Relational Calculus

Chapter 4, Part B

Why Is This Important? %@

< In short: SQL query without aggregation = relational
calculus expression

< Relational algebra expression is similar to program,
describing what operations to perform in what order

< Calculus is an alternative way for expressing the
same queries

= Main feature: specify what you want, not how to get it

< Many equivalent algebra “implementations” possible

for given calculus expression

Relational Calculus y

< Comes in two flavors: Tuple relational calculus (TRC)
and Domain relational calculus (DRC).
% Calculus has variables, constants, comparison
operators, logical connectives and quantifiers.
= TRC: Variables range over (i.e., get bound to) tuples.
= DRC: Variables range over domain elements (= attribute
values).
= Both TRC and DRC are subsets of first-order logic.
< Expressions in the calculus are called formulas.

= Answer tuple = assignment of constants to variables that
make the formula evaluate to true.

Domain Relational Calculus \@

< Query has the form:
{<x1, x2,..., xn> | p(<x1, x2,..., xn>)}

< Answer includes all tuples <x1, x2,..., xn> that make
the formula p(<x1, x2,..., xn>) be true.

< Formula is recursively defined
= Starting with simple atomic formulas (getting tuples from
relations or making comparisons of values)
= And building bigger and more complex formulas using the
logical connectives.

DRC Formulas y

< Atomic formula:
= <x1, x2,..., xn> € Rname, or Xop Y, or X op constant
= opisoneof<, > =<,2,#
< Formula:
= An atomic formula, or
= —p, pAQ, pvq, where p and g are formulas, or
= 3X(p(X)), where variable X is free in p(X), or
= VX(p(X)), where variable X is free in p(X)
< The use of quantifiers 3X and VX is said to bind X.
= Avariable that is not bound is free.

Free and Bound Variables \@

< Let us revisit the definition of a query:

R

% There is an important restriction:

= The variables x1,..., xn that appear to the left of *|’ must
be the only free variables in the formula p(...).

Find all sailors with a rating above >§

KI NTAI ,N,T,A>eSaiI0rS/\T>7‘\
< Condition <I,N,T,A>€Sailors ensures that the domain
variables I, N, T and A have to be fields of the same

Sailors tuple.

< The term <I,N,T,A> to the left of |’ (which should be
read as “such that”) says that every tuple <I,N,T,A>
that satisfies T>7 is in the answer set.

< Modify this query to answer:

= Find sailors who are older than 18 or have a rating under
9, and are called ‘Joe’.

Find sailors rated > 7 who have reservec}@
boat #103

KI N ,T,A> | <I N ,T,A>eSaiIorS/\T >TA
Bl r,Br,DKIr, Br, D>eReserves/\I r=1ABr=103 3

< We have used 3 Ir,Br,D (...) as a shorthand for
3Ir (3IBr (3D (...)))

< Note the use of 3 to find a tuple in Reserves that
‘joins with’ the Sailors tuple under consideration.

Find sailors rated > 7 who’ve reserved a%
red boat

g<| ,N,T,A> | <| ,N,T,A>eSai|0rSAT >TA

3l r,Br,D;'<I r,Br, D>eReserveS/\I r=Ia
3B,BN,C <B,BN,C>eBoat5AB:Br/\C :'red'm

(

< Observe how the parentheses control the scope of
each quantifier’s binding.

< This may look cumbersome, but with a good user
interface, it can be very intuitive. (MS Access, QBE)

Find sailors who’ve reserved all boats \@

g<|,N,T,A>|<|,N,T,A>63ai|orsA
VB,BN,CH<B,BN,C>eBoats‘\v
[EI r,Br,DK‘Ir,Br, D>eReserves/\I =| rABr:B‘M‘

< Find all sailors | such that for each 3-tuple <B,BN,C>
either it is not a tuple in Boats or there is a tuple in
Reserves showing that sailor | has reserved it.

Find sailors who’ve reserved all boats %
(again)
i<| ,N,T,A> | <| ,N,T,A>eSai|0rS/\
~ V(BBN C)cBoats
\'3<Ir,Br,D>eReserveS\’l :IrABr:B‘\”‘\,

)

< Simpler notation, same query. (Much clearer)

% To find sailors who’ve reserved all red boats:
"C ¢'red'vEI<I r,Br, D>eReservest =1 r/\BrzBf]}

Unsafe Queries, Expressive Power \@

< It is possible to write syntactically correct calculus
queries that have an infinite number of answers.

= Such queries are called unsafe.
= E.g.,{S | —(SeSailors)}

% Theorem: Every query that can be expressed in
relational algebra can be expressed as a safe query in
DRC/TRC

= The converse is also true.

< Relational Completeness: Query language (e.g., SQL)
can express every query that is expressible in
relational algebra/calculus.

Summary Xg

% Relational calculus is non-operational
= Users define queries in terms of what they want, not in
terms of how to compute it. (Declarativeness.)

% Algebra and safe calculus have the same expressive
power, leading to the notion of relational
completeness.

< Relational calculus had big influence on the design of
SQL and Query-by-Example

