
10/20/2011

1

1-Bucket-Theta: Map

• Input: tuple xST,
matrix-to-reducer mapping lookup table

1. If xS then
1. matrixRow = random(1, |S|)

2. Forall regionID in lookup.getRegions(matrixRow)
1. Output (regionID, (x, “S”))

2. Else
1. matrixCol = random(1, |T|)

2. Forall regionID in lookup.getRegions(matrixCol)
1. Output (regionID, (x, “T”))

232

Reduce:

5
1

2
1
5

6
2
2
3
6
4

Random
row/col

(2,T6),(3,T6)
(2,T5),(3,T5)
(1,T4),(3,T4)
(1,T3),(3,T3)
(1,T2),(3,T2)
(2,T1),(3,T1)
(1,S6),(2,S6)
(1,S5),(2,S5)
(3,S4)
(1,S3),(2,S3)
(3,S2)
(1,S1),(2,S1)

T6.A=9
T5.A=8
T4.A=7

T2.A=7
T1.A=5
S6.A=9
S5.A=9
S4.A=8
S3.A=7
S2.A=7
S1.A=5

T3.A=7

Input

tuple

Output

1 2

3

Reducer X: key 1

Input: S1, S3, S5 ,S6
T2, T3, T4

(S3,T2),(S3,T3),(S3,T4)Output:

Reducer Y: key 2

Input:

Output:

S1, S3, S5, S6
T1, T5, T6

(S1,T1),(S5,T6),(S6,T6)

Reducer Z: key 3

Input: S2, S4
T1, T2, T3, T4, T5, T6

(S2,T4),(S4,T5)

(S2,T2),(S2,T3),Output:

Map:

Row
Col

S

T

S.A=T.A

1 6

1

6

3

1-Bucket-Theta: Reduce

• Input: (ID, [(x1, origin1),..., (xk, origink)])

1. Stuples = ; Ttuples = 

2. Forall (xi, origini) in input list do

1. If origini = “S” then Stuples = Stuples  {xi}

2. Else Ttuples = Ttuples  {xi}

3. joinResult = MyFavoriteJoinAlg(Stuples,
Ttuples)

4. Output joinResult

233

10/20/2011

2

1-Bucket-Theta Example

234

Reduce:

5
1

2
1
5

6
2
2
3
6
4

Random
row/col

(2,T6),(3,T6)
(2,T5),(3,T5)
(1,T4),(3,T4)
(1,T3),(3,T3)
(1,T2),(3,T2)
(2,T1),(3,T1)
(1,S6),(2,S6)
(1,S5),(2,S5)
(3,S4)
(1,S3),(2,S3)
(3,S2)
(1,S1),(2,S1)

T6.A=9
T5.A=8
T4.A=7

T2.A=7
T1.A=5
S6.A=9
S5.A=9
S4.A=8
S3.A=7
S2.A=7
S1.A=5

T3.A=7

Input

tuple

Output

1 2

3

Reducer X: key 1

Input: S1, S3, S5 ,S6
T2, T3, T4

(S3,T2),(S3,T3),(S3,T4)Output:

Reducer Y: key 2

Input:

Output:

S1, S3, S5, S6
T1, T5, T6

(S1,T1),(S5,T6),(S6,T6)

Reducer Z: key 3

Input: S2, S4
T1, T2, T3, T4, T5, T6

(S2,T4),(S4,T5)

(S2,T2),(S2,T3),Output:

Map:

Row
Col

S

T

S.A=T.A

1 6

1

6

3

Why Randomization?

• Avoids pre-processing step to assign row/column
IDs to records

• Effectively removes output skew

• Input sizes very close to target
– Chernoff bound: due to large number of records per

reducer, probability of receiving 10% or more over
target is virtually zero

• Side-benefit: join matrix does not have to have
|S| by |R| cells, could be much smaller!

235

10/20/2011

3

Remaining Challenges

What is the best way to cover all true-valued
cells?

And how do we know which matrix cells have
value true?

236

Cartesian Product Computation

• Start with cross-product ST

– Entire matrix needs to be covered by r reducer
regions

• Lemma 1: use square-shaped regions!

– A reducer that covers c cells of join matrix M will
receive at least 2sqrt(c) input tuples

237

10/20/2011

4

Optimal Cover for M

• Need to cover all |S||T| matrix cells

– Lower bound for max-reducer-output: |S||T|/r

– Lemma 1 implies lower bound for max-reducer-
input: 2sqrt(|S||T|/r)

• Can we match these lower bounds?

– YES: Use r squares, each sqrt(|S||T|/r) cells
wide/tall

• Can this be achieved for given S, T, r?

238

Easy Case

• |S|, |T| are both multiples of sqrt(|S||T|/r)

• Optimal!

239

Optimal square region

S

T

Join matrix (cross-product)

10/20/2011

5

Also Easy

• |S| < |T|/r
– Implies |S| < sqrt(|S||T|/r)
– Lower bound for input not achievable

• Optimal: use rectangles of size |S| by |T|/r

240

“Idealistic” square region
S

T

Actual optimal region
S

T

Hard Case

• |T|/r  |S|  |T| and at least one is not
multiple of sqrt(|S||T|/r)

241

Optimal square region

S

T

9 regions:
- 6 fit
- 3 do not fit

10/20/2011

6

Solution For Hard Case

• “Inflate” squares until they just cover the
matrix
– Worst case: only one square did fit initially, but

leftover just too small to fit more rows or columns

242

Need to at most double side-length of optimal square

Near-Optimality For Cross-Product

• Every region has less than 4sqrt(|S||T|/r) input
records
– Lower bound: 2sqrt(|S||T|/r)

• Every region contains less than 4|S||T|/r cells
– Lower bound: |S||T|/r

• Summary: max-reducer-input and max-reducer-
output are within a factor of 2 and 4 of the lower
bound, respectively
– Usually much better: if 10 by 10 squares fit initially,

they are within a factor of 1.1 and 1.21 of lower
bound!

243

10/20/2011

7

From Cross-Product To Joins

• Near-optimality only shown for cross-product

• Randomization of 1-Bucket-Theta tends to
distribute output very evenly over regions

– Join-specific mapping unlikely to improve max-
reducer-output significantly

– 1-Bucket-Theta wins for output-size dominated joins

• Join-specific mapping has to beat 1-Bucket-Theta
on input cost!

– Avoid covering empty matrix regions

244

Finding Empty Matrix Regions

• For a given matrix region, prove that it
contains no join result

• Need statistics about S and T

• Need simple enough join predicate
– Histogram bucket: S.A > 8  T.A < 7

– Join predicate: S.A = T.A

– Easy to show that bucket property implies
negation of join predicate

• Not possible for “blackbox” join predicates

245

10/20/2011

8

Approximate Join Matrix

246

True join matrix Histogram boundaries

Candidate cells to be covered by algorithm

What Can We Do?

• Even if we could guess a better algorithm than
1-Bucket-Theta, we cannot use it unless we
can prove that it does not miss any join results

• Can do this for many popular join types

– Equi-join: S.A = T.A

– Inequality-join: S.A  T.A

– Band-join: R.A - 1  S.A  R.A + 2

• Need histograms (easy and cheap to compute)

247

10/20/2011

9

M-Bucket-I

• Uses Multiple-bucket histograms to minimize
max-reducer-Input

• First identifies candidate cells
• Then tries to cover all candidate cells with r

regions
– Binary search over max-reducer-input values

• Min: 2sqrt(#candidateCells / r); max: |S|+|T|

– Works on block of consecutive rows
• Find “best” block (most candidate cells covered per region)
• Continue with next block, until all candidate cells covered, or

running out of regions

248

M-Bucket-I Illustration

249

MaxInput = 3

Block: row 1

Score: 1

Block: rows 1-2

Score: 1.5

Best:

And so on.

10/20/2011

10

M-Bucket-O

• Similar to M-Bucket-I, but tries to minimize
max-reducer-Output

• Binary search over max-reducer-output values

• Problem: estimate number of result cells in
regions inside a histogram bucket
– Estimate can be poor, even for fine-grained

histogram

– Input-size estimation much more accurate than
output-size estimation

250

Extension: Memory-Awareness

• Input for region might exceed reducer memory

• Solutions
– Use I/O-based join implementation in Reduce, or

– Create more (and hence smaller) regions

• 1-Bucket-Theta: use squares of side-length
Mem/2

• M-Bucket-I: Instead of binary search on max-
reducer-input, set it immediately to Mem

• Similar for M-Bucket-O

251

10/20/2011

11

Experiments: Basic Setup

• 10-machine cluster

– Quad-core Xeon 2.4GHz, 8MB cache, 8GB RAM,
two 250GB 7.2K RPM hard disks

• Hadoop 0.20.2

– One machine head node, other nine worker nodes

– One Map or Reduce task per core

– DFS block size of 64MB

– Data stored on all 10 machines

252

Data Sets

• Cloud
– Cloud reports from ships and land stations
– 382 million records, 28 attributes, 28.8GB total size

• Cloud-5-1, Cloud-5-2
– Independent random samples from Cloud, each with 5

million records

• Synth-
– Pair of data sets of 5 million records each
– Record is single integer between 1 and 1000
– Data set 1: uniformly generated
– Data set 2: Zipf distribution with parameter 

• For =0, data is perfectly uniform

253

10/20/2011

12

Skew Resistance: Equi-Join

• 1-Bucket-Theta vs. standard equi-join algorithm

• Output-size dominated join
– Max-reducer-output determines runtime

254

1-Bucket-Theta Standard algorithm

Data Set Output size
(billion)

Output imbalance Runtime
(secs)

Output Imbalance Runtime
(secs)

Synth-0 25.00 1.0030 657 1.001 701

Synth-0.4 24.99 1.0023 650 1.254 722

Synth-0.6 24.98 1.0033 676 1.778 923

Synth-0.8 24.95 1.0068 678 3.010 1482

Synth-1 24.91 1.0089 667 5.312 2489

Selective Band-Join

SELECT S.date, S.longitude,

S.latitude, T.latitude

FROM Cloud AS S, Cloud AS T

WHERE S.date = T.date

AND S.longitude = T.longitude AND

ABS(S.latitude - T.latitude) <= 10

• 390M output vs. 764M input records

• M-Bucket-I for different histogram granularities

255

10/20/2011

13

M-Bucket-I Results

256

Runtime for MapReduce only!

10-run averages
(stdev < 15%)

M-Bucket-I Details

• M-Bucket-I for 1-bucket histogram is improved version
of original 1-Bucket-Theta
– 1-Bucket-Theta might keep reducers idle

• Out-of-memory for 1-bucket and 100-bucket cases
– Used memory-aware version of algorithm

– Creates cr regions for r reducers for smallest integer c that
allows in-memory processing

• Input duplication rate: total mapper output size vs.
total mapper input size
– 31.22, 8.92, 1.93, 1.043, 1.00048, 1.00025 for histograms

with 1, 10, 100, 1000, 10K, 100k, and 1M buckets

257

10/20/2011

14

Not-So-Selective Band-Join

SELECT S.latitude, T.latitude

FROM Cloud-5-1 AS S, Cloud-5-2 AS T

WHERE ABS(S.latitude-T.latitude) <= 2

• 22 billion output vs. 10 million input records

• M-Bucket-O for different histogram
granularities

258

M-Bucket-O Results

259

Runtime for MapReduce only!

10-run averages
(stdev < 4%)

10/20/2011

15

M-Bucket-O Details

• M-Bucket-O for 1-bucket histogram is
improved version of original 1-Bucket-Theta

• Data set has 5951 distinct latitude values

• Input duplication rate: total mapper output
size vs. total mapper input size

– 7.50, 4.14, 1.46, 1.053, 1.035 for histograms with
1, 10, 100, 1000, and 5951 buckets

260

261

Step Number of histogram buckets

1 10 100 1000 10,000 100,000 1,000,000

Quantiles 0 115 120 117 122 124 122

Histogram 0 140 145 147 157 167 604

Heuristic 74 9 0.8 1.5 17 118 111

Join 49,384 10,905 1157 595 548 540 536

Total 49,458 11169 1423 861 844 949 1373

Step Number of histogram buckets

1 10 100 1000 5951

Quantiles 0 4.5 4.5 4.8 4.9

Histogram 0 26.2 25.8 25.6 25.6

Heuristic 0.04 0.04 0.05 0.24 0.81

Join 1279 2483 1597 1369 1188

Total 1279 2514 1627 1399 1219

M-Bucket-I on Cloud data set (input-size dominated join):

M-Bucket-O on Cloud-5 data sets (output-size dominated join):

Detailed cost breakdown

10/20/2011

16

Summary

• Join model for creation and reasoning about
parallel algorithms

• Near-optimal randomized algorithm for
output-size dominated joins

• Improved heuristics for popular very selective
joins

262

Future Directions

• Explore broader model applicability
– Very general model

– Works for size-skewed joins where one set fits in
memory
• Improves completion time of Map-only implementation

– Algorithm can be executed sequentially
• Can tune it to available memory

• Multi-way theta-joins

• Optimizer to select best implementation for given
join problem

263

