11/3/2011

Let us now look at implementing graph
algorithms in MapReduce.

Why Graphs?

* Discussion is based on the book and slides by
Jimmy Lin and Chris Dyer

* Analyze hyperlink structure of the Web

* Social networks

— Facebook friendships, Twitter followers, email
flows, phone call patterns

* Transportation networks
— Roads, bus routes, flights
Interactions between genes, proteins, etc.

What is a Graph?

* G=(V,E)
— V: set of vertices (nodes)
— E: set of edges (links), E SV XV
* Edges can be directed or undirected
* Graph might have cycles or not (acyclic graph)
* Nodes and edges can be annotated

— E.g., social network: node has demographic
information like age; edge has type of relationship
like friend or family

Graph Problems

* Graph search and path planning

— Find driving directions from A to B

— Recommend possible friends in social network

— How to route IP packets or delivery trucks
* Graph clustering

— Identify communities in social networks

— Partition large graph to parallelize graph processing
* Minimum spanning trees

— Connected graph of minimum total edge weight

More Graph Problems

Bipartite graph matching
— Match nodes on “left” with nodes on “right” side

— E.g., match job seekers and employers, singles looking
for dates, papers with reviewers

* Maximum flow
— Maximum traffic between source and sink
— E.g., optimize transportation networks

* Finding “special” nodes

— E.g., disease hubs, leader of a community, people with
influence

Graph Representations

* Usually one of these two:
— Adjacency matrix
— Adjacency list

11/3/2011

Adjacency Matrix

* Matrix M of size [N| by |N|
— Entry M(i,j) contains weight of edge from node i to
node j; 0if no edge

Properties

* Advantages
— Easy to manipulate with linear algebra
— Operation on outlinks and inlinks corresponds to

112134 iteration over rows and columns
1lo0l1l01 * Disadvantage
21110l 1 11 — Huge space overhead for sparse matrix
3/1/0lo0lo0 — E.g., Facebook friendship graph
4,1/011|0
Example source: Jimmy Lin
Adjacency List Properties

¢ Compact row-wise representation of matrix

w &
I

PR RN

El
w

=
O|O|O| | N
R ORI Ol W
O|O| kR |k &~

HIW|IN|F

* Advantages

— More space-efficient

— Still easy to compute over outlinks for each node
* Disadvantage

— Difficult to compute over inlinks for each node

* Note: remember inverse Web graph
discussion

Parallel Breadth-First Search

* Case study: single-source shortest path problem
— Find the shortest path from a source node s to all
other nodes in the graph
* For non-negative edge weights, Dijkstra’s
algorithm is the classic sequential solution
— Initialize distance d[s]=0, all others to o
— Maintain priority queue of nodes sorted by distance

— Remove first node u from queue and update d[v] for
each node v in adjacency list of u if (1) visin queue
and (2) d[v] > d[u]+weight(u,v)

Dijkstra’s Algorithm Example

Example from Jimmy Lin's
presentation

11/3/2011

Dijkstra’s Algorithm Example

Dijkstra’s Algorithm Example

Dijkstra’s Algorithm Example

Lo @

Dijkstra’s Algorithm Example

0o—@
b

Dijkstra’s Algorithm Example

o—@
/

Parallel Single-Source Shortest Path

* Priority queue is core element of Dijkstra’s
algorithm
— No global shared data structure in MapReduce

* Dijkstra’s algorithm proceeds sequentially,
node by node
— Taking non-min node could affect correctness of

algorithm
* Solution: perform parallel breadth-first search

11/3/2011

Parallel Breadth-First Search

¢ Start at source s

* |n first round, find all nodes reachable in one
hop from s

* |In second round, find all nodes reachable in
two hops from s, and so on

* Keep track of min distance for each node
— Also record corresponding path

* Iterations stop when no shorter path possible

BFS Visualization

Example from Jimmy Lin’s
presentation

MapReduce Code: Single Iteration

map(nid n, node N)
d = N.distance
emit(nid n, N) // Pass along graph structure
for all nid m in N.adjacencyList do

emit(nid m, d + w(n,m)) // Emit distances to reachable nodes

// N stores node’s current min distance and adjacency list

reduce(nid m, [d1,d2,...])

dMin=o; M=

foralldin[d1,d2,..] do
if isNode(d) then

M=d // Recover graph structure
else if d < dMin then // Look for min distance in list
dMin=d

M.distance = dMin
emit(nid m, node M)

// Update node’s shortest distance

Overall Algorithm

Need driver program to control the iterations
Initialization: SourceNode.distance = 0, all others
have distance=0

When to stop iterating?

If all edges have weight 1, can stop as soon as no
node has oo distance any more

— Can detect this with Hadoop counter

Number of iterations depends on graph diameter

— In practice, many networks show the small-world
phenomenon, e.g., six degrees of separation

Dealing With Diverse Edge Weights

e “Detour” path can be shorter than “direct” connection,
hence cannot stop as soon as all node distances are
finite

* Stop when no node’s shortest distance changes any
more
— Can be detected with Hadoop counter
— Worst case: |N| iterations

ne_ Y n, <)\1
Ng
2 O
Q Q-
ny °

Example from Jimmy Lin's ‘\4
presentation

n, T

MapReduce Algorithm Analysis

* Brute-force approach that performs many
irrelevant computations

— Computes distances for nodes that still have
infinity distance
— Repeats previous computations inside “search
frontier”
* Dijkstra’s algorithm only explores the search
frontier, but needs the priority queue

11/3/2011

Typical Graph Processing in

MapReduce

Graph represented by adjacency list per node,

plus extra node data

Map works on a single node u

— Node u’s local state and links only

Node v in u’s adjacency list is intermediate key

— Passes results of computation along outgoing edges

Reduce combines partial results for each
destination node

Map also passes graph itself to reducers
Driver program controls execution of iterations

PageRank Introduction

* Popularized by Google for evaluating the quality
of a Web page
* Based on random Web surfer model

— Web surfer can reach a page by jumping to it or by
following the link from another page pointing to it

— Modeled as random process
* Intuition: important pages are linked from many
other (important) pages

— Goal: find pages with greatest probability of access

PageRank Definition

PageRank of page n:

-P(n) = aﬁ + (11— &) Zern
— |V] is number of pages (nodes)
— a is probability of random jump
— L(n) is the set of pages linking to n

— P(m) is m’s PageRank

— C(m) is m’s out-degree

* Definition is recursive

— Compute by iterating until convergence (fixpoint)

P(m)
Cc(m)

Computing PageRank

* Similar to BFS for shortest path
* Computing P(n) only requires P(m) and C(m)
for all pages linking to n

— During iteration, distribute P(m) evenly over
outlinks

— Then add contributions over all of n’s inlinks

* Initialization: any probability distribution over
the nodes

PageRank Example

Iteration 1 n, (0.2)

noa ‘7

Source: Jimmy Lin's
presentation

PageRank Example

11/3/2011

PageRank in MapReduce

- SN . gy
=} e e

MapReduce Code

map(nid n, node N) // N stores node’s current PageRank and adjacency list
p = N.pageRank / |N.adjacencyList|

emit(nid n, N) // Pass along graph structure
for all nid m in N.adjacencyList do
emit(nid m, p) // Pass PageRank mass to neighbors

reduce(nid m, [p1,p2,...])
s=0; M=
forall pin [p1,p2,..] do
if isNode(p) then
M=p // Recover graph structure
else

s+=p // Sum incoming PageRank contributions
M.pageRank = o/ |V| + (1-a)s
emit(nid m, node M)

Dangling Nodes

* Consider node x with no outgoing links
— P(x) is not passed to any other node, hence gets “lost”
in the Map phase
* Need to correct for the missing probability mass
— Model: assume dangling page links to all pages
— Mathematically equivalent to
1 8 P(m)
P(n) = (Im +(1-a) (m + m;ﬂ)m)
— 8: missing PageRank mass due to dangling nodes

PageRank with Dangling Nodes

* Challenge: need 8, which is the sum over the
current page ranks of dangling nodes
— MR-job1: compute 3
— MR-job2: compute new PageRank using &

* Alternative computations?

— Order inversion pattern to make sure 3 is available
in all reduce tasks

Number of Iterations

* PageRank computation iterates until
convergence

— PageRank of all nodes no longer changes (or is
within small tolerance)

— Needs to be checked by driver

* Original PageRank paper: 52 iterations until
convergence on graph with 322 million edges
— Highly dependent on data properties

General Graph Processing Issues

* Sequential algorithms often use global data
structure for efficiency

* In MapReduce with adjacency list
representation, information can only be
passed locally to or from direct neighbors
— But can pre-compute other data structures, e.g.,

two-hop neighbors

* Presented algorithms have Map output of

O(#edges), which works well for sparse graphs

11/3/2011

General Graph Processing Issues

* Partitioning of graph into chunks strongly
affects effectiveness of combiners

— Often best to keep well-connected components
together
* Numerical stability for large graphs

— PageRank of individual page might be so small
that it underflows standard floating point
representation

— Can work with logarithm-transformed numbers
instead

