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1-Bucket-Theta: Map 

• Input: tuple xST, 
matrix-to-reducer mapping lookup table 

1. If xS then 
1. matrixRow = random( 1, |S| ) 

2. Forall regionID in lookup.getRegions( matrixRow ) 
1. Output ( regionID, (x, “S”) ) 

2. Else 
1. matrixCol = random( 1, |T| ) 

2. Forall regionID in lookup.getRegions( matrixCol ) 
1. Output ( regionID, (x, “T”) ) 
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Reduce:
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Random
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(2,T6),(3,T6)
(2,T5),(3,T5)
(1,T4),(3,T4)
(1,T3),(3,T3)
(1,T2),(3,T2)
(2,T1),(3,T1)
(1,S6),(2,S6)
(1,S5),(2,S5)
(3,S4)
(1,S3),(2,S3)
(3,S2)
(1,S1),(2,S1)

T6.A=9
T5.A=8
T4.A=7

T2.A=7
T1.A=5
S6.A=9
S5.A=9
S4.A=8
S3.A=7
S2.A=7
S1.A=5

T3.A=7

Input
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3

Reducer X: key 1

Input: S1, S3, S5 ,S6
T2, T3, T4

(S3,T2),(S3,T3),(S3,T4)Output:

Reducer Y: key 2

Input:

Output:

S1, S3, S5, S6
T1, T5, T6

(S1,T1),(S5,T6),(S6,T6)

Reducer Z: key 3

Input: S2, S4
T1, T2, T3, T4, T5, T6

(S2,T4),(S4,T5)

(S2,T2),(S2,T3),Output:

Map:

Row
Col

S

T

S.A=T.A
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1-Bucket-Theta: Reduce 

• Input: ( ID, [(x1, origin1),..., (xk, origink)] ) 

1. Stuples = ; Ttuples =  

2. Forall (xi, origini) in input list do 

1. If origini = “S” then Stuples = Stuples  {xi} 

2. Else Ttuples = Ttuples  {xi} 

3. joinResult = MyFavoriteJoinAlg( Stuples, 
Ttuples ) 

4. Output joinResult 
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1-Bucket-Theta Example 
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Reduce:
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(2,T6),(3,T6)
(2,T5),(3,T5)
(1,T4),(3,T4)
(1,T3),(3,T3)
(1,T2),(3,T2)
(2,T1),(3,T1)
(1,S6),(2,S6)
(1,S5),(2,S5)
(3,S4)
(1,S3),(2,S3)
(3,S2)
(1,S1),(2,S1)

T6.A=9
T5.A=8
T4.A=7

T2.A=7
T1.A=5
S6.A=9
S5.A=9
S4.A=8
S3.A=7
S2.A=7
S1.A=5

T3.A=7

Input

tuple

Output

1 2

3

Reducer X: key 1

Input: S1, S3, S5 ,S6
T2, T3, T4

(S3,T2),(S3,T3),(S3,T4)Output:

Reducer Y: key 2

Input:

Output:

S1, S3, S5, S6
T1, T5, T6

(S1,T1),(S5,T6),(S6,T6)

Reducer Z: key 3

Input: S2, S4
T1, T2, T3, T4, T5, T6

(S2,T4),(S4,T5)

(S2,T2),(S2,T3),Output:

Map:

Row
Col

S

T

S.A=T.A

1 6

1

6

3

Why Randomization? 

• Avoids pre-processing step to assign row/column 
IDs to records 

• Effectively removes output skew 

• Input sizes very close to target 
– Chernoff bound: due to large number of records per 

reducer, probability of receiving 10% or more over 
target is virtually zero 

 

• Side-benefit: join matrix does not have to have 
|S| by |R| cells, could be much smaller! 
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Remaining Challenges 

 

What is the best way to cover all true-valued 
cells? 

 

And how do we know which matrix cells have 
value true? 
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Cartesian Product Computation 

• Start with cross-product ST 

– Entire matrix needs to be covered by r reducer 
regions 

 

• Lemma 1: use square-shaped regions! 

– A reducer that covers c cells of join matrix M will 
receive at least 2sqrt(c) input tuples 
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Optimal Cover for M 

• Need to cover all |S||T| matrix cells 

– Lower bound for max-reducer-output: |S||T|/r 

– Lemma 1 implies lower bound for max-reducer-
input: 2sqrt(|S||T|/r) 

• Can we match these lower bounds? 

– YES: Use r squares, each sqrt(|S||T|/r) cells 
wide/tall 

 

• Can this be achieved for given S, T, r? 
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Easy Case 

• |S|, |T| are both multiples of sqrt(|S||T|/r) 

• Optimal! 
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Optimal square region 

S 

T 

Join matrix (cross-product) 
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Also Easy 

• |S| < |T|/r 
– Implies |S| < sqrt(|S||T|/r) 
– Lower bound for input not achievable 

• Optimal: use rectangles of size |S| by |T|/r 
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“Idealistic” square region 
S 

T 

Actual optimal region 
S 

T 

Hard Case 

• |T|/r  |S|  |T| and at least one is not 
multiple of sqrt(|S||T|/r) 
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Optimal square region 

S 

T 

9 regions: 
- 6 fit 
- 3 do not fit 
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Solution For Hard Case 

• “Inflate” squares until they just cover the 
matrix 
– Worst case: only one square did fit initially, but 

leftover just too small to fit more rows or columns 
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Need to at most double side-length of optimal square 

Near-Optimality For Cross-Product 

• Every region has less than 4sqrt(|S||T|/r) input 
records 
– Lower bound: 2sqrt(|S||T|/r) 

• Every region contains less than 4|S||T|/r cells 
– Lower bound: |S||T|/r 

• Summary: max-reducer-input and max-reducer-
output are within a factor of 2 and 4 of the lower 
bound, respectively 
– Usually much better: if 10 by 10 squares fit initially, 

they are within a factor of 1.1 and 1.21 of lower 
bound! 
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From Cross-Product To Joins 

• Near-optimality only shown for cross-product 

• Randomization of 1-Bucket-Theta tends to 
distribute output very evenly over regions 

– Join-specific mapping unlikely to improve max-
reducer-output significantly 

– 1-Bucket-Theta wins for output-size dominated joins 

• Join-specific mapping has to beat 1-Bucket-Theta 
on input cost! 

– Avoid covering empty matrix regions 
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Finding Empty Matrix Regions 

• For a given matrix region, prove that it 
contains no join result 

• Need statistics about S and T 

• Need simple enough join predicate 
– Histogram bucket: S.A > 8  T.A < 7 

– Join predicate: S.A = T.A 

– Easy to show that bucket property implies 
negation of join predicate 

• Not possible for “blackbox” join predicates 
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Approximate Join Matrix 
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True join matrix Histogram boundaries 

Candidate cells to be covered by algorithm 

What Can We Do? 

• Even if we could guess a better algorithm than 
1-Bucket-Theta, we cannot use it unless we 
can prove that it does not miss any join results 

• Can do this for many popular join types 

– Equi-join: S.A = T.A 

– Inequality-join: S.A  T.A 

– Band-join: R.A - 1  S.A  R.A + 2 

• Need histograms (easy and cheap to compute) 
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M-Bucket-I 

• Uses Multiple-bucket histograms to minimize 
max-reducer-Input 

• First identifies candidate cells 
• Then tries to cover all candidate cells with r 

regions 
– Binary search over max-reducer-input values 

• Min: 2sqrt(#candidateCells / r); max: |S|+|T| 

– Works on block of consecutive rows 
• Find “best” block (most candidate cells covered per region) 
• Continue with next block, until all candidate cells covered, or 

running out of regions 
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M-Bucket-I Illustration 
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MaxInput = 3 

Block: row 1 

Score: 1 

Block: rows 1-2 

Score: 1.5 

Best: 

And so on. 
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M-Bucket-O 

• Similar to M-Bucket-I, but tries to minimize 
max-reducer-Output 

• Binary search over max-reducer-output values 

• Problem: estimate number of result cells in 
regions inside a histogram bucket 
– Estimate can be poor, even for fine-grained 

histogram 

– Input-size estimation much more accurate than 
output-size estimation 
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Extension: Memory-Awareness 

• Input for region might exceed reducer memory 

• Solutions 
– Use I/O-based join implementation in Reduce, or 

– Create more (and hence smaller) regions 

• 1-Bucket-Theta: use squares of side-length 
Mem/2 

• M-Bucket-I: Instead of binary search on max-
reducer-input, set it immediately to Mem 

• Similar for M-Bucket-O 
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Experiments: Basic Setup 

• 10-machine cluster 

– Quad-core Xeon 2.4GHz, 8MB cache, 8GB RAM, 
two 250GB 7.2K RPM hard disks 

• Hadoop 0.20.2 

– One machine head node, other nine worker nodes 

– One Map or Reduce task per core 

– DFS block size of 64MB 

– Data stored on all 10 machines 
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Data Sets 

• Cloud 
– Cloud reports from ships and land stations 
– 382 million records, 28 attributes, 28.8GB total size 

• Cloud-5-1, Cloud-5-2 
– Independent random samples from Cloud, each with 5 

million records 

• Synth- 
– Pair of data sets of 5 million records each 
– Record is single integer between 1 and 1000 
– Data set 1: uniformly generated 
– Data set 2: Zipf distribution with parameter  

• For =0, data is perfectly uniform 
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Skew Resistance: Equi-Join 

• 1-Bucket-Theta vs. standard equi-join algorithm 

• Output-size dominated join 
– Max-reducer-output determines runtime 
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1-Bucket-Theta Standard algorithm 

Data Set Output size 
(billion) 

Output imbalance Runtime 
(secs) 

Output Imbalance Runtime 
(secs) 

Synth-0 25.00 1.0030 657 1.001 701 

Synth-0.4 24.99 1.0023 650 1.254 722 

Synth-0.6 24.98 1.0033 676 1.778 923 

Synth-0.8 24.95 1.0068 678 3.010 1482 

Synth-1 24.91 1.0089 667 5.312 2489 

Selective Band-Join 

SELECT S.date, S.longitude, 

S.latitude, T.latitude 

FROM Cloud AS S, Cloud AS T 

WHERE S.date = T.date 

AND S.longitude = T.longitude AND 

ABS(S.latitude - T.latitude) <= 10 

 

• 390M output vs. 764M input records 

• M-Bucket-I for different histogram granularities 
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M-Bucket-I Results 
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Runtime for MapReduce only! 

10-run averages 
(stdev < 15%) 

M-Bucket-I Details 

• M-Bucket-I for 1-bucket histogram is improved version 
of original 1-Bucket-Theta 
– 1-Bucket-Theta might keep reducers idle 

• Out-of-memory for 1-bucket and 100-bucket cases 
– Used memory-aware version of algorithm 

– Creates cr regions for r reducers for smallest integer c that 
allows in-memory processing 

• Input duplication rate: total mapper output size vs. 
total mapper input size 
– 31.22, 8.92, 1.93, 1.043, 1.00048, 1.00025 for histograms 

with 1, 10, 100, 1000, 10K, 100k, and 1M buckets 
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Not-So-Selective Band-Join 

SELECT S.latitude, T.latitude 

FROM Cloud-5-1 AS S, Cloud-5-2 AS T 

WHERE ABS(S.latitude-T.latitude) <= 2 

 

• 22 billion output vs. 10 million input records 

• M-Bucket-O for different histogram 
granularities 
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M-Bucket-O Results 
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Runtime for MapReduce only! 

10-run averages 
(stdev < 4%) 
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M-Bucket-O Details 

• M-Bucket-O for 1-bucket histogram is 
improved version of original 1-Bucket-Theta 

 

• Data set has 5951 distinct latitude values 

• Input duplication rate: total mapper output 
size vs. total mapper input size 

– 7.50, 4.14, 1.46, 1.053, 1.035 for histograms with 
1, 10, 100, 1000, and 5951 buckets 
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Step Number of histogram buckets 

1 10 100 1000 10,000 100,000 1,000,000 

Quantiles 0 115 120 117 122 124 122 

Histogram 0 140 145 147 157 167 604 

Heuristic 74 9 0.8 1.5 17 118 111 

Join 49,384 10,905 1157 595 548 540 536 

Total 49,458 11169 1423 861 844 949 1373 

Step Number of histogram buckets 

1 10 100 1000 5951 

Quantiles 0 4.5 4.5 4.8 4.9 

Histogram 0 26.2 25.8 25.6 25.6 

Heuristic 0.04 0.04 0.05 0.24 0.81 

Join 1279 2483 1597 1369 1188 

Total 1279 2514 1627 1399 1219 

M-Bucket-I on Cloud data set (input-size dominated join): 

M-Bucket-O on Cloud-5 data sets (output-size dominated join): 

Detailed cost breakdown 
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Summary 

• Join model for creation and reasoning about 
parallel algorithms 

• Near-optimal randomized algorithm for 
output-size dominated joins 

• Improved heuristics for popular very selective 
joins 

262 

Future Directions 

• Explore broader model applicability 
– Very general model 

– Works for size-skewed joins where one set fits in 
memory 
• Improves completion time of Map-only implementation 

– Algorithm can be executed sequentially 
• Can tune it to available memory 

• Multi-way theta-joins 

• Optimizer to select best implementation for given 
join problem 
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