
1

Database Management Systems

Chapter 1

Mirek Riedewald

Many slides based on textbook slides by Ramakrishnan and
Gehrke

2

Logistics

 Go to http://www.ccs.neu.edu/~mirek/classes/2010-F-
CS3200 for all course-related information
 Slides will be posted there as well

 Grading
 Homework: 50%

• Project, incl. report, and exercises

 Midterm: 20%

 Final exam: 30%

 TA: Yue Huang

 Office hours will be announced soon

 Can always email us with questions or to set up
appointments

3

Project

 Work with a real DBMS: MSFT SQL Server 2008

 Work with database using SQL and Java (JDBC)

 Deliverables: code and reports

 Supported environment: Windows Lab machines with
SQL Server 2008 client tools and MSFT JDBC driver

 What about working on my own machine, using Linux,
MySQL, Python, C++ etc.?
 Ok, but do it at your own risk

 Contact me ASAP, no later than 09/15

 We simply cannot provide support for all possible
configurations

4

Goals for This Course

 Learn about the foundations of relational DBMS; also relevant
to other fields
 Declarative programming: specify WHAT you want, not HOW to get it

• Set-oriented processing and query optimization

 Data independence

 Recovery from crashes to a consistent state

 Programming for concurrent execution: transactions

 Be able to create, access, and manipulate a database through
SQL and from an application

 Have enough background to more quickly become an expert
on any DBMS

 Be better able to understand and critically evaluate features
of competing data management offerings

5

What This Course Cannot Do

 Make you a DB admin
 Beyond the scope of this course: requires a lot of practice and

deep understanding of a specific product
• Short-term specialized knowledge versus long-term principles

 Make you an expert on the DBMS from vendor XYZ
 Employers can train you for their specific environment

 This course cannot (and should not) be product specific

 Make you an SQL guru
 Requires extensive practice (like programming in general)

 This course will give you a good start

 Provide details about DBMS internals
 That’s a whole different course

6

Any Questions So Far?

7

What Is a DBMS?

 Database = very large, integrated collection of data.

 Entities (e.g., students, courses)

 Relationships (e.g., Joe is taking CS 3200)

 Database Management System (DBMS) = software
package designed to store and manage databases.

8

Files vs. DBMS

 Special file access code for different queries
 Find income of all young customers in a large customer file
 Now find income of all Boston customers, where addresses are

stored in a different large file
• Two nested loops (does one data set fit in memory?) versus sort-

merge implementation, or maybe create an index?
 Once your Java program finally works, what if data layout or file

size changes? Need to make significant code changes…
 Writing code for managing very large files is difficult

 Application must stage large datasets between main memory
and secondary storage (e.g., buffering, page-oriented access)

 Protect data from inconsistency due to multiple
concurrent users

 Crash recovery
 Security and access control

9

Why Use a DBMS?

 Data independence and efficient access.

 Reduced application development time.

 Data integrity and security.

 Uniform data administration.

 Concurrent access, recovery from crashes.

10

Why Study Databases??

 Ubiquitous in enterprises and daily life
 ATMs, banking, retail transactions, flight

booking, customer databases

 Shift from computation to information
 Simplify data management tasks

 Enable efficient data processing at large scale

 Datasets increasing in diversity and volume.
 Digital libraries, Human Genome project, Sloan Digital Sky

Survey

 DBMS encompasses most of CS
 OS, languages, theory, AI, multimedia, logic

?

11

Data Models

 Data model = collection of concepts for describing
data.

 Schema = description of a particular collection of
data, using a given data model.

 The relational data model is the most widely used
model today.

 Main concept: relation, basically a table with rows and
columns.

 Every relation has a schema, which describes the columns,
or fields.

12

Levels of Abstraction

 Many views, single
conceptual (logical) schema
and physical schema.

 Views describe how users see
the data.

 Conceptual schema defines
logical structure

 Physical schema describes the
files and indexes used.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

13

Example: University Database

 Conceptual schema:

 Students(sid: string, name: string, login: string,

age: integer, gpa:real)

 Courses(cid: string, cname: string, credits: integer)

 Enrolled(sid: string, cid: string, grade: string)

 Physical schema:

 Relations stored as unordered files.

 Index on first column of Students.

 External Schema (View):

 Course_info(cid: string, enrollment: integer)

14

Data Independence

 One of the most important benefits of using a DBMS

 Applications insulated from how data is structured
and stored.

 Logical data independence: Protection from changes
in logical structure of data.

 If logical structure changes, create view with old structure

 Works fine for queries, but might be tricky for updates

 Physical data independence: Protection from
changes in physical structure of data.

 Query and update logical structure, not physical structure

15

Concurrency Control

 Concurrent execution of user programs is essential for
good DBMS performance.

 Because disk accesses are frequent and relatively slow, it is
important to keep the CPU humming by working on several user
programs concurrently.

 Interleaving actions of different user programs can lead
to inconsistency

 E.g., check is cleared while account balance is being computed.

 DBMS ensures such problems do not arise: users and
programmers can pretend they are using a single-user
system.

16

Transaction: An Execution of a DB
Program

 Transaction = atomic sequence of database actions
(reads/writes).

 Each transaction, executed completely, must leave the
DB in a consistent state if DB is consistent when the
transaction begins.
 Users can specify integrity constraints on the data, and the

DBMS will enforce these constraints.

 Beyond this, the DBMS does not really understand the
semantics of the data.

• E.g., it does not understand how the interest on a bank account is
computed.

 Thus, ensuring that a transaction (run alone) preserves
consistency is ultimately the user’s responsibility!

17

Scheduling Concurrent Transactions

 DBMS ensures that execution of {T1,..., Tn} is
equivalent to some serial execution T1’,..., Tn’.
 Before reading/writing an object, a transaction requests a

lock on the object, and waits till the DBMS gives it the lock.

 All locks are released at the end of the transaction. (Strict
2PL locking protocol.)

 Idea: If an action of Ti (say, writing X) affects Tj (which
perhaps reads X), one of them, say Ti, will obtain the lock
on X first and Tj is forced to wait until Ti completes; this
effectively orders the transactions.

 What if Tj already has a lock on Y and Ti later requests a
lock on Y? (Deadlock!) Ti or Tj is aborted and restarted!

18

Ensuring Atomicity

 DBMS ensures atomicity (all-or-nothing property)
even if system crashes in the middle of a Xact.

 Idea: Keep a log (history) of all actions carried out by
the DBMS while executing a set of Xacts:

 Before a change is made to the database, the
corresponding log entry is forced to a safe location. (WAL
protocol)

 After a crash, the effects of partially executed transactions
are undone using the log. (Thanks to WAL, if log entry was
not saved before the crash, corresponding change was not
applied to database!)

19

The Log

 The following actions are recorded in the log:

 Ti writes an object: The old value and the new value.

• Log record must go to disk before the changed page!

 Ti commits/aborts: A log record indicating this action.

 Log records chained together by Xact id, so it’s easy to
undo a specific Xact (e.g., to resolve a deadlock).

 Log is often duplexed and archived on “stable” storage.

 All log related activities (and in fact, all concurrency-
control related activities such as lock/unlock, dealing
with deadlocks etc.) are handled transparently by the
DBMS.

20

Structure of a DBMS

 A typical DBMS has a
layered architecture.

 The figure does not show
the concurrency control and
recovery components.

 This is one of several
possible architectures; each
system has its own
variations.

Query Optimization

and Execution

Operator Implementation

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers

must consider

concurrency

control and

recovery

21

Databases make these folks happy

 End users and DBMS vendors

 Many enterprises

 DB application programmers

 Database administrator (DBA)

 Designs logical/physical schemas

 Handles security and authorization

 Data availability, crash recovery

 Database tuning as needs evolve

22

Databases And Startups

 DBMS perfect as data management system for startups

 LAMP stack: Linux OS, Apache Web server, MySQL
DBMS, PHP (or Perl, Python)

 Why LAMP?

 The price is right

 Easy to code

• MySQL and scripting language

 Easy to deploy

• Set up LAMP on laptop, build app locally, then deploy on the Web

 Ubiquitous hosting

• Even cheapest Web hosting options allow running PHP, MySQL

23

Example: eBay

 1995—1997: GDBM (GNU library of DB functions)

 1997—1999: Oracle (biggest DBMS vendor)

 1999—2001: still Oracle, but now multiple servers

 2001—present: split DBs by functionality, pull most
functionality from DBMS up into application layer

 DBMS still important component
 Initially the data management entity, scaling well…

 …until eBay grew so much that customized solutions were
needed

 DBMS is general-purpose, and extreme challenges require
more customized solutions

24

NoSQL Movement

 Growing popularity of non-relational data stores
 Document stores, key-value stores, eventually consistent stores,

graph DB, object-oriented DB, XML DB

 Examples: MongoDB, CouchDB, Google’s BigTable,
Amazon’s Dynamo

 Many of them driven by performance challenges
 Inherent tradeoff between consistency, availability, and

tolerance to network partitions (Eric Brewer, UC Berkeley)
• Maintaining consistent state across 100s of machines requires

expensive agreement (communication)
• Failures reduce availability, unless consistency is weakened (1000

machines => failures happen all the time)

 Solutions: weaker consistency guarantees or tailored
solution for specific workload

SQL

25

MapReduce vs. DBMS

 Google’s answer to scalable data processing challenges
 Programming paradigm for distributed computation on large

clusters
 Two phases

 Map: map each input record independently to a set of (key, value) pairs
 Reduce: process set of all values with the same key together

 Less expressive than distributed DBMS, but highly popular
 Read what two DBMS luminaries think about it and how readers reacted

• http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-
step-backwards/

• http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/

 Active research area in databases
 High-level programming languages for MapReduce, processing DB queries

in MapReduce-style system

26

Exciting Times

 Worldwide relational DBMS software revenue $15.2B in 2006
(source: Gartner)
 Dominant players: Oracle, IBM, Microsoft, Teradata

 Smaller companies with specialized data management
solutions
 Vertica, Greenplum, Netezza, and many more

 Virtually every enterprise relies on DBMS
 Close relative of data warehousing

 Crucial for business success, e.g., Wal-Mart

 Mushrooming of noSQL alternatives and parallel/distributed
data management solutions

 Knowing the principles of relational DBMS is essential for
understanding these trends.

27

Summary

 DBMS are used to maintain, query large datasets.

 Benefits include recovery from system crashes,
concurrent access, quick application development,
data integrity and security.

 Levels of abstraction give data independence.

 A DBMS typically has a layered architecture.

 DBAs hold responsible jobs
and are well-paid

 DBMS R&D is one of the broadest,
most exciting areas in CS.

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/

