
11/10/2011

1

301

Finally, let us put things into perspective by
looking at alternatives to MapReduce.

We start with Dryad from Microsoft.

Overview

• Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and
Dennis Fetterly. Dryad: distributed data-parallel programs
from sequential building blocks. European Conference on
Computer Systems (EuroSys), Lisbon, Portugal, March 21-
23, 2007

• Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar
Erlingsson, Pradeep Kumar Gunda, and Jon Currey.
DryadLINQ: A System for General-Purpose Distributed Data-
Parallel Computing Using a High-Level Language.
Symposium on Operating System Design and
Implementation (OSDI), San Diego, CA, December 8-10,
2008

• Presentation based on authors’ slides

302

11/10/2011

2

Outline

• Dryad Design

• Implementation

• Policies as Plug-ins

• Building on Dryad

303 303

304

Design Space

304

Throughput Latency

Internet

Private
data

center

Data-
parallel

Shared
memory

11/10/2011

3

305

2-D Piping
• Unix Pipes: 1-D

 grep | sed | sort | awk | perl

• Dryad: 2-D

 grep1000 | sed500 | sort1000 | awk500 | perl50

305

306

Dryad = Execution Layer

306

Job (Application)

Dryad

Cluster

Pipeline

Shell

Machine

≈

11/10/2011

4

Outline

• Dryad Design

• Implementation

• Policies as Plug-ins

• Building on Dryad

307 307

308

Virtualized 2-D Pipelines

308

11/10/2011

5

309

Virtualized 2-D Pipelines

309

310

Virtualized 2-D Pipelines

310

11/10/2011

6

311

Virtualized 2-D Pipelines

311

312

Virtualized 2-D Pipelines

312

• 2D DAG
• multi-machine
• virtualized

11/10/2011

7

313

Dryad Job Structure

313

grep

sed

sort
awk

perl
grep

grep
sed

sort

sort

awk

Input
files

Vertices
(processes)

Output
files

Channels

Stage

 grep1000 | sed500 | sort1000 | awk500 | perl50

314

Channels

314

X

M

Items

Finite Streams of items

• distributed filesystem files
 (persistent)
• SMB/NTFS files
 (temporary)
• TCP pipes
 (inter-machine)
• memory FIFOs
 (intra-machine)

11/10/2011

8

315

Architecture

315

Files, TCP, FIFO, Network
job schedule

data plane

control plane

NS PD PD PD

V V V

Job manager cluster

316

JM code

vertex
code

Staging
1. Build

2. Send
.exe

3. Start JM

5. Generate graph

7. Serialize
vertices

8. Monitor
Vertex execution

4. Query
cluster resources

Cluster
services 6. Initialize vertices

11/10/2011

9

Outline

• Dryad Design

• Implementation

• Policies and Resource Management

• Building on Dryad

317 317

318

Policy Managers

318

R R

X X X X

Stage R
R R

Stage X

Job
Manager

R manager X Manager
R-X

Manager

Connection R-X

11/10/2011

10

319

X[0] X[1] X[3] X[2] X’[2]

Completed vertices Slow
vertex

Duplicate
vertex

Duplicate Execution Manager

Duplication Policy = f(running times, data volumes)

320

S S S S

A A A

S S

T

S S S S S S

T

1 # 2 # 1 # 3 # 3 # 2

3 # 2 # 1

static

dynamic

rack #

Aggregation Manager

320

11/10/2011

11

321

Data Distribution
(Group By)

321

Dest

Source

Dest

Source

Dest

Source m

n

m x n

322

T T
[0-?) [?-100)

Range-Distribution Manager

S

D D D

S S

S S S

T static

dynamic
322

Hist

[0-30),[30-100)

[30-100) [0-30)

[0-100)

11/10/2011

12

323

Goal: Declarative Programming

323

X

T

S

X X

S S

T T T

X

static dynamic

Outline

• Dryad Design

• Implementation

• Policies as Plug-ins

• Building on Dryad

324 324

11/10/2011

13

325

Software Stack

325

Windows
Server

Cluster Services

Distributed Filesystem

 Dryad

Distributed Shell

PSQL

DryadLINQ

Perl
SQL

server

C++

Windows
Server

Windows
Server

Windows
Server

C++

CIFS/NTFS

legacy
code

sed, awk, grep, etc.

SSIS

Queries

C#

Vectors

Machine
Learning

C#

Jo
b

 q
u

eu
ei

n
g,

 m
o

n
it

o
ri

n
g

Example Query: Sky Server

• Table photoPrimary
– All identified astronomical objects (354,254,163

records)

– ID, color magnitude in 5 bands (u, g, r, i, z)

• Table neighbors
– For each object, neighbors within 30 arc seconds

(2,803,165,372 records)

• Query 18: gravitational lens effect
– Find all objects that have neighbors whose color is

similar to that object

326

11/10/2011

14

327

SkyServer Query 18

327

D D

M M 4n

S S 4n

Y Y

H

n

n

X X n

U U N N

L L

select distinct U.ObjID
into results
 from photoPrimary U,
 neighbors N,
 photoPrimary L
where U.ObjID = N.ObjID
 and U.mode = 1
 and L.ObjID = N.NeighborObjID
 and U.ObjID < L.ObjID
 and abs((U.u-U.g)-(L.u-L.g))<0.05
 and abs((U.g-U.r)-(L.g-L.r))<0.05
 and abs((U.r-U.i)-(L.r-L.i))<0.05
 and abs((U.i-U.z)-(L.i-L.z))<0.05

328

D D

M M 4n

S S 4n

Y Y

H

n

n

X X n

U U N N

U U

SkyServer DB query

• Took SQL plan

• Manually coded in Dryad

• Manually partitioned data

u: objid, color
n: objid, neighborobjid
[partition by objid]

select
 u.color,n.neighborobjid
from u join n
where
 u.objid = n.objid

(u.color,n.neighborobjid)
[re-partition by n.neighborobjid]
[order by n.neighborobjid]

[distinct]
[merge outputs]

select
 u.objid
from u join <temp>
where
 u.objid = <temp>.neighborobjid and
 |u.color - <temp>.color| < d

11/10/2011

15

329

Optimization

D

M

S

Y

X

M

S

M

S

M

S

U N

U

D D

M M 4n

S S 4n

Y Y

H

n

n

X X n

U U N N

U U

330

Optimization

D

M

S

Y

X

M

S

M

S

M

S

U N

U

D D

M M 4n

S S 4n

Y Y

H

n

n

X X n

U U N N

U U

11/10/2011

16

331

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0 2 4 6 8 10

Number of Computers

Speed-up

(times)

Dryad In-Memory

Dryad Two-pass

SQLServer 2005

SkyServer Q18 Performance

331

336

DryadLINQ

336

• Declarative programming
• Integration with Visual Studio
• Integration with .Net
• Type safety
• Automatic serialization
• Job graph optimizations

 static
 dynamic

• Conciseness

11/10/2011

17

337 337

LINQ

Collection<T> collection;

bool IsLegal(Key);

string Hash(Key);

var results = from c in collection
 where IsLegal(c.key)
 select new { Hash(c.key), c.value};

338

Collection<T> collection;
bool IsLegal(Key k);
string Hash(Key);

var results = from c in collection

 where IsLegal(c.key)
 select new { Hash(c.key), c.value};

338

DryadLINQ = LINQ + Dryad

C#

collection

results

C# C# C#

Vertex
code

Query
plan
(Dryad job)

Data

11/10/2011

18

339

Data Model

339

Partition

Collection

C# objects

340

Query Providers

340

DryadLINQ

Client machine

(11)

Distributed
query plan

C#

Query Expr

Data center

Output Tables Results

Input Tables Invoke Query

Output
DryadTable

Dryad
Execution

C# Objects

JM

ToDryadTable

foreach

11/10/2011

19

341

Example: Histogram

341

public static IQueryable<Pair> Histogram(
 IQueryable<LineRecord> input, int k)
{
 var words = input.SelectMany(x => x.line.Split(' '));
 var groups = words.GroupBy(x => x);
 var counts = groups.Select(x => new Pair(x.Key, x.Count()));
 var ordered = counts.OrderByDescending(x => x.count);
 var top = ordered.Take(k);
 return top;
}

“A line of words of wisdom”

[“A”, “line”, “of”, “words”, “of”, “wisdom”]

[[“A”], [“line”], [“of”, “of”], [“words”], [“wisdom”]]

[{“A”, 1}, {“line”, 1}, {“of”, 2}, {“words”, 1}, {“wisdom”, 1}]

[{“of”, 2}, {“A”, 1}, {“line”, 1}, {“words”, 1}, {“wisdom”, 1}]

[{“of”, 2}, {“A”, 1}, {“line”, 1}]

342

Histogram Plan

342

SelectMany
HashDistribute

Merge
GroupBy

Select

OrderByDescending
Take

MergeSort
Take

11/10/2011

20

343

Map-Reduce in DryadLINQ

343

public static IQueryable<S> MapReduce<T,M,K,S>(

 this IQueryable<T> input,

 Expression<Func<T, IEnumerable<M>>> mapper,

 Expression<Func<M,K>> keySelector,

 Expression<Func<IGrouping<K,M>,S>> reducer)

{

 var map = input.SelectMany(mapper);

 var group = map.GroupBy(keySelector);

 var result = group.Select(reducer);

 return result;

}

344

Map-Reduce Plan

344

M

D

R

G

M

Q

G1

R

D

MS

G2

R

(1) (2) (3)

X

X

M

Q

G1

R

D

MS

G2

R

X

M

Q

G1

R

D

MS

G2

R

X

M

Q

G1

R

D

M

Q

G1

R

D

MS

G2

R

X

M

Q

G1

R

D

MS

G2

R

X

M

Q

G1

R

D

MS

G2

R

MS

G2

R

map

sort

groupby

reduce

distribute

mergesort

groupby

reduce

mergesort

groupby

reduce

consumer

m
a

p

p
a

rt
ia

l a
g

g
re

g
a

ti
o

n

re
d

u
ce

S S S S

A A A

S S

T

11/10/2011

21

345

Distributed Sorting in DryadLINQ

345

public static IQueryable<TSource>
DSort<TSource, TKey>(this IQueryable<TSource> source,
 Expression<Func<TSource, TKey>> keySelector,
 int pcount)
{
 var samples = source.Apply(x => Sampling(x));
 var keys = samples.Apply(x => ComputeKeys(x, pcount));
 var parts = source.RangePartition(keySelector, keys);
 return parts.OrderBy(keySelector);
}

346

Distributed Sorting Plan

346

O

DS

H

D

M

S

DS

H

D

M

S

DS

D

DS

H

D

M

S

DS

D

M

S

M

S

(1) (2) (3)

Deterministic
Sampling

Histogram

Data partitioning

Merge

Sort

11/10/2011

22

Outline

• Introduction

• Dryad

• DryadLINQ

• Building on DryadLINQ

349 349

350

Machine Learning in DryadLINQ

350

Dryad

DryadLINQ

Large Vector

Machine learning
Data analysis

11/10/2011

23

351

Very Large Vector Library
PartitionedVector<T>

351

T

Scalar<T>

T T

T

352

Operations on Large Vectors:
Map 1

352

U

T

T U
f

f

f preserves partitioning

11/10/2011

24

353

V

Map 2 (Pairwise)

353

T U
f

V

U

T

f

354

Map 3 (Vector-Scalar)

354

T U
f

V

V

354

U

T

f

11/10/2011

25

355

Reduce (Fold)

U U U

U

f

f f f

f
U U U

U

356

Linear Algebra

356

T U V
nmm  ,,= , ,

T

11/10/2011

26

357

Linear Regression

• Data

• Find

• S.t.

357

m

t

n

t yx  ,

mnA 

tt yAx 

},...,1{ nt

358

Analytic Solution

358

X×XT X×XT X×XT Y×XT Y×XT Y×XT

Σ

X[0] X[1] X[2] Y[0] Y[1] Y[2]

Σ

 []-1

*

A

1))((  T

tt t

T

tt t xxxyA

Map

Reduce

11/10/2011

27

359

Linear Regression Code

Vectors x = input(0), y = input(1);

Matrices xx = x.PairwiseOuterProduct(x);

OneMatrix xxs = xx.Sum();

Matrices yx = y.PairwiseOuterProduct(x);

OneMatrix yxs = yx.Sum();

OneMatrix xxinv = xxs.Map(a => a.Inverse());

OneMatrix A = yxs.Map(
 xxinv, (a, b) => a.Multiply(b));

359

1))((  T

tt t

T

tt t xxxyA

360

• Many similarities

• Exe + app. model

• Map+sort+reduce

• Few policies

• Program=map+reduce

• Simple

• Mature (> 4 years)

• Widely deployed

• Hadoop

 Dryad Map-Reduce

• Execution layer

• Job = arbitrary DAG

• Plug-in policies

• Program=graph gen.

• Complex (features)

• New (< 2 years)

• Still growing

• Internal

360

11/10/2011

28

361

Conclusions
• Dryad = distributed execution environment

• Application-independent (semantics oblivious)

• Supports rich software ecosystem
– Relational algebra

– Map-reduce

– LINQ

– Etc.

• DryadLINQ = A Dryad provider for LINQ

• This is only the beginning!

361

362

Finally, let us put things into perspective by
looking at alternatives to MapReduce.

We started with Dryad from Microsoft, now
move on to parallel and distributed
databases.

11/10/2011

29

Parallel Database Systems

• Data: relations

• Relational operators process relations and
output relations

– Selection

– Projection

– Join

– Group By and aggregation

• Query language: SQL

363

SQL

• Declarative language

– Specify what you want, not how to get it

• Database optimizer chooses best implementation

– Query plan: DAG of operators and their
implementations

– Minimize cost of query plan

• I/O cost, CPU cost

– Optimizer explores space of query plans, chooses best
one

364

11/10/2011

30

SQL in Parallel

• Same query, just replace optimizer
– Take data location and network cost into account
– Optimize for latency or total cost

• Add new operators
– Exchange operator: behaves like an iterator, but receives input

via inter-process communication rather than iterator procedure
calls

– Split and Merge: create and join parallel dataflows

• Add new operator implementations
– Semi-join implementation to reduce network communication

cost

• The optimizer is more complex, but SQL does not need to
change

365

Distributed Query Optimization

• Start: calculus query on global relations

• Transform into algebraic query on global
relations

• Perform data localization, using fragment
schema, to generate algebraic query on
fragments

• Perform global optimization to create
distributed query execution plan

• Run on local sites in parallel

366

11/10/2011

31

Pipeline Parallelism

• Computation of one operator proceeds in
parallel with another

• Model: output pulls from last operators, which
pulls from its inputs and so on

367

Data

Scan

Sort

Limited Benefits of Pipeline Parallelism

• Relational pipelines are usually not very long

– Ten or longer is rare

• Some operators are blocking and cannot be
pipelined

– Aggregates, sorting

• Execution cost of one operator might be much
larger than the others

– Limits speedup obtained by pipelining

368

11/10/2011

32

Partitioned Parallelism

• Query performs batch-style computation on
many input tuples

369

Data

Scan

Sort

Data

Scan

Sort

Data

Scan

Sort

Merge

Partitioned data

Data Partitioning

• Round-robin
– Simple, but not helpful for associative access

• Hash partitioning
– Assign tuples to partition using hash function
– Good for associative access (equality-based)
– Not good for range queries

• Range partitioning
– Partition data into continuous ranges
– Good for range queries, parallel sort
– Risks data skew (uneven partitions) and execution

skew (uneven access pattern)

370

11/10/2011

33

Distributed Transactions?

• Transactions were crucial for the success of
database systems

• Enable concurrent processing of multiple
queries, but programmers could write them as
if they executed in isolation

371

The ACID Properties

• Atomicity: Either all or none of the transaction’s
actions are executed
– Even when a crash occurs mid-way

• Consistency: Transaction run by itself must
preserve consistency of the database
– User’s responsibility

• Isolation: Transaction semantics do not depend
on other concurrently executed transactions

• Durability: Effects of successfully committed
transactions should persist, even when crashes
occur

372

11/10/2011

34

Example

• T1 transfers $100 from B’s account to A’s account.
• T2 credits both accounts with a 6% interest

payment.
• There is no guarantee that T1 will execute before

T2 or vice-versa, if both are submitted together.
• However, the net effect must be equivalent to

these two transactions running serially in some
order.

373

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Example (Contd.)

• Consider a possible interleaving (schedule):

• This is OK. But what about:

• The DBMS’s view of the second schedule:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

374

11/10/2011

35

Scheduling Transactions

• Serial schedule: Schedule that does not interleave the
actions of different transactions.
– Easy for programmer, easy to achieve consistency
– Bad for performance

• Equivalent schedules: For any database state, the effect
(on the objects in the database) of executing the first
schedule is identical to the effect of executing the
second schedule.

• Serializable schedule: A schedule that is equivalent to
some serial execution of the transactions.
– Retains advantages of serial schedule, but addresses

performance issue

375

Anomalies with Interleaved Execution

• Reading Uncommitted Data (WR Conflicts,
“dirty reads”)

• Example: T1(A=A-100), T2(A=1.06A),
T2(B=1.06B), C(T2), T1(B=B+100)

• T2 reads value A written by T1 before T1
completed its changes

• If T1 later aborts, T2 worked with invalid data

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

376

11/10/2011

36

More Anomalies

• Unrepeatable Reads (RW Conflicts)
• T1 sees two different values of A, even though it

did not change A between the reads
• Example: online bookstore

– Only one copy of a book left
– Both T1 and T2 see that 1 copy is left, then try to

order
– T1 gets an error message when trying to order
– Could not have happened with serial execution

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

377

Even More Anomalies

• Overwriting Uncommitted Data (WW Conflicts)

• T1’s B and T2’s A persist, which would not happen
with any serial execution

• Example: 2 people with same salary
– T1 sets both salaries to 2000, T2 sets both to 1000

– Above schedule results in A=1000, B=2000, which is
inconsistent

378

T1: W(A), W(B), C
T2: W(A), W(B), C

11/10/2011

37

Aborted Transactions

• All actions of aborted transactions have to be
undone

• Dirty read can result in unrecoverable schedule
– T1 writes A, then T2 reads A and makes modifications

based on A’s value
– T2 commits, and later T1 is aborted
– T2 worked with invalid data and hence has to be

aborted as well; but T2 already committed…

• Recoverable schedule: cannot allow T2 to commit
until T1 has committed
– Can lead to cascading aborts

379

Preventing Anomalies through Locking

• DBMS can support concurrent transactions while
preventing anomalies by using a locking protocol

• If a transaction wants to read an object, it first
requests a shared lock (S-lock) on the object

• If a transaction wants to modify an object, it first
requests an exclusive lock (X-lock) on the object

• Multiple transactions can hold a shared lock on
an object

• At most one transaction can hold an exclusive
lock on an object

380

11/10/2011

38

Lock-Based Concurrency Control

• Strict Two-phase Locking (Strict 2PL) Protocol:

– Each Xact must obtain the appropriate lock before
accessing an object.

– All locks held by a transaction are released when
the transaction is completed.

– All this happens automatically inside the DBMS

• Strict 2PL allows only serializable schedules.

– Prevents all the anomalies shown earlier

381

Deadlocks

• Assume T1 and T2 both want to read and write objects
A and B
– T1 acquires X-lock on A; T2 acquires X-lock on B
– Now T1 wants to update B, but has to wait for T2 to

release its lock on B
– But T2 wants to read A and also waits for T1 to release its

lock on A
– Strict 2PL does not allow either to release its locks before

the transaction completed. Deadlock!

• DBMS can detect this
– Automatically breaks deadlock by aborting one of the

involved transactions

382

11/10/2011

39

Performance of Locking

• Locks force transactions to wait

• Abort, restart due to deadlock wastes work

• Waiting for locks becomes worse as more
transactions execute concurrently
– Allowing more concurrent transactions at some point

leads to thrashing

– Need to limit max number of concurrent transactions
to prevent thrashing

– Minimize lock contention by reducing the time a Xact
holds locks

383

Distributed Transactions

• Transactions take longer to access remote objects
– Need to hold locks longer

– Greater probability for waiting and deadlocks

• What if the network partitions?
– Transaction cannot acquire/release some locks

• Even without partitions, the problem is hard
– Need to coordinate commit between multiple nodes

– What happens if some participating node crashes?

• Standard protocol: 2PC (2-phase commit)

384

11/10/2011

40

2PC Basics

• Commit-request phase
– Coordinator asks all participants to prepare for

commit

– Participants vote YES or NO to commit request

• Commit phase
– Based on participants’ votes, coordinator decides to

commit (if all voted YES) or abort

– Coordinator notifies participants about decision

– Participants apply corresponding action (commit or
abort) locally

385

2PC Problems

• 2PC = blocking protocol

– Nodes cannot make a decision without hearing
from coordinator, e.g., might hold on to locks
forever if coordinator is down and they answered
YES to first request

• Expensive for many-worker transactions

• Some issues were addressed by later 2PC
modifications, but the basic problems remain

386

