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Database Management Systems

Chapter 1

Mirek Riedewald

Many slides based on textbook slides by Ramakrishnan and 
Gehrke
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Logistics

 Go to http://www.ccs.neu.edu/~mirek/classes/2010-F-
CS3200 for all course-related information
 Slides will be posted there as well

 Grading
 Homework: 50%

• Project, incl. report, and exercises

 Midterm: 20%

 Final exam: 30%

 TA: Yue Huang

 Office hours will be announced soon

 Can always email us with questions or to set up 
appointments
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Project

 Work with a real DBMS: MSFT SQL Server 2008

 Work with database using SQL and Java (JDBC)

 Deliverables: code and reports

 Supported environment: Windows Lab machines with 
SQL Server 2008 client tools and MSFT JDBC driver

 What about working on my own machine, using Linux, 
MySQL, Python, C++ etc.?
 Ok, but do it at your own risk

 Contact me ASAP, no later than 09/15

 We simply cannot provide support for all possible 
configurations
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Goals for This Course

 Learn about the foundations of relational DBMS; also relevant 
to other fields
 Declarative programming: specify WHAT you want, not HOW to get it

• Set-oriented processing and query optimization

 Data independence

 Recovery from crashes to a consistent state

 Programming for concurrent execution: transactions

 Be able to create, access, and manipulate a database through 
SQL and from an application

 Have enough background to more quickly become an expert 
on any DBMS

 Be better able to understand and critically evaluate features 
of competing data management offerings
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What This Course Cannot Do

 Make you a DB admin
 Beyond the scope of this course: requires a lot of practice and 

deep understanding of a specific product
• Short-term specialized knowledge versus long-term principles

 Make you an expert on the DBMS from vendor XYZ 
 Employers can train you for their specific environment

 This course cannot (and should not) be product specific

 Make you an SQL guru
 Requires extensive practice (like programming in general)

 This course will give you a good start

 Provide details about DBMS internals
 That’s a whole different course
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Any Questions So Far?
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What Is a DBMS?

 Database = very large, integrated collection of data.

 Entities (e.g., students, courses)

 Relationships (e.g., Joe is taking CS 3200)

 Database Management System (DBMS) = software 
package designed to store and manage databases.

8

Files vs. DBMS

 Special file access code for different queries
 Find income of all young customers in a large customer file
 Now find income of all Boston customers, where addresses are 

stored in a different large file
• Two nested loops (does one data set fit in memory?) versus sort-

merge implementation, or maybe create an index?
 Once your Java program finally works, what if data layout or file 

size changes? Need to make significant code changes…
 Writing code for managing very large files is difficult

 Application must stage large datasets between main memory 
and secondary storage (e.g., buffering, page-oriented access)

 Protect data from inconsistency due to multiple 
concurrent users

 Crash recovery
 Security and access control
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Why Use a DBMS?

 Data independence and efficient access.

 Reduced application development time.

 Data integrity and security.

 Uniform data administration.

 Concurrent access, recovery from crashes.
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Why Study Databases??

 Ubiquitous in enterprises and daily life
 ATMs, banking, retail transactions, flight

booking, customer databases

 Shift from computation to information
 Simplify data management tasks

 Enable efficient data processing at large scale

 Datasets increasing in diversity and volume.  
 Digital libraries, Human Genome project, Sloan Digital Sky 

Survey

 DBMS encompasses most of CS
 OS, languages, theory, AI,  multimedia, logic

?
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Data Models

 Data model = collection of concepts for describing 
data.

 Schema = description of a particular collection of 
data, using a given data model.

 The relational data model is the most widely used 
model today.

 Main concept: relation, basically a table with rows and 
columns.

 Every relation has a schema, which describes the columns, 
or fields.
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Levels of Abstraction

 Many views, single 
conceptual (logical) schema
and physical schema.

 Views describe how users see 
the data.                                        

 Conceptual schema defines 
logical structure

 Physical schema describes the 
files and indexes used.

Physical Schema

Conceptual Schema

View 1 View 2 View 3
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Example: University Database

 Conceptual schema:                  

 Students(sid: string, name: string, login: string, 

age: integer, gpa:real)

 Courses(cid: string, cname: string, credits: integer) 

 Enrolled(sid: string, cid: string, grade: string)

 Physical schema:

 Relations stored as unordered files. 

 Index on first column of Students.

 External Schema (View): 

 Course_info(cid: string, enrollment: integer)
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Data Independence

 One of the most important benefits of using a DBMS

 Applications insulated from how data is structured 
and stored.

 Logical data independence: Protection from changes 
in logical structure of data.

 If logical structure changes, create view with old structure

 Works fine for queries, but might be tricky for updates

 Physical data independence: Protection from 
changes in physical structure of data.

 Query and update logical structure, not physical structure
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Concurrency Control

 Concurrent execution of user programs is essential for 
good DBMS performance.

 Because disk accesses are frequent and relatively slow, it is 
important to keep the CPU humming by working on several user 
programs concurrently.

 Interleaving actions of different user programs can lead 
to inconsistency

 E.g., check is cleared while account balance is being computed.

 DBMS ensures such problems do not arise: users and 
programmers can pretend they are using a single-user 
system.
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Transaction: An Execution of a DB 
Program

 Transaction = atomic sequence of database actions 
(reads/writes).

 Each transaction, executed completely, must leave the 
DB in a consistent state if DB is consistent when the 
transaction begins.
 Users can specify integrity constraints on the data, and the 

DBMS will enforce these constraints.

 Beyond this, the DBMS does not really understand the 
semantics of the data.

• E.g., it does not understand how the interest on a bank account is 
computed.

 Thus, ensuring that a transaction (run alone) preserves 
consistency is ultimately the user’s responsibility!
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Scheduling Concurrent Transactions

 DBMS ensures that execution of {T1,..., Tn} is 
equivalent to some serial execution T1’,..., Tn’.
 Before reading/writing an object, a transaction requests a 

lock on the object, and waits till the DBMS gives it the lock.

 All locks are released at the end of the transaction.  (Strict 
2PL locking protocol.)

 Idea: If an action of Ti (say, writing X) affects Tj (which 
perhaps reads X), one of them, say Ti, will obtain the lock 
on X first and Tj is forced to wait until Ti completes; this 
effectively orders the transactions.

 What if Tj already has a lock on Y and Ti later requests a 
lock on Y? (Deadlock!) Ti or Tj is aborted and restarted! 
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Ensuring Atomicity

 DBMS ensures atomicity (all-or-nothing property) 
even if system crashes in the middle of a Xact.

 Idea: Keep a log (history) of all actions carried out by 
the DBMS while executing a set of Xacts:

 Before a change is made to the database, the 
corresponding log entry is forced to a safe location.  (WAL 
protocol)

 After a crash, the effects of partially executed transactions 
are undone using the log. (Thanks to WAL, if log entry was 
not saved before the crash, corresponding change was not 
applied to database!)
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The Log

 The following actions are recorded in the log:

 Ti writes an object: The old value and the new value.

• Log record must go to disk before the changed page!

 Ti commits/aborts: A log record indicating this action.

 Log records chained together by Xact id, so it’s easy to 
undo a specific Xact (e.g., to resolve a deadlock).

 Log is often duplexed and archived on “stable” storage.

 All log related activities (and in fact, all concurrency-
control related activities such as lock/unlock, dealing 
with deadlocks etc.) are handled transparently by the 
DBMS.
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Structure of a DBMS

 A typical DBMS has a 
layered architecture.

 The figure does not show 
the concurrency control and 
recovery components.

 This is one of several 
possible architectures; each 
system has its own 
variations.

Query Optimization

and Execution

Operator Implementation

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers

must consider

concurrency

control and

recovery
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Databases make these folks happy

 End users and DBMS vendors

 Many enterprises

 DB application programmers

 Database administrator (DBA)

 Designs logical/physical schemas

 Handles security and authorization

 Data availability, crash recovery 

 Database tuning as needs evolve
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Databases And Startups

 DBMS perfect as data management system for startups

 LAMP stack: Linux OS, Apache Web server, MySQL
DBMS, PHP (or Perl, Python)

 Why LAMP?

 The price is right

 Easy to code

• MySQL and scripting language

 Easy to deploy

• Set up LAMP on laptop, build app locally, then deploy on the Web

 Ubiquitous hosting

• Even cheapest Web hosting options allow running PHP, MySQL
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Example: eBay

 1995—1997: GDBM (GNU library of DB functions)

 1997—1999: Oracle (biggest DBMS vendor)

 1999—2001: still Oracle, but now multiple servers

 2001—present: split DBs by functionality, pull most 
functionality from DBMS up into application layer

 DBMS still important component
 Initially the data management entity, scaling well…

 …until eBay grew so much that customized solutions were 
needed

 DBMS is general-purpose, and extreme challenges require 
more customized solutions
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NoSQL Movement

 Growing popularity of non-relational data stores
 Document stores, key-value stores, eventually consistent stores, 

graph DB, object-oriented DB, XML DB

 Examples: MongoDB, CouchDB, Google’s BigTable, 
Amazon’s Dynamo

 Many of them driven by performance challenges
 Inherent tradeoff between consistency, availability, and 

tolerance to network partitions (Eric Brewer, UC Berkeley)
• Maintaining consistent state across 100s of machines requires 

expensive agreement (communication)
• Failures reduce availability, unless consistency is weakened (1000 

machines => failures happen all the time)

 Solutions: weaker consistency guarantees or tailored 
solution for specific workload

SQL
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MapReduce vs. DBMS

 Google’s answer to scalable data processing challenges
 Programming paradigm for distributed computation on large 

clusters
 Two phases

 Map: map each input record independently to a set of (key, value) pairs
 Reduce: process set of all values with the same key together

 Less expressive than distributed DBMS, but highly popular
 Read what two DBMS luminaries think about it and how readers reacted

• http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-
step-backwards/

• http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/

 Active research area in databases
 High-level programming languages for MapReduce, processing DB queries 

in MapReduce-style system
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Exciting Times

 Worldwide relational DBMS software revenue $15.2B in 2006 
(source: Gartner)
 Dominant players: Oracle, IBM, Microsoft, Teradata

 Smaller companies with specialized data management 
solutions
 Vertica, Greenplum, Netezza, and many more

 Virtually every enterprise relies on DBMS
 Close relative of data warehousing

 Crucial for business success, e.g., Wal-Mart

 Mushrooming of noSQL alternatives and parallel/distributed 
data management solutions

 Knowing the principles of relational DBMS is essential for 
understanding these trends.
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Summary

 DBMS are used to maintain, query large datasets.

 Benefits include recovery from system crashes, 
concurrent access, quick application development, 
data integrity and security.

 Levels of abstraction give data independence.

 A DBMS typically has a layered architecture.

 DBAs hold responsible jobs
and are well-paid

 DBMS R&D is one of the broadest,                                              
most exciting areas in CS.

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/

