S W
Why Is This Important?
<« Once we have the data in a database, we want to
access it.
Relational A/gebra < Relational algebra supports expressive queries by
composing fairly simple operators.
< Only few operators needed
Chapter 4, Part A
< We need to know the operators for the schema
refinement discussion.
1 2
QQQ

Relational Query Languages

% Query languages: Allow manipulation and retrieval of
data from a database.
< Relational model supports simple, powerful QLs:
= Strong formal foundation based on logic.
= Allows for optimization.
< Query Languages != programming languages
= QLs not expected to be “Turing complete”.
= QLs not intended to be used for complex calculations.
= QLs support easy, efficient access to large data sets.

Formal Relational Query Languagessg

< Two mathematical Query Languages form the basis
for “real” languages (e.g. SQL), and for
implementation:
= Relational Algebra: More operational, very useful for
representing execution plans.
= Relational Calculus: Lets users describe WHAT they want,
rather than HOW to compute it. (Non-operational,
declarative.)

Preliminaries

< A query is applied to relation instances, and the
result of a query is also a relation instance.
= Schemas of input relations for a query are fixed
¢ But query will run regardless of instance.
= The schema for the result of a given query is also fixed
¢ Determined by definition of query language constructs.
% Positional vs. named-field notation:
= Positional notation easier for formal definitions, named-
field notation more readable.
= Both used in SQL

R1 [sid bid | day
Example Instances 22 101 [10/10/96"
58 103 11/12/96

< “Sailors” and ; ;
sid |sname rating |age
“Reserves” relations ST [>— 9 |29

for our examples. 22 |dustin 7 45.0
31 |lubber | 8 55.5
58 |rusty 10 |[35.0

< We'll use positional or
named field notation,

assume that names of - =

fields in query results s2 |SilN Snamenlratingll age
M o 28 |yuppy | 9 35.0

are |nher|Fed f.rom 31 lubber 8 555

names of fields in 44 guppy 5 350

query input relations. 58 |rusty 10 135.0

QQ QQ
Relational Algebra Projection s | obing
yuppy 9
< Basic operations: « Deletes attributes that are not in lubber g
= Selection (&): Selects a subset of rows from relation. projection list. gupPpy 10
= Projection (7): Deletes columns from relation. % Schema of result contains exactly rusty
= Cross-product (x): Allows us to combine two relations. the fields in the projection list, sname, rating(sz)
= Set-difference (—): Tuplesin reln. 1, but not in reln. 2. with the same names that they
= Union (W): Tuplesinreln.1and inreln. 2. had in the input relation.
< Additional operations: % Projection operator has to age
= Intersection, join, division, renaming: Not essential, but eliminate duplicates. (Why?) 35.0
(very) useful. = Note: real systems typically do not 55.5
< Since each operation returns a relation, operations eliminate duplicates unless the user
can be composed (Algebra is “closed”) explicitly asks for it. (Why not?) 7Z'age(52)
7 8
< %@
. sid |sname rating age . . .
Selection & a5 Union, Intersection, Set-Difference
28 |yuppy 9 35.0
58 ‘rusty 10 35.0 sid |[sname |rating |age
% Selects rows that + Allof these operationstake |55 | Justin |7 45.0
satisfy the selection X two input relations, which)
condi\t/ion Gratlng >8(Sz) must be union-compatible: 31 |lubber |8 55.5
.) . = Same number of fields. 58 |rusty 10 35.0
< No duplicates in = ‘Corresponding'fields have |44 |guppy |5 35.0
result (Why?) the same type. 28 yuppy 9 35.0
+ Schema of result is * Whaltt'?s the schema of S10US2
identical to schema resuit:
of input relation. . .
. Oper":; tor sid |sname rating age sid ‘sname rating age
: 31 |lubber |8 55.5
composition r (O (S2)) 2 |dustin |7 450 | [0 [0 [0 |ma
example. sname,rating* ~ rating>8 S1-S2 Si~52 -
9 10
< W
Cross-Product Joins

< Each row of S1 is paired with each row of R1.
< Result schema has one field per field of S1 and R1, with field
names ‘inherited’ if possible.
= Conflict: Both S1 and R1 have a field called sid.
‘ (sid) |sname rating age (sid) bid day

22 |dustin 7 450 | 22 101 10/10/96
22 | dustin 7 45.0 | 58 [103 11/12/96
31 lubber 8 555 | 22 101 10/10/9% |
31 |lubber = 8 555 | 58 (103 11/12/96 ‘
58 rusty 10 350 | 22 101 10/10/9% |
58 |rusty 10 1350 | 58 103 11/12/96 ‘

" Renaming operator P(C(L—sid15->sid2),S1xR1)
(Cis the output): 1

% Condition Join: - R><1 §=07o(RxS)

(sid) sname rating |age |(sid) |bid |day

22 dustin |7 45.0 |58 103 |11/12/96
31 lubber |8 555 |58 103 |11/12/96
S<) sid<Risia

compute it more efficiently
< Sometimes called a theta-join.

» Result schema same as that of cross-product.
» Fewer tuples than cross-product, might be able to

Joins

% Equi-Join: A special case of condition join where the
condition ¢ contains only equalities.
|sid ‘sname ‘rating age bid ‘day
22 7 450 101 |10/10/96
58 10 350 103 |11/12/96
S . Rl
sid
< Result schema similar to cross-product, but only one
copy of fields for which equality is specified.

dustin
rusty

< Natural Join: Equijoin on all common fields.

Division W

< Not supported as a primitive operator, but useful for
expressing queries like:
= Find sailors who have reserved all boats.

< Let A have 2 fields, x and y; B have only field y:
= A/B={X) | ¥(y)<B:3x y)eAf
* A/B contains all x tuples (sailors) such that for every y tuple (boat)
in B, there is an xy tuple in A.
* Or: If the set of y values (boats) associated with an x value (sailor)
in A contains all y values in B, the x value is in A/B.

< In general, x and y can be any lists of attributes
= yisthe list of fields in B, and xUy is the list of fields of A.

Examples of Division A/B

SIORIPNG pno pno pno
5} p; p2 p2 pl
a e | B P b
sl 24 B2 g
2 |pl sno B3
2 p2 sl
3 |p2 52 BTG

s3 sl sno
Si pi sd sd sl
s P

A A/B1 A/B2 A/B3

Expressing A/B Using Basic Operators W

< Division is not essential op; just a useful shorthand.
= Also true of joins, but joins are so common that systems
implement joins specially.
% |dea: For A/B, compute all x values that are not
“disqualified’ by some y value in B.
= xvalue is disqualified if by attaching y value from B, we
obtain an xy tuple that is not in A.

Disqualified x values: 7 X((ﬂ' X(A)XB)_A)

AB: & X(A) — all disqualified tuples

Find names of sailors who'’ve reserved \@
boat #103

+ Solution 1: ”sname«abi q =103Reserves)><1 Sailors)

< Solution 2: p(T emp],abi q =103Reserves)

p(Temp2Templ>< Sailors)
Zsname(TEMP2)

+ Solution 3: ”sname(abi OI:103(Reserves><1 Sailors)

QQQ
Find names of sailors who’ve reserved ay
red boat

< Information about boat color only available in Boats;
so need an extra join:
ﬂsname((o—color:'re d,Boats)l><1 Reserves< Sailors)
< A more efficient solution:
ﬂsname(ﬂ'si d((7rbi d%olor—re OI,Boats)l><1 Res)>< Sailors)

< A query optimizer can find this, given the first
solution.

QQQ
Find sailors who’ve reserved a red or a \W
green boat

% Can identify all red or green boats, then find sailors
who've reserved one of these boats:

p(T empboats,(crc Boats))

olor="red"‘vcolor=green’
T gname(T€Mpboats>< Reserves>< Sailors)

% Can also define Tempboats using union. (How?)
< What happens if v is replaced by A in this query?

QQQ
Find sailors who’ve reserved a red and (}{(
green boat

< Previous approach won’t work
= Must identify sailors who’ve reserved red boats, sailors
who’ve reserved green boats, then find the intersection

(note that sid is a key for Sailors):

p(Tempred T id «acolorz're d,Boats)l><1 Reserves))
(T empgreen,z . ((acolor:'green'Boats)N Reserves))

Tgname((Tempred ~Tempgreen)>< Sailors)

Find the names of sailors who’ve
reserved all boats

< Uses division; schemas of the input relations to /
must be carefully chosen:

p(T emp5|ds,(7zSi d.bi dReserves)/(;rbi q Boats))

7 gname(TeMpsids>< Sailors)

< To find sailors who’ve reserved all ‘Interlake’ boats:

' "/”bid (Gbname:' | nterlake'BoatS)

21

Summary W

< The relational model has rigorously defined query
languages that are simple and powerful.
< Relational algebra is more operational
= Useful as internal representation for query evaluation
plans.
< Several ways of expressing a given query

= A query optimizer should choose the most efficient
version.

