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Data Preprocessing

Mirek Riedewald

Some slides based on presentation by
Jiawei Han and Micheline Kamber

Motivation

• Garbage-in, garbage-out

– Cannot get good mining results from bad data

• Need to understand data properties to select 
the right technique and parameter values

• Data cleaning

• Data formatting to match technique

• Data manipulation to enable discovery of 
desired patterns
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Data Records

• Data sets are made up of data records
• A data record represents an entity
• Examples: 

– Sales database: customers, store items, sales
– Medical database: patients, treatments
– University database: students, professors, courses

• Also called samples, examples, tuples, instances, 
data points, objects

• Data records are described by attributes
– Database row = data record; column = attribute
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Attributes

• Attribute (or dimension, feature, variable): a data field, 
representing a characteristic or feature of a data record
– E.g., customerID, name, address

• Types:
– Nominal (also called categorical)

• No ordering or meaningful distance measure

– Ordinal
• Ordered domain, but no meaningful distance measure

– Numeric
• Ordered domain, meaningful distance measure
• Continuous versus discrete
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Attribute Type Examples 

• Nominal: category, status, or “name of thing”
– Hair_color = {black, brown, blond, red, auburn, grey, white}
– marital status, occupation, ID numbers, zip codes

• Binary: nominal attribute with only 2 states (0 and 1)
– Symmetric binary: both outcomes equally important

• e.g., gender

– Asymmetric binary: outcomes not equally important.  
• e.g., medical test (positive vs. negative)

• Ordinal
– Values have a meaningful order (ranking) but magnitude 

between successive values is not known
– Size = {small, medium, large}, grades, army rankings
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Numeric Attribute Types 

• Quantity (integer or real-valued)
• Interval

– Measured on a scale of equal-sized units
– Values have order

• E.g., temperature in C or F, calendar dates

– No true zero-point

• Ratio
– Inherent zero-point
– We can speak of values as being an order of magnitude 

larger than the unit of measurement (10m is twice as high 
as 5m).
• E.g., temperature in Kelvin, length, counts, monetary quantities
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Discrete vs. Continuous Attributes 

• Discrete Attribute
– Has only a finite or countably infinite set of values

– Nominal, binary, ordinal attributes are usually discrete

– Integer numeric attributes

• Continuous Attribute
– Has real numbers as attribute values

• E.g., temperature, height, or weight

– Practically, real values can only be measured and 
represented using a finite number of digits

– Typically represented as floating-point variables
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Data Preprocessing Overview

• Descriptive data summarization

• Data cleaning 

• Data integration

• Data transformation

• Summary

8



5

Measuring the Central Tendency

• Sample mean:

• Weighted arithmetic mean:

– Trimmed mean: set weights of extreme values to zero

• Median
– Middle value if odd number of values; average of the middle 

two values otherwise

• Mode
– Value that occurs most frequently in the data
– Unimodal, bimodal, trimodal distribution
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Measuring Data Dispersion: Boxplot

• Quartiles: Q1 (25th percentile), Q3 (75th percentile)
– Inter-quartile range: IQR = Q3 – Q1

– Various definitions for determining percentiles, e.g., for N records, the p-th
percentile is the record at position (p/100)N+0.5 in increasing order

– If not integer, round to nearest integer or compute weighted average
– E.g., for N=30, p=25 (to get Q1): 25/100*30+0.5 = 8, i.e., Q1 is 8-th largest of the 30 

values
– E.g., for N=32, p=25: 25/100*32+0.5 = 8.5, i.e., Q1 is average of 8-th and 9-th largest 

values

• Boxplot: ends of the box are the quartiles, median is marked, whiskers 
extend to min/max
– Often plots outliers individually
– Outlier: usually, a value higher (or lower) than 1.5 x IQR from Q3 (or Q1)
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Measuring Data Dispersion: Variance

• Sample variance (aka second central 
moment):

• Standard deviation = square root of variance

• Estimator of true population variance from a 
sample:
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Histogram

• Graph display of 
tabulated frequencies, 
shown as bars

• Shows what proportion 
of cases fall into each 
category

• Area of the bar 
denotes the value, not 
the height
– Crucial distinction 

when the categories 
are not of uniform 
width!
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Scatter plot

• Visualizes relationship between two attributes, even a third (if categorical)
– For each data record, plot selected attribute pair in the plane
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Correlated Data
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Not Correlated Data
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Data Preprocessing Overview

• Descriptive data summarization

• Data cleaning

• Data integration

• Data transformation

• Summary
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Why Data Cleaning?

• Data in the real world is dirty
– Incomplete: lacking attribute values, lacking certain 

attributes of interest, or containing only aggregate 
data
• E.g., occupation=“ ”

– Noisy: containing errors or outliers
• E.g., Salary=“-10”

– Inconsistent: containing discrepancies in codes or 
names
• E.g., Age=“42” and Birthday=“03/07/1967”
• E.g., was rating “1, 2, 3”, now rating “A, B, C”
• E.g., discrepancy between duplicate records
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Example: Bird Observation Data

• Change of range boundaries over time, e.g., for temperature
• Different units, e.g., meters versus feet for elevation
• Addition or removal of attributes over the years
• Missing entries, especially for habitat and weather

– People want to watch birds, not fill out long forms

• GIS data based on 30m cells or 1km cells
• Location accuracy

– ZIP code versus GPS coordinates
– Walk along transect but report only single location

• Inconsistent encoding of missing entries
– 0, -9999, -3.4E+38—need context to decide

• Varying observer experience and capabilities
– Confusion of species
– Missed species that was present

• Confusion about reporting protocol
– Report max versus sum seen
– Report only interesting species, not all
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Hairy vs. Downy Woodpecker
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How to Handle Missing Data?

• Ignore the record
– Usually done when class label is missing (for classification tasks)

• Fill in manually
– Tedious and often not clear what value to fill in

• Fill in automatically with one of the following:
– Global constant, e.g., “unknown”

• “Unknown” could be mistaken as new concept by data mining 
algorithm

– Attribute mean
– Attribute mean for all records belonging to the same class
– Most probable value: inference-based such as Bayesian formula 

or decision tree
• Some methods, e.g., trees, can do this implicitly
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How to Handle Noisy Data?

• Noise = random error or variance in a measured variable
• Typical approach: smoothing

• Adjust values of a record by taking values of other “nearby” 
records into account

• Dozens of approaches
• Binning, average over neighborhood
• Regression: replace original records with records drawn from 

regression function
• Identify and remove outliers, possibly involving human inspection

• For this class: don’t do it unless you understand the nature 
of the noise
• A good data mining technique should be able to deal with noise 

in the data
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Data Preprocessing Overview

• Descriptive data summarization

• Data cleaning 

• Data integration

• Data transformation

• Summary

23

Data Integration

• Combines data from multiple sources into a coherent store
• Entity identification problem

– Identify real world entities from multiple data sources, e.g., Bill 
Clinton = William Clinton

• Detecting and resolving data value conflicts
– For the same real world entity, attribute values from different 

sources might be different
– Possible reasons: different representations, different scales, e.g., 

metric vs. US units

• Schema integration: e.g., A.cust-id  B.cust-#
– Integrate metadata from different sources
– Can identify identical or similar attributes through correlation 

analysis
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Covariance (Numerical Data)

• Covariance computed for data samples
(A1, A2,..., An) and (B1, B2,..., Bn):

• If A and B are independent, then Cov(A, B) = 0, but the converse is 
not true
– Two random variables may have covariance of 0, but are not 

independent

• If Cov(A, B) > 0, then A and B tend to rise and fall together
– The greater, the more so

• If covariance is negative, then A tends to rise as B falls and vice 
versa
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Covariance Example

• Suppose two stocks A and B have the 
following values in one week:
– A: (2, 3, 5, 4, 6)

– B: (5, 8, 10, 11, 14)

– AVG(A) = (2 + 3 + 5 + 4 + 6)/ 5 = 20/5 = 4

– AVG(B) = (5 + 8 + 10 + 11 + 14) /5 = 48/5 = 9.6

– Cov(A,B) = (25+38+510+411+614)/5 − 49.6 = 4

• Cov(A,B) > 0, therefore A and B tend to rise 
and fall together
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Correlation Analysis (Numerical Data)

• Pearson’s product-moment correlation coefficient of random 
variables A and B:

• Computed for two attributes A and B from data samples
(A1, A2,..., An) and (B1, B2,..., Bn):

Where      and      are the sample means, and sA and sB are the sample 
standard deviations of A and B (using the variance formula for sn).

• Note: -1 ≤ rA,B ≤ 1
• rA,B > 0: A and B positively correlated

– The higher, the stronger the correlation

• rA,B < 0: negatively correlated
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Correlation Analysis (Categorical Data)

• 2 (chi-square) test

• The larger the 2 value, the more likely the variables are 
related

• The cells that contribute the most to the 2 value are those 
whose actual count is very different from the expected 
count

• Correlation does not imply causality
– # of hospitals and # of car-thefts in a city are correlated
– Both are causally linked to the third variable: population
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Chi-Square Example

• Numbers in parenthesis are expected counts calculated 
based on the data distribution in the two categories

• It shows that like_science_fiction and play_chess are 
correlated in the group
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Play chess Not play chess Sum (row)

Like science fiction 250 (90) 200 (360) 450

Not like science fiction 50 (210) 1000 (840) 1050

Sum(col.) 300 1200 1500
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Data Preprocessing Overview

• Descriptive data summarization

• Data cleaning 

• Data integration

• Data transformation

• Summary
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Why Data Transformation?

• Make data more “mineable”
– E.g., some patterns visible when using single time 

attribute (entire date-time combination), others only 
when making hour, day, month, year separate 
attributes

– Some patterns only visible at right granularity of 
representation

• Some methods require normalized data
– E.g., all attributes in range [0.0, 1.0]

• Reduce data size, both #attributes and #records
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Normalization

• Min-max normalization to [new_minA, new_maxA]:

– E.g., normalize income range [$12,000, $98,000] to [0.0, 1.0]. Then $73,000 is mapped to

• Z-score normalization (μ: mean, σ: standard deviation):

– E.g., for μ = 54,000 and σ = 16,000, $73,000 is mapped to

• Normalization by decimal scaling:

where j is the smallest integer such that Max(|ν’|) < 1
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Data Reduction

• Why data reduction?
– Mining cost often increases rapidly with data size and 

number of attributes

• Goal: reduce data size, but produce (almost) the 
same results

• Data reduction strategies
– Dimensionality reduction

– Data Compression

– Numerosity reduction

– Discretization
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Dimensionality Reduction: Attribute 
Subset Selection

• Feature selection (i.e., attribute subset selection):
– Select a minimum set of attributes such that the mining 

result is still as good as (or even better than) when using 
all attributes

• Heuristic methods (due to exponential number of 
choices):
– Select independently based on some test
– Step-wise forward selection
– Step-wise backward elimination
– Combining forward selection and backward elimination
– Eliminate attributes that some trusted method did not use, 

e.g., a decision tree
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Principal Component Analysis

• Find projection that captures largest amount of 
variation in the data
– Space defined by eigenvectors of the covariance 

matrix

• Compression: use only first k eigenvectors
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Data Reduction Method: Sampling

• Select a small subset of a given data set
• Reduces mining cost

– Mining cost usually is super-linear in data size
– Often makes difference between in-memory processing and 

need for expensive I/O

• Choose a representative subset of the data
– Simple random sampling may have poor performance in the 

presence of skew

• Develop adaptive sampling methods
– Stratified sampling

• Approximate the percentage of each class (or sub-population of 
interest) in the overall database 

• Used in conjunction with skewed data
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Sampling with or without Replacement

42

Raw Data

Sampling: Cluster or Stratified 
Sampling
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Raw Data Cluster/Stratified Sample
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Data Reduction: Discretization

• Applied to continuous attributes

• Reduces domain size

• Makes the attribute discrete and hence 
enables use of techniques that only accept 
categorical attributes

• Approach:

– Divide the range of the attribute into intervals

– Interval labels replace the original data
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Data Preprocessing Overview

• Descriptive data summarization

• Data cleaning 

• Data integration

• Data transformation

• Summary
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Summary

• Data  preparation is a big issue for data mining

• Descriptive data summarization is used to 
understand data properties

• Data preparation includes
– Data cleaning and integration

– Data reduction and feature selection

– Discretization

• Many techniques and commercial tools, but 
still major challenge and active research area
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