Luxury c
1

c
10

c
20

C0: 0

C1: 1
...

c
11

Before Splitting: 10 records of class 0,

10 records of class 1

Which test condition is the best?
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How to Determine Best Split

• Greedy approach: 

– Nodes with homogeneous class distribution are 
preferred

• Need a measure of node impurity:

23

C0: 5

C1: 5

C0: 9

C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

Attribute Selection Measure: 
Information Gain

• Select attribute with highest information gain
• pi = probability that an arbitrary record in D belongs to class 

Ci, i=1,…,m
• Expected information (entropy) needed to classify a record 

in D:

• Information needed after using attribute A to split D into v 
partitions D1,…, Dv:

• Information gained by splitting on attribute A:

24
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Example

• Predict if somebody will buy a computer

• Given data set:

25

Age Income Student Credit_rating Buys_computer
 30 High No Bad No
 30 High No Good No

31…40 High No Bad Yes
> 40 Medium No Bad Yes
> 40 Low Yes Bad Yes
> 40 Low Yes Good No

31...40 Low Yes Good Yes
 30 Medium No Bad No
 30 Low Yes Bad Yes
> 40 Medium Yes Bad Yes
 30 Medium Yes Good Yes

31...40 Medium No Good Yes
31...40 High Yes Bad Yes

> 40 Medium No Good No

Information Gain Example

• Class P: buys_computer = “yes”
• Class N: buys_computer = “no”

• means “age  30” has 5 out of 14  
samples, with 2 yes’es and 3 no’s.

– Similar for the other terms

• Hence

• Similarly,

• Therefore we choose age as the splitting 
attribute

26
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14

5

)0,4(
14

4
)3,2(

14

5
)(Infoage





I

IID
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029.0)(Gain
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14
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log

14

5

14

9
log

14

9
)5,9()Info( 22  ID

Age #yes #no I(#yes, #no)
 30 2 3 0.971

31…40 4 0 0
>40 3 2 0.971

Age Income Student Credit_rating Buys_computer
 30 High No Bad No
 30 High No Good No

31…40 High No Bad Yes
> 40 Medium No Bad Yes
> 40 Low Yes Bad Yes
> 40 Low Yes Good No

31...40 Low Yes Good Yes
 30 Medium No Bad No
 30 Low Yes Bad Yes
> 40 Medium Yes Bad Yes
 30 Medium Yes Good Yes

31...40 Medium No Good Yes
31...40 High Yes Bad Yes

> 40 Medium No Good No
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Gain Ratio for Attribute Selection

• Information gain is biased towards attributes with a large 
number of values

• Use gain ratio to normalize information gain:
– GainRatioA(D) = GainA(D) / SplitInfoA(D)

• E.g., 

• GainRatioincome(D) = 0.029/0.926 = 0.031
• Attribute with maximum gain ratio is selected as splitting 

attribute
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Gini Index

• Gini index, gini(D), is defined as

• If data set D is split on A into v subsets D1,…, Dv, the gini
index giniA(D) is defined as

• Reduction in Impurity:

• Attribute that provides smallest ginisplit(D) (= largest 
reduction in impurity) is chosen to split the node
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Comparing Attribute Selection 
Measures

• No clear winner
(and there are many more)
– Information gain:

• Biased towards multivalued attributes

– Gain ratio:
• Tends to prefer unbalanced splits where one partition is 

much smaller than the others

– Gini index: 
• Biased towards multivalued attributes

• Tends to favor tests that result in equal-sized partitions and 
purity in both partitions

29

Practical Issues of Classification

• Underfitting and overfitting

• Missing values

• Computational cost

• Expressiveness

30
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How Good is the Model?

• Training set error: compare prediction of 
training record with true value

– Not a good measure for the error on unseen data. 
(Discussed soon.)

• Test set error: for records that were not used 
for training, compare model prediction and 
true value

– Use holdout data from available data set

31

Training versus Test Set Error

• We’ll create a training dataset

32

a b c d e y

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 1 1 1

0 0 1 0 0 1

: : : : : :

1 1 1 1 1 1

Five inputs, all bits, are 
generated in all 32 possible 
combinations

Output y = copy of e,
except a random 25% 
of the records have y 
set to the opposite of e

3
2
 r

e
co

rd
s
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Test Data

• Generate test data using the same method: copy of e, but 25% 
inverted.

• Some y’s that were corrupted in the training set will be uncorrupted 
in the testing set.

• Some y’s that were uncorrupted in the training set will be corrupted 
in the test set.

33

a b c d e y (training 
data)

y (test 
data)

0 0 0 0 0 0 0

0 0 0 0 1 0 1

0 0 0 1 0 0 1

0 0 0 1 1 1 1

0 0 1 0 0 1 1

: : : : : : :

1 1 1 1 1 1 1

Full Tree for The Training Data

34

Root

e=0

a=0 a=1

e=1

a=0 a=1

25% of these leaf node labels will be corrupted

Each leaf contains exactly one record, hence no error in predicting the training data!
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Testing The Tree with The Test Set

35

1/4 of the tree nodes are 
corrupted

3/4 are fine

1/4 of the test set 
records are corrupted

1/16 of the test set will 
be correctly predicted for 
the wrong reasons

3/16 of the test set will be 
wrongly predicted because 
the test record is corrupted

3/4 are fine 3/16 of the test 
predictions will be wrong 
because the tree node is 
corrupted

9/16 of the test predictions 
will be fine

In total, we expect to be wrong on 3/8 of the test set predictions

What’s This Example Shown Us?

• Discrepancy between training and test set 
error

• But more importantly

– …it indicates that there is something we should do 
about it if we want to predict well on future data.

36
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Suppose We Had Less Data

37

a b c d e y

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 1 1 1

0 0 1 0 0 1

: : : : : :

1 1 1 1 1 1

These bits are hidden

Output y = copy of e, except a 
random 25% of the records 
have y set to the opposite of e

3
2
 r

e
co

rd
s

Tree Learned Without Access to The 
Irrelevant Bits

38

e=0 e=1

Root

These nodes will be unexpandable
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Tree Learned Without Access to The 
Irrelevant Bits

39

e=0 e=1

Root

In about 12 of 
the 16 records 
in this node the 
output will be 0

So this will 
almost certainly 
predict 0

In about 12 of 
the 16 records 
in this node the 
output will be 1

So this will 
almost certainly 
predict 1

Tree Learned Without Access to The 
Irrelevant Bits

40

e=0 e=1

Root almost certainly 
none of the tree 
nodes are 
corrupted

almost certainly all 
are fine

1/4 of the test 
set records are 
corrupted

n/a 1/4 of the test set 
will be wrongly 
predicted because 
the test record is 
corrupted

3/4 are fine n/a 3/4 of the test 
predictions will be 
fine

In total, we expect to be wrong on only 1/4 of the test set predictions
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Typical Observation

41

Overfitting

Underfitting: when model is too simple, both training and test errors are large 

Model M overfits the 
training data if another 
model M’ exists, such 
that M has smaller 
error than M’ over the 
training examples, but 
M’ has smaller error 
than M over the entire 
distribution of 
instances.

Reasons for Overfitting

• Noise
– Too closely fitting the training data means the model’s 

predictions reflect the noise as well

• Insufficient training data
– Not enough data to enable the model to generalize 

beyond idiosyncrasies of the training records

• Data fragmentation (special problem for trees)
– Number of instances gets smaller as you traverse 

down the tree
– Number of instances at a leaf node could be too small 

to make any confident decision about class

42
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Avoiding Overfitting

• General idea: make the tree smaller
– Addresses all three reasons for overfitting

• Prepruning: Halt tree construction early
– Do not split a node if this would result in the goodness measure 

falling below a threshold
– Difficult to choose an appropriate threshold, e.g., tree for XOR

• Postpruning: Remove branches from a “fully grown” tree
– Use a set of data different from the training data to decide when 

to stop pruning
• Validation data: train tree on training data, prune on validation data, 

then test on test data

43

Minimum Description Length (MDL)

• Alternative to using validation data
– Motivation: data mining is about finding regular patterns in data; 

regularity can be used to compress the data; method that achieves 
greatest compression found most regularity and hence is best

• Minimize Cost(Model,Data) = Cost(Model) + Cost(Data|Model)
– Cost is the number of bits needed for encoding.

• Cost(Data|Model) encodes the misclassification errors.
• Cost(Model) uses node encoding plus splitting condition encoding.

44

A B

A?

B?

C?

10

0

1

Yes No

B1 B2

C1 C2

X y

X1 1

X2 0

X3 0

X4 1

… …
Xn 1

X y

X1 ?

X2 ?

X3 ?

X4 ?

… …
Xn ?
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MDL-Based Pruning Intuition

45

largesmall

Tree size

Cost

Cost(Model, Data)

Cost(Model)=model size

Cost(Data|Model)=model errors

Best tree size

Lowest total cost

Handling Missing Attribute Values

• Missing values affect decision tree 
construction in three different ways:

– How impurity measures are computed

– How to distribute instance with missing value to 
child nodes

– How a test instance with missing value is classified

46
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Distribute Instances

47

Class=Yes 0 + 3/9 

Class=No 3 
 

 

Tid Refund Marital 
Status 

Taxable 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 
10 

 

Refund
Yes No

Class=Yes 0 

Class=No 3 
 

 

Cheat=Yes 2 

Cheat=No 4 
 

 

Refund
Yes

Tid Refund Marital 
Status 

Taxable 
Income Class 

10 ? Single 90K Yes 
10 

 

No

Class=Yes 2 + 6/9 

Class=No 4 
 

 

Probability that Refund=Yes is 3/9

Probability that Refund=No is 6/9

Assign record to the left child with 

weight = 3/9 and to the right child 

with weight = 6/9

Computing Impurity Measure

48

Tid Refund Marital 
Status 

Taxable 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 ? Single 90K Yes 
10 

 

Split on Refund: assume records with 

missing values are distributed as 

discussed before

3/9 of record 10 go to Refund=Yes

6/9 of record 10 go to Refund=No

Entropy(Refund=Yes) 

= -(1/3 / 10/3)log(1/3 / 10/3)

– (3 / 10/3)log(3 / 10/3) = 0.469

Entropy(Refund=No) 

= -(8/3 / 20/3)log(8/3 / 20/3)

– (4 / 20/3)log(4 / 20/3) = 0.971

Entropy(Children) 

= 1/3*0.469 + 2/3*0.971 = 0.804

Gain = 0.881 – 0.804 = 0.077

Before Splitting: Entropy(Parent) 

= -0.3 log(0.3)-(0.7)log(0.7) = 0.881
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Classify Instances

49

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes
No

Married
Single, 

Divorced

< 80K > 80K

Married Single Divorced Total

Class=No 3 1 0 4

Class=Yes 6/9 1 1 2.67

Total 3.67 2 1 6.67

Tid Refund Marital 
Status 

Taxable 
Income Class 

11 No ? 85K ? 
10 

 

New record:

Probability that Marital Status 

= Married is 3.67/6.67

Probability that Marital Status 

={Single,Divorced} is 3/6.67

Tree Cost Analysis

• Finding an optimal decision tree is NP-complete
– Optimization goal: minimize expected number of binary tests to 

uniquely identify any record from a given finite set

• Greedy algorithm
– O(#attributes * #training_instances *  log(#training_instances))

• At each tree depth, all instances considered
• Assume tree depth is logarithmic (fairly balanced splits)
• Need to test each attribute at each node
• What about binary splits?

– Sort data once on each attribute, use to avoid re-sorting subsets
– Incrementally maintain counts for class distribution as different split points 

are explored

• In practice, trees are considered to be fast both for training 
(when using the greedy algorithm) and making predictions

50
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Tree Expressiveness

• Can represent any finite discrete-valued function
– But it might not do it very efficiently

• Example: parity function
– Class = 1 if there is an even number of Boolean attributes with 

truth value = True
– Class = 0 if there is an odd number of Boolean attributes with 

truth value = True

• For accurate modeling, must have a complete tree

• Not expressive enough for modeling continuous 
attributes
– But we can still use a tree for them in practice; it just 

cannot accurately represent the true function

53

Rule Extraction from a Decision Tree

• One rule is created for each path from the root to a leaf
– Precondition: conjunction of all split predicates of nodes on path
– Consequent: class prediction from leaf

• Rules are mutually exclusive and exhaustive
• Example: Rule extraction from buys_computer decision-tree

– IF age = young AND student = no                 THEN buys_computer = no
– IF age = young AND student = yes                THEN buys_computer = yes
– IF age = mid-age                                              THEN buys_computer = yes
– IF age = old AND credit_rating = excellent  THEN buys_computer = yes
– IF age = young AND credit_rating = fair       THEN buys_computer = no

55

age?

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fairexcellentyesno
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Classification in Large Databases

• Scalability: Classify data sets with millions of 
examples and hundreds of attributes with 
reasonable speed

• Why use decision trees for data mining?
– Relatively fast learning speed

– Can handle all attribute types

– Convertible to simple and easy to understand 
classification rules

– Good classification accuracy, but not as good as newer 
methods (but tree ensembles are top!)

56

Scalable Tree Induction

• High cost when the training data at a node does not fit in 
memory

• Solution 1: special I/O-aware algorithm
– Keep only class list in memory, access attribute values on disk
– Maintain separate list for each attribute
– Use count matrix for each attribute

• Solution 2: Sampling
– Common solution: train tree on a sample that fits in memory
– More sophisticated versions of this idea exist, e.g., Rainforest

• Build tree on sample, but do this for many bootstrap samples
• Combine all into a single new tree that is guaranteed to be almost 

identical to the one trained from entire data set
• Can be computed with two data scans

57
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Tree Conclusions

• Very popular data mining tool

– Easy to understand

– Easy to implement

– Easy to use

• Little tuning, handles all attribute types and missing values

– Computationally cheap

• Overfitting problem

• Focused on classification, but easy to extend to 
prediction (future lecture)

58

Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods

60
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Theoretical Results

• Trees make sense intuitively, but can we get 
some hard evidence and deeper 
understanding about their properties?

• Statistical decision theory can give some 
answers

• Need some probability concepts first

61

Random Variables

• Intuitive version of the definition:
– Can take on one of possibly many values, each with a 

certain probability (discrete versus continuous)
– These probabilities define the probability distribution of 

the random variable
– E.g., let X be the outcome of a coin toss, then 

Pr(X=‘heads’)=0.5 and Pr(X=‘tails’)=0.5; distribution is 
uniform

• Consider a discrete random variable X with numeric 
values x1,...,xk

– Expectation: E[X] =  xi*Pr(X=xi)
– Variance: Var(X) = E[(X – E[X])2] = E[X2] – (E[X])2

62
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Working with Random Variables

• E[X + Y] = E[X] + E[Y]
• Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X,Y)
• For constants a, b

– E[aX + b] = a E[X] + b
– Var(aX + b) = Var(aX) = a2 Var(X)

• Iterated expectation:
– E[X] = EX[ EY[Y| X] ], where EY[Y| X] = yi*Pr(Y=yi| X=x)

is the expectation of Y for a given value of X, i.e., is a 
function of X

– In general for any function f(X,Y):
EX,Y[f(X,Y)] = EX[ EY[f(X,Y)| X] ]
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What is the Optimal Model f(X)?
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Optimal Model f(X) (cont.)
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Implications for Trees

• Best prediction for input X=x is the mean of the Y-values of all records 
(x(i),y(i)) with x(i)=x

• What about classification?
– Two classes: encode as 0 and 1, use squared error as before

• Get f(X) = E[Y| X=x] = 1*Pr(Y=1| X=x) + 0*Pr(Y=0| X=x) = Pr(Y=1| X=x)

– K classes: can show that for 0-1 loss (error = 0 if correct class, error = 1 if 
wrong class predicted) the optimal choice is to return the majority class for a 
given input X=x

• Called the Bayes classifier

• Problem: How can we estimate E[Y| X=x] or the majority class for X=x from 
the training data? 
– Often there is just one or no training record for a given X=x

• Solution: approximate it
– Use Y-values from training records in neighborhood around X=x
– Tree: leaf defines neighborhood in the data space; make sure there are 

enough records in the leaf to obtain reliable estimate of correct answer
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Bias-Variance Tradeoff

• Let’s take this one step further and see if we can 
understand overfitting through statistical decision 
theory

• As before, consider two random variables X and Y

• From a training set D with n records, we want to 
construct a function f(X) that returns good 
approximations of Y for future inputs X
– Make dependence of f on D explicit by writing f(X; D)

• Goal: minimize mean squared error over all X, Y, 
and D, i.e., EX,D,Y[ (Y - f(X; D))2 ]
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Bias-Variance Tradeoff Derivation

68

     
        

     
      

        
     

     

    

   

    

 

           XXYEYEDXfEDXfEXYEDXfEEDXfYE

DXfEDXfEDXfEDXfE

XYEDXfEDXfEDXfE

XYEDXfEDXfEDXfE

XYEDXfEDXfEDXfE

XYEDXfEDXfEDXfE

XYEDXfEEDXfEDXfE

XYEDXfEDXfEDXfEXYEDXfE

XXYEYEDXXYEYEE

XYEDXfEXXYEYE

XYEDXfDXXYEYEEDXDXfYEE

DXDXfYEEEDXfYE

YDDDXYDX

DDDD

DDD

DDD

DDD

DDD

DDDD

DDDD

YYD

DY

YDYD

YDXYDX

|]|[)];([);(]|[)];([);(

:obtain  therefore weOverall

.)0)];([)];([);([);( because zero, is  term third(The

]|[)];([)];([);(

]|[)];([);([);(2    

]|[)];([)];([);(

]|[)];([);([);(2     

]|[)];([)];([);(

]|[)];([);([);(]|[);(

: termsecond heConsider t

.)|]|[,|]|[ hence D,on  dependnot  does first term (The

]|[);(|]|[

f(X).)function  optimalfor  before as derivation (Same

]|[);(,|]|[,|);(

:inner term heconsider t Now .,|);();(

2222

,,

22

22

22

22

22

22

222

22

,,



























33

Bias-Variance Tradeoff and Overfitting

• Option 1: f(X;D) = E[Y| X,D]
– Bias: since ED[ E[Y| X,D] ] = E[Y| X], bias is zero
– Variance: (E[Y| X,D]-ED[E[Y| X,D]])2 = (E[Y| X,D]-E[Y| X])2 can be very large 

since E[Y| X,D] depends heavily on D
– Might overfit!

• Option 2: f(X;D)=X (or other function independent of D)
– Variance: (X-ED[X])2=(X-X)2=0
– Bias: (ED[X]-E[Y| X])2=(X-E[Y| X])2 can be large, because E[Y| X] might be 

completely different from X
– Might underfit!

• Find best compromise between fitting training data too closely (option 1) 
and completely ignoring it (option 2)
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Implications for Trees

• Bias decreases as tree becomes larger

– Larger tree can fit training data better

• Variance increases as tree becomes larger

– Sample variance affects predictions of larger tree 
more

• Find right tradeoff as discussed earlier

– Validation data to find best pruned tree

– MDL principle
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Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods
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Lazy vs. Eager Learning

• Lazy learning: Simply stores training data (or only 
minor processing) and waits until it is given a test 
record

• Eager learning: Given a training set, constructs a 
classification model before receiving new (test) 
data to classify

• General trend: Lazy = faster training, slower 
predictions

• Accuracy: not clear which one is better!
– Lazy method: typically driven by local decisions
– Eager method: driven by global and local decisions

72
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Nearest-Neighbor

• Recall our statistical decision theory analysis: 
Best prediction for input X=x is the mean of 
the Y-values of all records (x(i),y(i)) with x(i)=x 
(majority class for classification)

• Problem was to estimate E[Y| X=x] or majority 
class for X=x from the training data

• Solution was to approximate it
– Use Y-values from training records in 

neighborhood around X=x

73

Nearest-Neighbor Classifiers

• Requires:
– Set of stored records
– Distance metric for pairs of 

records
• Common choice: Euclidean

– Parameter k
• Number of nearest 

neighbors to retrieve

• To classify a record:
– Find its k nearest neighbors
– Determine output based on 

(distance-weighted) average 
of neighbors’ output
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Definition of Nearest Neighbor

75

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points 

that have the k smallest distance to x

1-Nearest Neighbor

76

Voronoi Diagram
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Nearest Neighbor Classification

• Choosing the value of k:
– k too small: sensitive to noise points

– k too large: neighborhood may include points from other 
classes

77

X

Effect of Changing k

78

Source: Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning
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Explaining the Effect of k

• Recall the bias-variance tradeoff

• Small k, i.e., predictions based on few 
neighbors

– High variance, low bias

• Large k, e.g., average over entire data set

– Low variance, but high bias

• Need to find k that achieves best tradeoff

• Can do that using validation data

79

Scaling Issues

• Attributes may have to be scaled to prevent 
distance measures from being dominated by 
one of the attributes

• Example:
– Height of a person may vary from 1.5m to 1.8m

– Weight of a person may vary from 90lb to 300lb

– Income of a person may vary from $10K to $1M

– Income difference would dominate record 
distance

80
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Other Problems

• Problem with Euclidean measure:
– High dimensional data: curse of dimensionality

– Can produce counter-intuitive results

– Solution: Normalize the vectors to unit length

• Irrelevant attributes might dominate distance
– Solution: eliminate them
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1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

vs

d = 1.4142 d = 1.4142

Computational Cost

• Brute force: O(#trainingRecords)
– For each training record, compute distance to test record, 

keep if among top-k

• Pre-compute Voronoi diagram (expensive), then search 
spatial index of Voronoi cells: if lucky 
O(log(#trainingRecords))

• Store training records in multi-dimensional search tree, 
e.g., R-tree: if lucky O(log(#trainingRecords))

• Bulk-compute predictions for many test records using 
spatial join between training and test set
– Same worst-case cost as one-by-one predictions, but 

usually much faster in practice
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Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods
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Bayesian Classification

• Performs probabilistic prediction, i.e., predicts 
class membership probabilities

• Based on Bayes’ Theorem
• Incremental training

– Update probabilities as new training records arrive
– Can combine prior knowledge with observed data

• Even when Bayesian methods are 
computationally intractable, they can provide a 
standard of optimal decision making against 
which other methods can be measured

100
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Bayesian Theorem: Basics

• X = random variable for data records (“evidence”)
• H = hypothesis that specific record X=x belongs to class C 
• Goal: determine P(H| X=x)

– Probability that hypothesis holds given a record x

• P(H) = prior probability
– The initial probability of the hypothesis
– E.g., person x will buy computer, regardless of age, income etc.

• P(X=x) = probability that data record x is observed
• P(X=x| H) = probability of observing record x, given that the 

hypothesis holds
– E.g., given that x will buy a computer, what is the probability 

that x is in age group 31...40, has medium income, etc.?
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Bayes’ Theorem

• Given data record x, the posterior probability of a hypothesis H, 
P(H| X=x), follows from Bayes theorem:

• Informally: posterior = likelihood * prior / evidence
• Among all candidate hypotheses H, find the maximally probably 

one, called maximum a posteriori (MAP) hypothesis
• Note: P(X=x) is the same for all hypotheses
• If all hypotheses are equally probable a priori, we only need to 

compare P(X=x| H)
– Winning hypothesis is called the maximum likelihood (ML) hypothesis

• Practical difficulties: requires initial knowledge of many 
probabilities and has high computational cost
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Towards Naïve Bayes Classifier

• Suppose there are m classes C1, C2,…, Cm

• Classification goal: for record x, find class Ci that 
has the maximum posterior probability P(Ci| X=x)

• Bayes’ theorem:

• Since P(X=x) is the same for all classes, only need 
to find maximum of
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Computing P(X=x|Ci) and P(Ci)

• Estimate P(Ci) by counting the frequency of class 
Ci in the training data

• Can we do the same for P(X=x|Ci)?
– Need very large set of training data

– Have |X1|*|X2|*…*|Xd|*m different combinations of 
possible values for X and Ci

– Need to see every instance x many times to obtain 
reliable estimates

• Solution: decompose into lower-dimensional 
problems

104
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Example: Computing P(X=x|Ci) and 
P(Ci)

• P(buys_computer = yes) = 9/14
• P(buys_computer = no) = 5/14
• P(age>40, income=low, student=no, credit_rating=bad| buys_computer=yes) = 0 ?

105

Age Income Student Credit_rating Buys_computer
 30 High No Bad No
 30 High No Good No

31…40 High No Bad Yes
> 40 Medium No Bad Yes
> 40 Low Yes Bad Yes
> 40 Low Yes Good No

31...40 Low Yes Good Yes
 30 Medium No Bad No
 30 Low Yes Bad Yes
> 40 Medium Yes Bad Yes
 30 Medium Yes Good Yes

31...40 Medium No Good Yes
31...40 High Yes Bad Yes

> 40 Medium No Good No

Conditional Independence

• X, Y, Z random variables

• X is conditionally independent of Y, given Z, if 
P(X| Y,Z) = P(X| Z)

– Equivalent to: P(X,Y| Z) = P(X| Z) * P(Y| Z)

• Example: people with longer arms read better

– Confounding factor: age

• Young child has shorter arms and lacks reading skills of adult

– If age is fixed, observed relationship between arm 
length and reading skills disappears

106
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Derivation of Naïve Bayes Classifier

• Simplifying assumption: all input attributes 
conditionally independent, given class

• Each P(Xk=xk| Ci) can be estimated robustly
– If Xk is categorical attribute

• P(Xk=xk| Ci) = #records in Ci that have value xk for Xk, divided 
by #records of class Ci in training data set

– If Xk is continuous, we could discretize it
• Problem: interval selection

– Too many intervals: too few training cases per interval
– Too few intervals: limited choices for decision boundary
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Estimating P(Xk=xk| Ci) for Continuous 
Attributes without Discretization

• P(Xk=xk| Ci) computed based on Gaussian 
distribution with mean μ and standard deviation 
σ:

as

• Estimate k,Ci from sample mean of attribute Xk
for all training records of class Ci

• Estimate k,Ci similarly from sample
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Naïve Bayes Example

• Classes:
– C1:buys_computer = yes

– C2:buys_computer = no

• Data sample x
– age  30,

– income = medium,

– student = yes, and

– credit_rating = fair

109

Age Income Student Credit_rating Buys_computer
 30 High No Bad No
 30 High No Good No

31…40 High No Bad Yes
> 40 Medium No Bad Yes
> 40 Low Yes Bad Yes
> 40 Low Yes Good No

31...40 Low Yes Good Yes
 30 Medium No Bad No
 30 Low Yes Bad Yes
> 40 Medium Yes Bad Yes
 30 Medium Yes Good Yes

31...40 Medium No Good Yes
31...40 High Yes Bad Yes

> 40 Medium No Good No

Naïve Bayesian Computation

• Compute P(Ci) for each class:
– P(buys_computer = “yes”)  = 9/14 = 0.643
– P(buys_computer = “no”) = 5/14= 0.357

• Compute P(Xk=xk| Ci) for each class
– P(age = “ 30” | buys_computer = “yes”)  = 2/9 = 0.222
– P(age = “ 30” | buys_computer = “no”) = 3/5 = 0.6
– P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
– P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
– P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
– P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
– P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
– P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

• Compute P(X=x| Ci) using the Naive Bayes assumption
– P(30, medium, yes, fair |buys_computer = “yes”) = 0.222 * 0.444 * 0.667 * 0.667 = 0.044
– P(30, medium, yes, fair | buys_computer = “no”) = 0.6 * 0.4 * 0.2 * 0.4 = 0.019

• Compute final result P(X=x| Ci) * P(Ci)
– P(X=x | buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
– P(X=x | buys_computer = “no”) * P(buys_computer = “no”) = 0.007

• Therefore we predict buys_computer = “yes” for
input x = (age = “30”, income = “medium”, student = “yes”, credit_rating = “fair”)

110
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Zero-Probability Problem

• Naïve Bayesian prediction requires each conditional probability to 
be non-zero (why?)

• Example: 1000 records for buys_computer=yes with income=low 
(0), income= medium (990), and income = high (10)
– For input with income=low, conditional probability is zero

• Use Laplacian correction (or Laplace estimator) by adding 1 dummy 
record to each income level

• Prob(income = low) = 1/1003
• Prob(income = medium) = 991/1003
• Prob(income = high) = 11/1003

– “Corrected” probability estimates close to their “uncorrected” 
counterparts, but none is zero
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Naïve Bayesian Classifier: Comments

• Easy to implement 
• Good results obtained in many cases

– Robust to isolated noise points
– Handles missing values by ignoring the instance during 

probability estimate calculations
– Robust to irrelevant attributes

• Disadvantages
– Assumption: class conditional independence, 

therefore loss of accuracy
– Practically, dependencies exist among variables

• How to deal with these dependencies?
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Probabilities

• Summary of elementary probability facts we have 
used already and/or will need soon

• Let X be a random variable as usual

• Let A be some predicate over its possible values
– A is true for some values of X, false for others

– E.g., X is outcome of throw of a die, A could be “value 
is greater than 4”

• P(A) is the fraction of possible worlds in which A 
is true
– P(die value is greater than 4) = 2 / 6 = 1/3
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Axioms

• 0  P(A)  1

• P(True) = 1

• P(False) = 0

• P(A  B) = P(A) + P(B) - P(A  B)

114
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Theorems from the Axioms

• 0  P(A)  1, P(True) = 1, P(False) = 0

• P(A  B) = P(A) + P(B) - P(A  B)

• From these we can prove:

– P(not A) = P(~A) = 1 - P(A)

– P(A) = P(A  B) + P(A  ~B)

115

Conditional Probability

• P(A|B) = Fraction of worlds in which B is true 
that also have A true

116

F

H

H = “Have a headache”

F = “Coming down with Flu”

P(H) = 1/10

P(F) = 1/40

P(H|F) = 1/2

“Headaches are rare and flu 

is rarer, but if you’re coming 

down with flu there’s a 50-

50 chance you’ll have a 

headache.”
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Definition of Conditional Probability

117

P(A  B) 

P(A| B)  =  ------------

P(B) 

P(A  B) = P(A| B) P(B)

Corollary: the Chain Rule

Multivalued Random Variables

• Suppose X can take on more than 2 values

• X is a random variable with arity k if it can take 
on exactly one value out of {v1, v2,…, vk}

• Thus
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Easy Fact about Multivalued Random 
Variables

• Using the axioms of probability
– 0  P(A)  1, P(True) = 1, P(False) = 0

– P(A  B) = P(A) + P(B) - P(A  B)

• And assuming that X obeys

• We can prove that

• And therefore:
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The Joint Distribution

121

Recipe for making a joint distribution 

of d variables:

Example: Boolean 

variables A, B, C

The Joint Distribution

122

Recipe for making a joint distribution 

of d variables:

1. Make a truth table listing all 

combinations of values of your 

variables (has 2d rows for d 

Boolean variables).

Example: Boolean 

variables A, B, C

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
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The Joint Distribution

123

Recipe for making a joint distribution 

of d variables:

1. Make a truth table listing all 

combinations of values of your 

variables (has 2d rows for d 

Boolean variables).

2. For each combination of values, 

say how probable it is.

Example: Boolean 

variables A, B, C

A B C Prob

0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 0.10

The Joint Distribution
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Recipe for making a joint distribution 

of d variables:

1. Make a truth table listing all 

combinations of values of your 

variables (has 2d rows for d 

Boolean variables).

2. For each combination of values, 

say how probable it is.

3. If you subscribe to the axioms of 

probability, those numbers must 

sum to 1.

Example: Boolean 

variables A, B, C

A B C Prob

0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 0.10

A

B

C0.05
0.25

0.10 0.050.05

0.10

0.10
0.30
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Using the 
Joint Dist.

125

Once you have the JD you 

can ask for the probability of 

any logical expression 

involving your attribute


E

PEP
 matching rows

)row()(

Using the 
Joint Dist.

126

P(Poor  Male) = 0.4654 
E

PEP
 matching rows

)row()(
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Using the 
Joint Dist.

127

P(Poor) = 0.7604 
E

PEP
 matching rows

)row()(

Inference 
with the 

Joint Dist.

128









2

 2 1

 matching rows

 and matching rows

2

21
21

)row(

)row(

)(

)(
)|(

E

EE

P

P

EP

EEP
EEP
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Inference 
with the 

Joint Dist.

129









2

 2 1

 matching rows

 and matching rows

2

21
21

)row(

)row(

)(

)(
)|(

E

EE

P

P

EP

EEP
EEP

P(Male | Poor) = 0.4654 / 0.7604 = 0.612  

Joint Distributions

• Good news: Once you 
have a joint 
distribution, you can 
answer important 
questions that involve 
uncertainty.

• Bad news: Impossible to 
create joint distribution 
for more than about ten 
attributes because 
there are so many 
numbers needed when 
you build it.

130
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What Would Help?

• Full independence

– P(gender=g  hours_worked=h  wealth=w) = 
P(gender=g) * P(hours_worked=h) * P(wealth=w)

– Can reconstruct full joint distribution from a few 
marginals

• Full conditional independence given class value

– Naïve Bayes

• What about something between Naïve Bayes and 
general joint distribution?

131

Bayesian Belief Networks

• Subset of the variables conditionally independent

• Graphical model of causal relationships

– Represents dependency among the variables 

– Gives a specification of joint probability distribution 

132

X Y

Z
P

 Nodes: random variables

 Links: dependency

 X and Y are the parents of Z, and Y is 

the parent of P

 Given Y, Z and P are independent

 Has no loops or cycles
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Bayesian Network Properties

• Each variable is conditionally independent of 
its non-descendents in the graph, given its 
parents

• Naïve Bayes as a Bayesian network:

133

Y

X1 X2 Xn

Bayesian Belief Network Example
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Family

History

LungCancer

PositiveXRay

Smoker

Emphysema

Dyspnea

LC

~LC

(FH, S) (FH, ~S) (~FH, S) (~FH, ~S)

0.8

0.2

0.5

0.5

0.7

0.3

0.1

0.9

Bayesian Belief Networks

Conditional probability table
(CPT) for variable LungCancer:

   



d

i

iiid XxXPxxP
1

1 )parents(|),...,(X

CPT shows the conditional probability for 
each possible combination of its parents

Easy to compute joint distribution for 
all attributes X1,…, Xd, from CPT:
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Creating a Bayes Network

135

T: The lecture started on time
L: The lecturer arrives late
R: The lecture concerns data mining
M: The lecturer is Mike
S: It is snowing

S

M

R

L

T

?

Computing with Bayes Net

P(T ^ ~R ^ L ^ ~M ^ S)
= P(T  ~R ^ L ^ ~M ^ S) * P(~R ^ L ^ ~M ^ S)
= P(T  L) * P(~R ^ L ^ ~M ^ S)
= P(T  L) * P(~R  L ^ ~M ^ S) * P(L^~M^S)
= P(T  L) * P(~R  ~M) * P(L ^ ~M ^ S)
= P(T  L) * P(~R  ~M) * P(L~M ^ S) * P(~M ^ S)
= P(T  L) * P(~R  ~M) * P(L~M ^ S) * P(~M | S) * P(S)
= P(T  L) * P(~R  ~M) * P(L~M ^ S) * P(~M) * P(S)

136

S M

R

L

T

P(S)=0.3
P(M)=0.6

P(RM)=0.3

P(R~M)=0.6

P(TL)=0.3

P(T~L)=0.8

P(LM^S)=0.05

P(LM^~S)=0.1

P(L~M^S)=0.1

P(L~M^~S)=0.2
T: The lecture started on time
L: The lecturer arrives late
R: The lecture concerns data mining
M: The lecturer is Mike
S: It is snowing
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Computing with Bayes Net

P(R  T ^ ~S)
= P(R ^ T ^ ~S) / P(T ^ ~S)
= P(R ^ T ^ ~S) / ( P(R ^ T ^ ~S) + P(~R ^ T ^ ~S) )

P(R ^ T ^ ~S): Compute as P(L ^ M ^ R ^ T ^ ~S) + P(~L ^ M ^ R ^ T ^ ~S)
+ P(L ^ ~M ^ R ^ T ^ ~S) + P(~L ^ ~M ^ R ^ T ^ ~S)

Compute P(~R ^ T ^ ~S) similarly

Any problem here? Yes, possibly many terms to be computed...
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S M

R

L

T

P(S)=0.3
P(M)=0.6

P(RM)=0.3

P(R~M)=0.6

P(TL)=0.3

P(T~L)=0.8

P(LM^S)=0.05

P(LM^~S)=0.1

P(L~M^S)=0.1

P(L~M^~S)=0.2
T: The lecture started on time
L: The lecturer arrives late
R: The lecture concerns data mining
M: The lecturer is Mike
S: It is snowing

Inference with Bayesian Networks

• Want to compute P(Ci| X=x)
– Assume the output attribute Y node’s parents are all input 

attribute nodes and all these input values are given

– Then we have P(Ci| X=x) = P(Ci| parents(Y)), i.e., we can 
read it directly from CPT

• What if values are given only for a subset of attributes?
– Can still compute it from the Bayesian network

– But: exact inference of probabilities in general for an 
arbitrary Bayesian network is NP-hard

– Solutions: probabilistic inference, trade precision for 
efficiency

138
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Training Bayesian Networks

• Several scenarios:
– Given both the network structure and all variables are 

observable: learn only the CPTs

– Network structure known, some hidden variables: gradient 
descent (greedy hill-climbing) method, analogous to neural 
network learning

– Network structure unknown, all variables observable: 
search through the model space to reconstruct network 
topology 

– Unknown structure, all hidden variables: No good 
algorithms known for this purpose

• Ref.: D. Heckerman: Bayesian networks for data mining
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Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods

141
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Basic Building Block: Perceptron

142









 



d

i

ii xwbf
1

sign)(

ExampleFor 

x

f

Weighted 

sum

Input

vector x

Output y

Activation

function

Weight

vector w



w1

w2

wd

x1

x2

xd

Called the bias

+b

Perceptron Decision Hyperplane
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Input: {(x1, x2, y), …}

Output: classification function f(x)

f(x) > 0: return +1

f(x) ≤ 0: return = -1

Decision hyperplane: b+w∙x = 0

Note: b+w∙x > 0, if and only if

b represents a threshold for when the 
perceptron “fires”.

x1

x2

b+w1x1+w2x2 = 0





d

i

ii bxw
1
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Representing Boolean Functions

• AND with two-input perceptron
– b=-0.8, w1=w2=0.5

• OR with two-input perceptron
– b=-0.3, w1=w2=0.5

• m-of-n function: true if at least m out of n inputs 
are true
– All input weights 0.5, threshold weight b is set 

according to m, n

• Can also represent NAND, NOR
• What about XOR?

144

Perceptron Training Rule

• Goal: correct +1/-1 output for each training record
• Start with random weights, select constant  (learning 

rate)
• For each training record (x, y)

– Let fold(x) be the output of the current perceptron for x
– Set b:= b + b, where b = ( y - fold(x) )
– For all i, set wi := wi + wi, where wi = ( y - fold(x))xi

• Keep iterating over training records until all are 
correctly classified

• Converges to correct decision boundary, if the classes 
are linearly separable and a small enough  is used
– Why?

145
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Gradient Descent

• If training records are not linearly separable, find best 
fit approximation.
– Gradient descent to search the space of possible weight 

vectors
– Basis for Backpropagation algorithm

• Consider un-thresholded perceptron (no sign function 
applied), i.e., u(x) = b + w∙x

• Measure training error by squared error

– D = training data
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 
2

),(

)u(
2

1
),E( 




Dy

yb
x

xw

Gradient Descent Rule

• Find weight vector that minimizes E(b,w) by altering it 
in direction of steepest descent
– Set (b,w) := (b,w) + (b,w), where (b,w) = - E(b,w)

• -E(b,w)=[ E/b, E/w1,…, E/wn ] is the gradient, hence

• Start with random weights,
iterate until convergence
– Will converge to global

minimum if  is small enough
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Let w0 := b.
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Gradient Descent Summary

• Epoch updating (aka batch mode)
– Do until satisfied with model

• Compute gradient over entire training set
• Update all weights based on gradient

• Case updating (aka incremental mode, stochastic gradient descent)
– Do until satisfied with model

• For each training record
– Compute gradient for this single training record
– Update all weights based on gradient

• Case updating can approximate epoch updating arbitrarily close if 
is small enough

• Perceptron training rule and case updating might seem identical
– Difference: error computation on thresholded vs. unthresholded

output

148

Multilayer Feedforward Networks

• Use another perceptron to combine 
output of lower layer
– What about linear units only?

Can only construct linear functions!
– Need nonlinear component

• sign function: not differentiable 
(gradient descent!)

• Use sigmoid: (x)=1/(1+e-x)
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Perceptron function:

xw


be
y

1

1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-4 -2  0  2  4

1/(1+exp(-x))

Input layer

Hidden layer

Output layer
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1-Hidden Layer Net Example
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NINP = 2                                    NHID = 3

x1

x2

w11

w21

w31

w1

w2

w3

w32

w22

w12

g is usually the
sigmoid function
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Making Predictions

• Inputs: all input data attributes
– Record fed simultaneously into the units of the input layer
– Then weighted and fed simultaneously to a hidden layer

• Number of hidden layers is arbitrary, although usually only one

• Weighted outputs of the last hidden layer are the input 
to the units in the output layer, which emits the 
network's prediction

• The network is feed-forward
– None of the weights cycles back to an input unit or to an 

output unit of a previous layer

• Statistical point of view: neural networks perform 
nonlinear regression

151
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Backpropagation Algorithm

• We discussed gradient descent to find the best weights for 
a single perceptron using simple un-thresholded function
– If sigmoid (or other differentiable) function is applied to 

weighted sum, use complete function for gradient descent

• Multiple perceptrons: optimize over all weights of all 
perceptrons
– Problems: huge search space, local minima

• Backpropagation
– Initialize all weights with small random values
– Iterate many times

• Compute gradient, starting at output and working back
– Error of hidden unit h: how do we get the true output value? Use weighted 

sum of errors of each unit influenced by h.

• Update all weights in the network
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Overfitting

• When do we stop updating the weights?
– Might overfit to training data

• Overfitting tends to happen in later iterations
– Weights initially small random values

– Weights all similar => smooth decision surface

– Surface complexity increases as weights diverge

• Preventing overfitting
– Weight decay: decrease each weight by small factor 

during each iteration, or

– Use validation data to decide when to stop iterating

153
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Neural Network Decision Boundary

154

Source: Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning

Backpropagation Remarks

• Computational cost
– Each interation costs O(|D|*|w|), with |D| training 

records and |w| weights
– Number of iterations can be exponential in n, the 

number of inputs (in practice often tens of thousands)

• Local minima can trap the gradient descent 
algorithm
– Convergence guaranteed to local minimum, not global

• Backpropagation highly effective in practice
– Many variants to deal with local minima issue
– E.g., case updating might avoid local minimum

155
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Defining a Network

1. Decide network topology
– # input units, # hidden layers, # units in each hidden layer, # output units

2. Normalize input values for each attribute to [0.0, 1.0]
– Transform nominal and ordinal attributes: one input unit per domain value, 

each initialized to 0
– Why not map the attribute to a single input with domain [0.0, 1.0]?

3. Output for classification task with >2 classes: one output unit per class
4. Choose learning rate 

– Too small: can take days instead of minutes to converge
– Too large: diverges (MSE gets larger while the weights increase and usually 

oscillate)
– Heuristic: set it to 1 / (#training iterations)

5. If model accuracy is unacceptable, re-train with different network 
topology, different set of initial weights, or different learning rate
– Might need a lot of trial-and-error
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Representational Power

• Boolean functions
– Each can be represented by a 2-layer network
– Number of hidden units can grow exponentially with 

number of inputs
• Create hidden unit for each input record
• Set its weights to activate only for that input
• Implement output unit as OR gate that only activates for desired 

output patterns

• Continuous functions
– Every bounded continuous function can be approximated 

arbitrarily close by a 2-layer network

• Any function can be approximated arbitrarily close by a 
3-layer network

157
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Neural Network as a Classifier

• Weaknesses
– Long training time
– Many non-trivial parameters, e.g., network topology 
– Poor interpretability: What is the meaning behind learned 

weights and hidden units?
• Note: hidden units are alternative representation of input values, 

capturing their relevant features

• Strengths
– High tolerance to noisy data
– Well-suited for continuous-valued inputs and outputs
– Successful on a wide array of real-world data
– Techniques exist for extraction of rules from neural networks
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Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods

160
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SVM—Support Vector Machines

• Newer and very popular classification method

• Uses a nonlinear mapping to transform the 
original training data into a higher dimension

• Searches for the optimal separating 
hyperplane (i.e., “decision boundary”) in the 
new dimension

• SVM finds this hyperplane using support 
vectors (“essential” training records) and 
margins (defined by the support vectors)

161

SVM—History and Applications

• Vapnik and colleagues (1992)
– Groundwork from Vapnik & Chervonenkis’ statistical 

learning theory in 1960s

• Training can be slow but accuracy is high
– Ability to model complex nonlinear decision 

boundaries (margin maximization)

• Used both for classification and prediction

• Applications: handwritten digit recognition, 
object recognition, speaker identification, 
benchmarking time-series prediction tests 

162
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Linear Classifiers

163

denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

How would you 
classify this data?

Linear Classifiers

164

denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

How would you 
classify this data?
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Linear Classifiers

165

denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

How would you 
classify this data?

Linear Classifiers
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denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

How would you 
classify this data?
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Linear Classifiers

167

denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

Any of these 
would be fine..

..but which is 
best?

Classifier Margin

168

denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

Define the margin
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
data record.
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Maximum Margin

169

denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

Find the maximum 
margin linear 
classifier.

This is the 
simplest kind of 
SVM, called linear 
SVM or LSVM.

Maximum Margin

170

denotes +1

denotes -1

f(x,w,b) = sign(wx + b)

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against
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Why Maximum Margin?

• If we made a small error in the location of the 
boundary, this gives us the least chance of 
causing a misclassification.

• Model is immune to removal of any non-
support-vector data records.

• There is some theory (using VC dimension) 
that is related to (but not the same as) the 
proposition that this is a good thing.

• Empirically it works very well.
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Specifying a Line and Margin

• Plus-plane   =    { x : wx + b = +1 }
• Minus-plane =   { x : wx + b = -1 }

172

Classify as +1 if w x + b  1

-1 if wx + b  -1

what if -1 < wx + b < 1 ?

Plus-Plane

Minus-Plane

Classifier Boundary
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Computing Margin Width

• Plus-plane   =    { x : wx + b = +1 }
• Minus-plane =   { x : wx + b = -1 }
• Goal: compute M in terms of w and b

– Note: vector w is perpendicular to plus-plane
• Consider two vectors u and v on plus-plane and show that w(u-v)=0
• Hence it is also perpendicular to the minus-plane

173

M = Margin Width

Computing Margin Width

• Choose arbitrary point x- on minus-plane

• Let x+ be the point in plus-plane closest to x-

• Since vector w is perpendicular to these planes, it 
holds that x+ = x- + w, for some value of 

174

M = Margin Width

x-

x+
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Putting It All Together

• We have so far:
– wx+ + b = +1 and wx- + b = -1

– x+ = x- + w

– |x+- x-| = M

• Derivation:
– w(x- + w) + b = +1, hence wx- + b + ww = 1

– This implies ww = 2, i.e.,  = 2 / ww

– Since M = |x+- x-| = |w| =  |w| = (ww)0.5

– We obtain M = 2 (ww)0.5/ ww = 2 / (ww)0.5
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Finding the Maximum Margin

• How do we find w and b such that the margin is 
maximized and all training records are in the 
correct zone for their class?

• Solution: Quadratic Programming (QP)

• QP is a well-studied class of optimization 
algorithms to maximize a quadratic function of 
some real-valued variables subject to linear 
constraints.
– There exist algorithms for finding such constrained 

quadratic optima efficiently and reliably.
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Quadratic Programming
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Quadratic criterion

Subject to

What Are the SVM Constraints?

• What is the quadratic 
optimization criterion?

• Consider n training 
records (x(k), y(k)), 
where y(k) = +/- 1

• How many constraints 
will we have?

• What should they be?

178
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What Are the SVM Constraints?

• What is the quadratic 
optimization criterion?

– Minimize ww

• Consider n training 
records (x(k), y(k)), 
where y(k) = +/- 1

• How many constraints 
will we have? n.

• What should they be?

For each 1  k  n:

wx(k) + b  1,  if y(k)=1

wx(k) + b  -1,  if y(k)=-1

179

ww 


2
M

Problem: Classes Not Linearly 
Separable

• Inequalities for training 
records are not 
satisfiable by any w and 
b

180

denotes +1

denotes -1
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Solution 1?

• Find minimum ww, 
while also minimizing 
number of training set 
errors

– Not a well-defined 
optimization problem 
(cannot optimize two 
things at the same time)

181

denotes +1

denotes -1

Solution 2?

• Minimize ww + 
C(#trainSetErrors)
– C is a tradeoff parameter

• Problems:
– Cannot be expressed as 

QP, hence finding 
solution might be slow

– Does not distinguish 
between disastrous 
errors and near misses

182

denotes +1

denotes -1
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Solution 3

• Minimize ww + 
C(distance of error 
records to their correct 
place)

• This works!

• But still need to do 
something about the 
unsatisfiable set of 
inequalities

183

denotes +1

denotes -1

What Are the SVM Constraints?

• What is the quadratic 
optimization criterion?
– Minimize

• Consider n training 
records (x(k), y(k)), 
where y(k) = +/- 1

• How many constraints 
will we have? n.

• What should they be?

For each 1  k  n:

wx(k)+b  1 - k, if y(k)=1

wx(k)+b  -1+k, if y(k)=-1

k  0
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Facts About the New Problem 
Formulation

• Original QP formulation had d+1 variables
– w1, w2,..., wd and b

• New QP formulation has d+1+n variables
– w1, w2,..., wd and b

– 1, 2,..., n

• C is a new parameter that needs to be set for 
the SVM
– Controls tradeoff between paying attention to 

margin size versus misclassifications

185

Effect of Parameter C

186

Source: Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning
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An Equivalent QP (The “Dual”)

187

Maximize )()()()(
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Subject to these 
constraints:

Cαk k  0:

Then define:
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Then classify with:

f(x,w,b) = sign(wx + b)

0)(
1




n

k

k kyα

Important Facts

• Dual formulation of QP can be optimized more 
quickly, but result is equivalent

• Data records with k > 0 are the support vectors
– Those with 0 < k < C lie on the plus- or minus-plane

– Those with k = C are on the wrong side of the 
classifier boundary (have k > 0)

• Computation for w and b only depends on those 
records with k > 0, i.e., the support vectors

• Alternative QP has another major advantage, as 
we will see now...

188
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Easy To Separate

189

What would 
SVMs do with 
this data?

Easy To Separate

190

Not a big surprise

Positive “plane” Negative “plane”
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Harder To Separate

191

What can be 
done about 
this?

Harder To Separate

192

Non-linear basis 
functions:

Original data: (X, Y)

Transformed: (X, X2, Y)

Think of X2 as a new
attribute, e.g., X’X

X’ (= X2)
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Now Separation Is Easy Again

193

X’ (= X2)

X

Corresponding “Planes” in Original 
Space

194

Region below minus-”plane”

Region above plus-”plane”
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Common SVM Basis Functions

• Polynomial of attributes X1,..., Xd of certain 
max degree, e.g., X2+X1X3+X4

2

• Radial basis function

– Symmetric around center, i.e.,
KernelFunction(|X - c| / kernelWidth)

• Sigmoid function of X, e.g., hyperbolic tangent

• Let (x) be the transformed input record

– Previous example: ( (x) ) = (x, x2)

195

Quadratic Basis 
Functions
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Constant Term

Linear Terms

Pure 
Quadratic 

Terms

Quadratic 
Cross-Terms

Number of terms
(assuming d input attributes):

(d+2)-choose-2

= (d+2)(d+1)/2

 d2/2

Why did we choose this specific 
transformation?
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Dual QP With Basis Functions

197
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Then classify with:

f(x,w,b) = sign(w(x) + b)
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Computation Challenge

• Input vector x has d components (its d attribute 
values)

• The transformed input vector (x) has d2/2 
components

• Hence computing (x(k))(x(l)) now costs order 
d2/2 instead of order d operations (additions, 
multiplications)

• ...or is there a better way to do this?
– Take advantage of properties of certain 

transformations

198
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Quadratic 
Dot 

Products

199
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Quadratic Dot Products
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and b:
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Quadratic Dot Products

• The results of (a)(b) and of (ab+1)2 are identical

• Computing (a)(b) costs about d2/2, while 
computing (ab+1)2 costs only about d+2 operations

• This means that we can work in the high-dimensional 
space (d2/2 dimensions) where the training records are 
more easily separable, but pay about the same cost as 
working in the original space (d dimensions)

• Savings are even greater when dealing with higher-
degree polynomials, i.e., degree q>2, that can be 
computed as (ab+1)q

201

Any Other Computation Problems?

• What about computing w?
– Finally need f(x,w,b) = sign(w(x) + b):

– Can be computed using the same trick as before

• Can apply the same trick again to b, because
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SVM Kernel Functions

• For which transformations, called kernels, 
does the same trick work?

• Polynomial: K(a,b)=(a  b +1)q

• Radial-Basis-style (RBF):

– Neural-net-style sigmoidal:

203
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,  and  are magic 
parameters that must 
be chosen by a model 
selection method.

Overfitting

• With the right kernel function, computation in high 
dimensional transformed space is no problem

• But what about overfitting? There are so many 
parameters...

• Usually not a problem, due to maximum margin 
approach
– Only the support vectors determine the model, hence SVM 

complexity depends on number of support vectors, not 
dimensions (still, in higher dimensions there might be 
more support vectors)

– Minimizing ww discourages extremely large weights, 
which smoothes the function (recall weight decay for 
neural networks!)

204
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Different Kernels

205

Source: Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning

Multi-Class Classification

• SVMs can only handle two-class outputs (i.e. a 
categorical output variable with arity 2).

• What can be done?
• Answer: with output arity N, learn N SVM’s

– SVM 1 learns “Output==1” vs “Output != 1”
– SVM 2 learns “Output==2” vs “Output != 2”
– :
– SVM N learns “Output==N” vs “Output != N”

• To predict the output for a new input, just predict 
with each SVM and find out which one puts the 
prediction the furthest into the positive region.

206
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Why Is SVM Effective on High 
Dimensional Data?

• Complexity of trained classifier is characterized by the 
number of support vectors, not dimensionality of the 
data

• If all other training records are removed and training is 
repeated, the same separating hyperplane would be 
found

• The number of support vectors can be used to 
compute an upper bound on the expected error rate of 
the SVM, which is independent of data dimensionality

• Thus, an SVM with a small number of support vectors 
can have good generalization, even when the 
dimensionality of the data is high

207

SVM vs. Neural Network

• SVM

– Relatively new concept

– Deterministic algorithm

– Nice Generalization 
properties

– Hard to train – learned in 
batch mode using 
quadratic programming 
techniques

– Using kernels can learn 
very complex functions

• Neural Network

– Relatively old

– Nondeterministic 
algorithm

– Generalizes well but 
doesn’t have strong 
mathematical foundation

– Can easily be learned in 
incremental fashion

– To learn complex 
functions—use multilayer 
perceptron (not that trivial)

209
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Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods

210

What Is Prediction?

• Essentially the same as classification, but output is 
continuous, not discrete
– Construct a model
– Use model to predict continuous output value for a given 

input

• Major method for prediction: regression
– Many variants of regression analysis in statistics literature; 

not covered in this class

• Neural network and k-NN can do regression “out-of-
the-box”

• SVMs for regression exist
• What about trees?

211
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Regression Trees and Model Trees

• Regression tree: proposed in CART system (Breiman et 
al. 1984)
– CART: Classification And Regression Trees

– Each leaf stores a continuous-valued prediction
• Average output value for the training records that reach the leaf

• Model tree: proposed by Quinlan (1992)
– Each leaf holds a regression model—a multivariate linear 

equation

• Training: like for classification trees, but uses variance
instead of purity measure for selecting split predicates

212

Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods

213
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Classifier Accuracy Measures

• Accuracy of a classifier M, acc(M): percentage of 
test records that are correctly classified by M
– Error rate (misclassification rate) of M = 1 – acc(M)
– Given m classes, CM[i,j], an entry in a confusion 

matrix, indicates # of records in class i that are 
labeled by the classifier as class j

214

Predicted class total

buy_computer = yes buy_computer = no

True class buy_computer = yes 6954 46 7000

buy_computer = no 412 2588 3000

total 7366 2634 10000

C1 C2

C1 True positive False negative

C2 False positive True negative

Precision and Recall

• Precision: measure of exactness
– t-pos  / (t-pos + f-pos)

• Recall: measure of completeness
– t-pos / (t-pos + f-neg)

• F-measure: combination of precision and recall
– 2 * precision * recall / (precision + recall)

• Note: Accuracy = (t-pos + t-neg) / (t-pos + t-neg + 
f-pos + f-neg)

215
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Limitation of Accuracy

• Consider a 2-class problem
– Number of Class 0 examples = 9990
– Number of Class 1 examples = 10

• If model predicts everything to be class 0, 
accuracy is 9990/10000 = 99.9 %
– Accuracy is misleading because model does not detect 

any class 1 example

• Always predicting the majority class defines the 
baseline
– A good classifier should do better than baseline

216

Cost-Sensitive Measures: Cost Matrix

217

PREDICTED CLASS

ACTUAL
CLASS

C(i|j) Class=Yes Class=No

Class=Yes C(Yes|Yes) C(No|Yes)

Class=No C(Yes|No) C(No|No)

C(i| j): Cost of misclassifying class j example as class i
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Computing Cost of Classification

218

Cost 
Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(i|j) + -

+ -1 100

- 1 0

Model M1 PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 150 40

- 60 250

Model M2 PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 250 45

- 5 200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Prediction Error Measures

• Continuous output: it matters how far off the prediction is from the 
true value

• Loss function: distance between y and predicted value y’
– Absolute error: | y – y’|
– Squared error:  (y – y’)2

• Test error (generalization error): average loss over the test set
• Mean absolute error:                          Mean squared error:

• Relative absolute error:                       Relative squared error:

• Squared-error exaggerates the presence of outliers
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Evaluating a Classifier or Predictor

• Holdout method
– The given data set is randomly partitioned into two sets

• Training set (e.g., 2/3) for model construction
• Test set (e.g., 1/3) for accuracy estimation

– Can repeat holdout multiple times
• Accuracy = avg. of the accuracies obtained

• Cross-validation (k-fold, where k = 10 is most popular)
– Randomly partition data into k mutually exclusive subsets, 

each approximately equal size
– In i-th iteration, use Di as test set and others as training set
– Leave-one-out: k folds where k = # of records

• Expensive, often results in high variance of performance metric

220

Learning Curve

• Accuracy versus 
sample size

• Effect of small 
sample size:
– Bias in estimate
– Variance of 

estimate

• Helps determine how 
much training data is 
needed
– Still need to have 

enough test and 
validation data to 
be representative 
of distribution

221
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ROC (Receiver Operating 
Characteristic)

• Developed in 1950s for signal detection theory to 
analyze noisy signals 
– Characterizes trade-off between positive hits and false 

alarms

• ROC curve plots T-Pos rate (y-axis) against F-Pos 
rate (x-axis)

• Performance of each classifier is represented as a 
point on the ROC curve
– Changing the threshold of the algorithm, sample 

distribution or cost matrix changes the location of the 
point

222

ROC Curve

• 1-dimensional data set containing 2 classes (positive and negative)
– Any point located at x > t is classified as positive

223

At threshold t:

TPR=0.5, FPR=0.12



101

ROC Curve
(TPR, FPR):

• (0,0): declare everything to 
be negative class

• (1,1): declare everything to 
be positive class

• (1,0): ideal

• Diagonal line:

– Random guessing

224

Diagonal Line for Random Guessing

• Classify a record as positive with fixed probability 
p, irrespective of attribute values

• Consider test set with a positive and b negative 
records

• True positives: p*a, hence true positive rate = 
(p*a)/a = p

• False positives: p*b, hence false positive rate = 
(p*b)/b = p

• For every value 0p1, we get point (p,p) on ROC 
curve

225
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Using ROC for Model Comparison

• Neither model 
consistently 
outperforms the 
other
– M1 better for small 

FPR
– M2 better for large 

FPR

• Area under the ROC 
curve
– Ideal: area = 1
– Random guess:

area = 0.5

226

How to Construct an ROC curve

• Use classifier that produces 
posterior probability P(+|x) 
for each test record x

• Sort records according to 
P(+|x) in decreasing order

• Apply threshold at each 
unique value of P(+|x)
– Count number of TP, FP, TN, FN 

at each threshold
– TP rate, TPR = TP/(TP+FN)
– FP rate, FPR = FP/(FP+TN)

227

record P(+|x) True Class

1 0.95 +

2 0.93 +

3 0.87 -

4 0.85 -

5 0.85 -

6 0.85 +

7 0.76 -

8 0.53 +

9 0.43 -

10 0.25 +
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How To Construct An ROC Curve

228false positive rate

Class + - + - + - - - + +  

P 
0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 0.95 1.00 

TP 5 4 4 3 3 2 2 1 0 

FP 5 5 4 4 3 1 0 0 0 

TN 0 0 1 1 2 4 5 5 5 

FN 0 1 1 2 2 3 3 4 5 

TPR 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0 

FPR 1 1 0.8 0.8 0.6 0.2 0 0 0 

 

Threshold >= 

ROC Curve:

1.0

0.4

0.2

true positive rate

0 0.2 0.4 1.0

Test of Significance

• Given two models:

– Model M1: accuracy = 85%, tested on 30 instances

– Model M2: accuracy = 75%, tested on 5000 
instances

• Can we say M1 is better than M2?

– How much confidence can we place on accuracy 
of M1 and M2?

– Can the difference in accuracy be explained as a 
result of random fluctuations in the test set?

229
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Confidence Interval for Accuracy

• Classification can be regarded as a Bernoulli trial
– A Bernoulli trial has 2 possible outcomes, “correct” or 

“wrong” for classification
– Collection of Bernoulli trials has a Binomial 

distribution
• Probability of getting c correct predictions if model accuracy 

is p (=probability to get a single prediction right):

• Given c, or equivalently, ACC = c / n and n (#test 
records), can we predict p, the true accuracy of 
the model?
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Confidence Interval for Accuracy

• Binomial distribution for X=“number of 
correctly classified test records out of n”
– E(X)=pn, Var(X)=p(1-p)n

• Accuracy = X / n
– E(ACC) = p, Var(ACC) = p(1-p) / n

• For large test sets (n>30), Binomial 
distribution is closely approximated by 
normal distribution with same mean 
and variance
– ACC has a normal distribution with 

mean=p, variance=p(1-p)/n

• Confidence Interval for p:
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Confidence Interval for Accuracy

• Consider a model that produces an accuracy of 
80% when evaluated on 100 test instances
– n = 100, ACC = 0.8

– Let 1- = 0.95 (95% confidence)

– From probability table, Z/2 = 1.96 
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1- Z

0.99 2.58

0.98 2.33

0.95 1.96

0.90 1.65

N 50 100 500 1000 5000

p(lower) 0.670 0.711 0.763 0.774 0.789

p(upper) 0.888 0.866 0.833 0.824 0.811
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Comparing Performance of Two 
Models

• Given two models M1 and M2, which is better?

– M1 is tested on D1 (size=n1), found error rate = e1

– M2 is tested on D2 (size=n2), found error rate = e2

– Assume D1 and D2 are independent

– If n1 and n2 are sufficiently large, then

– Estimate:
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Testing Significance of Accuracy 
Difference

• Consider random variable d = err1– err2
– Since err1, err2 are normally distributed, so is their 

difference
– Hence d ~ N (dt, t)  where dt is the true difference

• Estimator for dt:
– E[d] = E[err1-err2] = E[err1] – E[err2]  e1 - e2

– Since D1 and D2 are independent, variance adds up:

– At (1-) confidence level,
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An Illustrative Example

• Given: M1: n1 = 30, e1 = 0.15
M2: n2 = 5000, e2 = 0.25

• E[d] = |e1 – e2| = 0.1
• 2-sided test: dt = 0 versus dt  0

• At 95% confidence level, Z/2 = 1.96

• Interval contains zero, hence difference may not be statistically 
significant

• But: may reject null hypothesis (dt  0) at lower confidence level
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Significance Test for K-Fold Cross-
Validation

• Each learning algorithm produces k models:
– L1 produces M11 , M12, …, M1k
– L2 produces M21 , M22, …, M2k

• Both models are tested on the same test sets D1, 
D2,…, Dk
– For each test set, compute dj = e1,j – e2,j

– For large enough k, dj is normally distributed with 
mean dt and variance t

– Estimate: 
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 t-distribution: get t coefficient
t1-,k-1 from table by looking up
confidence level (1-) and
degrees of freedom (k-1)

Classification and Prediction Overview

• Introduction
• Decision Trees
• Statistical Decision Theory
• Nearest Neighbor
• Bayesian Classification
• Artificial Neural Networks
• Support Vector Machines (SVMs)
• Prediction
• Accuracy and Error Measures
• Ensemble Methods
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Ensemble Methods

• Construct a set of classifiers from the training 
data

• Predict class label of previously unseen 
records by aggregating predictions made by 
multiple classifiers
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General Idea
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Training data
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Step 1:
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Step 2:

Build Multiple

Classifiers

C*

Step 3:

Combine

Classifiers
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Why Does It Work?

• Consider 2-class problem

• Suppose there are 25 base classifiers

– Each classifier has error rate  = 0.35

– Assume the classifiers are independent

• Return majority vote of the 25 classifiers

– Probability that the ensemble classifier makes a 
wrong prediction:
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Model Averaging and Bias-Variance 
Tradeoff

• Single model: lowering bias will usually increase 
variance
– “Smoother” model has lower variance but might not 

model function well enough

• Ensembles can overcome this problem
1. Let models overfit

• Low bias, high variance

2. Take care of the variance problem by averaging 
many of these models

• This is the basic idea behind bagging
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Bagging: Bootstrap Aggregation

• Given training set with n records, sample n 
records randomly with replacement

• Train classifier for each bootstrap sample

• Note: each training record has probability
1 – (1 – 1/n)n of being selected at least once in 
a sample of size n
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Original Data 1 2 3 4 5 6 7 8 9 10

Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9

Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2

Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7
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Bagged Trees

• Create k trees from training data
– Bootstrap sample, grow large trees

• Design goal: independent models, high 
variability between models

• Ensemble prediction = average of individual 
tree predictions (or majority vote)

• Works the same way for other classifiers

244

(1/k)· + (1/k)· +…+ (1/k)·

Typical Result
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Typical Result

246

Typical Result
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Bagging Challenges

• Ideal case: all models independent of each other
• Train on independent data samples

– Problem: limited amount of training data
• Training set needs to be representative of data distribution

– Bootstrap sampling allows creation of many “almost” 
independent training sets

• Diversify models, because similar sample might result 
in similar tree
– Random Forest: limit choice of split attributes to small 

random subset of attributes (new selection of subset for 
each node) when training tree

– Use different model types in same ensemble: tree, ANN, 
SVM, regression models

248

Additive Grove

• Ensemble technique for predicting continuous output
• Instead of individual trees, train additive models

– Prediction of single Grove model = sum of tree predictions

• Prediction of ensemble = average of individual Grove predictions
• Combines large trees and additive models

– Challenge: how to train the additive models without having the first 
trees fit the training data too well

• Next tree is trained on residuals of previously trained trees in same Grove 
model

• If previously trained trees capture training data too well, next tree is mostly 
trained on noise
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Training Groves
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Typical Grove Performance

• Root mean squared 
error
– Lower is better

• Horizontal axis: tree 
size
– Fraction of training 

data when to stop 
splitting

• Vertical axis: number 
of trees in each 
single Grove model

• 100 bagging 
iterations
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Boosting

• Iterative procedure to 
adaptively change distribution 
of training data by focusing 
more on previously 
misclassified records
– Initially, all n records are 

assigned equal weights

– Record weights may change at 
the end of each boosting round

252

Boosting

• Records that are wrongly classified will have their 
weights increased

• Records that are classified correctly will have 
their weights decreased

• Assume record 4 is hard to classify
• Its weight is increased, therefore it is more likely 

to be chosen again in subsequent rounds
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Original Data 1 2 3 4 5 6 7 8 9 10

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3

Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2

Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4
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Example: AdaBoost

• Base classifiers: C1, C2,…, CT

• Error rate (n training 
records, wj are weights that 
sum to 1):

• Importance of a classifier:
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AdaBoost Details

• Weight update:

• Weights initialized to 1/n
• Zi ensures that weights add to 1
• If any intermediate rounds produce error rate higher 

than 50%, the weights are reverted back to 1/n and the 
resampling procedure is repeated

• Final classification:
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Illustrating AdaBoost

256

Boosting

Round 1 + + + -- - - - - -
0.0094 0.0094 0.4623

B1

 = 1.9459

Data points 

for training

Initial weights for each data point

Original

Data + + + -- - - - + +

0.1 0.1 0.1

Note: The numbers appear to be wrong, but they convey the right idea…

New weights

Illustrating AdaBoost
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Boosting

Round 1 + + + -- - - - - -

Boosting

Round 2 - - - -- - - - + +

Boosting

Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

 = 1.9459

 = 2.9323

 = 3.8744

Note: The numbers appear to be wrong, but they convey the right idea…
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Bagging vs. Boosting

• Analogy
– Bagging: diagnosis based on multiple doctors’ majority vote
– Boosting: weighted vote, based on doctors’ previous diagnosis accuracy

• Sampling procedure
– Bagging: records have same weight; easy to train in parallel
– Boosting: weights record higher if model predicts it wrong; inherently 

sequential process

• Overfitting
– Bagging robust against overfitting
– Boosting susceptible to overfitting: make sure individual models do not overfit

• Accuracy usually significantly better than a single classifier
– Best boosted model often better than best bagged model

• Additive Grove
– Combines strengths of bagging and boosting (additive models)
– Shown empirically to make better predictions on many data sets
– Training more tricky, especially when data is very noisy
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Classification/Prediction Summary

• Forms of data analysis that can be used to train models 
from data and then make predictions for new records

• Effective and scalable methods have been developed 
for decision tree induction, Naive Bayesian 
classification, Bayesian networks, rule-based classifiers, 
Backpropagation, Support Vector Machines (SVM), 
nearest neighbor classifiers, and many other 
classification methods

• Regression models are popular for prediction. 
Regression trees, model trees, and ANNs are also used 
for prediction.
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Classification/Prediction Summary

• K-fold cross-validation is a popular method for accuracy estimation, 
but determining accuracy on large test set is equally accepted
– If test sets are large enough, a significance test for finding the best 

model is not necessary

• Area under ROC curve and many other common performance 
measures exist

• Ensemble methods like bagging and boosting can be used to 
increase overall accuracy by learning and combining a series of 
individual models
– Often state-of-the-art in prediction quality, but expensive to train, 

store, use

• No single method is superior over all others for all data sets
– Issues such as accuracy, training and prediction  time, robustness, 

interpretability, and scalability must be considered and can involve 
trade-offs
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