
1

Relational Calculus

Chapter 4, Part B

2

Why Is This Important?

 In short: SQL query without aggregation = relational
calculus expression

 Relational algebra expression is similar to program,
describing what operations to perform in what order

 Calculus is an alternative way for expressing the
same queries

 Main feature: specify what you want, not how to get it

 Many equivalent algebra “implementations” possible
for given calculus expression

3

Relational Calculus

 Comes in two flavors: Tuple relational calculus (TRC)
and Domain relational calculus (DRC).

 Calculus has variables, constants, comparison
operators, logical connectives and quantifiers.
 TRC: Variables range over (i.e., get bound to) tuples.

 DRC: Variables range over domain elements (= attribute
values).

 Both TRC and DRC are subsets of first-order logic.

 Expressions in the calculus are called formulas.
 Answer tuple = assignment of constants to variables that

make the formula evaluate to true.

4

Domain Relational Calculus

 Query has the form:
{<x1, x2,…, xn> | p(<x1, x2,…, xn>)}

 Answer includes all tuples <x1, x2,…, xn> that make
the formula p(<x1, x2,…, xn>) be true.

 Formula is recursively defined
 Starting with simple atomic formulas (getting tuples from

relations or making comparisons of values)

 And building bigger and more complex formulas using the
logical connectives.

5

DRC Formulas

 Atomic formula:

 x1, x2,…, xn  Rname, or X op Y, or X op constant

 op is one of , , , , , 

 Formula:

 An atomic formula, or

 p, pq, pq, where p and q are formulas, or

 X(p(X)), where variable X is free in p(X), or

 X(p(X)), where variable X is free in p(X)

 The use of quantifiers X and X is said to bind X.

 A variable that is not bound is free.

6

Free and Bound Variables

 Let us revisit the definition of a query:

 There is an important restriction:

 The variables x1,..., xn that appear to the left of `|’ must
be the only free variables in the formula p(...).

































xnxxpxnxx ,...,2,1|,...,2,1

7

Find all sailors with a rating above 7

 Condition I,N,T,ASailors ensures that the domain
variables I, N, T and A have to be fields of the same
Sailors tuple.

 The term I,N,T,A to the left of `|’ (which should be
read as “such that”) says that every tuple I,N,T,A
that satisfies T>7 is in the answer set.

 Modify this query to answer:

 Find sailors who are older than 18 or have a rating under
9, and are called ‘Joe’.

















 7Sailors,,,|,,, TATNIATNI

8

Find sailors rated > 7 who have reserved
boat #103

 We have used  Ir,Br,D (…) as a shorthand for
Ir (Br (D (…)))

 Note the use of  to find a tuple in Reserves that
`joins with’ the Sailors tuple under consideration.









 7Sailors,,,|,,, TATNIATNI

























 103Reserves,,,, BrIIrDBrIrDBrIr

9

Find sailors rated > 7 who’ve reserved a
red boat

 Observe how the parentheses control the scope of
each quantifier’s binding.

 This may look cumbersome, but with a good user
interface, it can be very intuitive. (MS Access, QBE)









 7Sailors,,,|,,, TATNIATNI









 IIrDBrIrDBrIr Reserves,,,,

































 'red'Boats,,,, CBrBCBNBCBNB

10

Find sailors who’ve reserved all boats

 Find all sailors I such that for each 3-tuple B,BN,C
either it is not a tuple in Boats or there is a tuple in
Reserves showing that sailor I has reserved it.









Sailors,,,|,,, ATNIATNI


























Boats,,,, CBNBCBNB














































  BBrIrIDBrIrDBrIr Reserves,,,,

11

Find sailors who’ve reserved all boats
(again)

 Simpler notation, same query. (Much clearer)

 To find sailors who’ve reserved all red boats:









Sailors,,,|,,, ATNIATNI

Boats,,  CBNB





































  BBrIrIDBrIr Reserves,,





































  BBrIrIDBrIrC Reserves,,'red'...

12

Unsafe Queries, Expressive Power

 It is possible to write syntactically correct calculus
queries that have an infinite number of answers.
 Such queries are called unsafe.

 E.g., {S | (SSailors)}

 Theorem: Every query that can be expressed in
relational algebra can be expressed as a safe query in
DRC / TRC
 The converse is also true.

 Relational Completeness: Query language (e.g., SQL)
can express every query that is expressible in
relational algebra/calculus.

13

Summary

 Relational calculus is non-operational

 Users define queries in terms of what they want, not in
terms of how to compute it. (Declarativeness.)

 Algebra and safe calculus have the same expressive
power, leading to the notion of relational
completeness.

 Relational calculus had big influence on the design of
SQL and Query-by-Example

