Transaction Management Overview

Chapter 16

Why Is This Important?

< How can we perform multiple DB operations as one
atomic unit?

= Example: insert new dorm building

* First insert building into DormBuilding: rejected, because no
rooms registered for it in RoomContain

* First insert rooms into RoomContain: rejected, because building
does not exist yet in DormBuilding

< How does the DBMS enforce correct query execution
when multiple queries and updates run in parallel?

< How can we improve performance by weakening
consistency guarantees?

Transactions

% Concurrent execution of user programs is essential

for good DBMS performance.
= While some request is waiting for /0, CPU can work on
another one.

< A user’s program may carry out many operations on
the data retrieved from the database, but the DBMS
is only concerned about what data is read/written
from/to the database.

< Atransaction is the DBMS’s abstract view of a user
program: a sequence of reads and writes.

Concurrency in a DBMS

<« Users submit transactions, and can think of each
transaction as executing by itself.

= Concurrency is achieved by the DBMS, which interleaves
actions (reads/writes of DB objects) of various
transactions.

= Each transaction must leave the database in a consistent
state if the DB is consistent when the transaction begins.

* DBMS will enforce all specified constraints.

* Beyond this, the DBMS does not really understand the semantics
of the data. (E.g., it does not understand how the interest on a
bank account is computed.)

% Issues: Effect of interleaving transactions and
crashes.

The ACID Properties

% Atomicity: Either all or none of the transaction’s
actions are executed
= Even when a crash occurs mid-way
% Consistency: Transaction run by itself must preserve
consistency of the database
= User’s responsibility
% Isolation: Transaction semantics do not depend on
other concurrently executed transactions
< Durability: Effects of successfully committed
transactions should persist, even when crashes occur

Example

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

< T1 transfers $100 from B’s account to A’s account.

% T2 credits both accounts with a 6% interest payment.

% There is no guarantee that T1 will execute before T2
or vice-versa, if both are submitted together.

< However, the net effect must be equivalent to these
two transactions running serially in some order.

Example (Contd.)

< Consider a possible interleaving (schedule):

T1: A=A+100, B=B-100

T2: A=1.06*A, B=1.06*B
% This is OK. But what about:

T1: A=A+100, B=B-100

T2: A=1.06*A, B=1.06"B

3

» The DBMS’s view of the second schedule:

TI: R(A), W(A),
T2: R(A), W(A), R(B), W(B)

&

R(B), W(B)

Scheduling Transactions

% Serial schedule: Schedule that does not interleave the actions
of different transactions.
= Easy for programmer, easy to achieve consistency
= Bad for performance
% Equivalent schedules: For any database state, the effect (on
the objects in the database) of executing the first schedule is
identical to the effect of executing the second schedule.
< Serializable schedule: A schedule that is equivalent to some
serial execution of the transactions.
= Retains advantages of serial schedule, but addresses performance
Issue
» Note: If each transaction preserves consistency, every
serializable schedule preserves consistency.

Anomalies with Interleaved Execution

TL: R(A), W(A),
T2: R(A), W(A), C

R(B), W(B), Abort

< Reading Uncommitted Data (WR Conflicts, “dirty
reads”)

< Example: T1(A=A-100), T2(A=1.06A), T2(B=1.06B),
C(T2), T1(B=B+100)

% T2 reads value A written by T1 before T1 completed
its changes

< Notice: If T1 later aborts, T2 worked with invalid data

More Anomalies
TL: R(A), R(A), W(A), C
T2: R(A), W(A), C

< Unrepeatable Reads (RW Conflicts)
% T1 sees two different values of A, even though it did
not change A between the reads
< Example: online bookstore
= Only one copy of a book left
= Both T1 and T2 see that 1 copy is left, then try to order
= T1gets an error message when trying to order
= Could not have happened with serial execution

Even More Anomalies

T W(A),
T2: W(A), W(B), C

W(B), C

% Overwriting Uncommitted Data (WW Conflicts)
% T1’s Band T2's A persist, which would not happen
with any serial execution
< Example: 2 people with same salary
= T1 sets both salaries to 2000, T2 sets both to 1000

= Above schedule results in A=1000, B=2000, which is
inconsistent

Aborted Transactions

< All actions of aborted transactions have to be
undone
< Dirty read can result in unrecoverable schedule

= T1 writes A, then T2 reads A and makes modifications
based on A’s value

= T2 commits, and later T1 is aborted
= T2 worked with invalid data and hence has to be aborted
as well; but T2 already committed...
< Recoverable schedule: cannot allow T2 to commit
until T1 has committed
= Can still lead to cascading aborts

Preventing Anomalies through Locking

< DBMS can support concurrent transactions while
preventing anomalies by using a locking protocol

% If a transaction wants to read an object, it first
requests a shared lock (S-lock) on the object

% If a transaction wants to modify an object, it first
requests an exclusive lock (X-lock) on the object

< Multiple transactions can hold a shared lock on an
object

< At most one transaction can hold an exclusive lock
on an object

Lock-Based Concurrency Control

< Strict Two-phase Locking (Strict 2PL) Protocol:

= Each Xact must obtain the appropriate lock before
accessing an object.

= All locks held by a transaction are released when the
transaction is completed.

= All this happens automatically inside the DBMS

< Strict 2PL allows only serializable schedules.
= Prevents all the anomalies shown earlier

The Phantom Problem

< Assume initially the youngest sailor is 20 years old
< T1 contains this query twice
= SELECT rating, MIN(age) FROM Sailors
» T2 inserts a new sailor with age 18
» Consider the following schedule:
= T1runs query, T2 inserts new sailor, T1 runs query again
= T1 sees two different results! Unrepeatable read.
< Would Strict 2PL prevent this?
= Assume T1 acquires Shared lock on each existing sailor tuple
= T2inserts a new tuple, which is not locked by T1

= T2 releases its Exclusive lock on the new sailor before T1 reads
Sailors again

¢+ What went wrong?

o

What Should We Lock?

< T1 cannot lock a tuple that T2 will insert
% ...but T1 could lock the entire Sailors table
= Now T2 cannot insert anything until T1 completed
< What if T1 computed a slightly different query:
= SELECT MIN(age) FROM Sailors WHERE rating = 8
<+ Now locking the entire Sailors table seems excessive,
because inserting a new sailor with rating <> 8 would
not create a problem
= T1 can lock the predicate [rating = 8] on Sailors
< General challenge: DBSM needs to choose
appropriate granularity for locking

Deadlocks

% Assume T1 and T2 both want to read and write objects A
and B
T1 acquires X-lock on A; T2 acquires X-lock on B

Now T1 wants to update B, but has to wait for T2 to release its
lock on B

But T2 wants to read A and also waits for T1 to release its lock
onA

Strict 2PL does not allow either to release its locks before the
transaction completed. Deadlock!
< DBMS can detect this

= Automatically breaks deadlock by aborting one of the involved
transactions

= Tricky to choose which one to abort: work performed is lost

Performance of Locking

% Locks force transactions to wait
< Abort and restart due to deadlock wastes the work done
by the aborted transaction
= |n practice, deadlocks are rare, e.g., due to lock downgrades
approach
< Waiting for locks becomes bigger problem as more
transactions execute concurrently
= Allowing more concurrent transactions initially increases
throughput, but at some point leads to thrashing
= Need to limit max number of concurrent transactions to prevent
thrashing
= Minimize lock contention by reducing the time a Xact holds
locks and by avoiding hotspots (objects frequently accessed)

Controlling Locking Overhead

% Declaring Xact as “READ ONLY” increases
concurrency

% Isolation level: trade off concurrency against
exposure of Xact to other Xact’s uncommitted
changes

Isolation Level Dirty Read | Unrepeatable Read m

READ UNCOMMITTED Maybe Maybe Maybe
READ COMMITTED No Maybe Maybe
REPEATABLE READ No No Maybe
SERIALIZABLE No No No

21

Locking vs. Isolation Levels

< SERIALIZABLE: obtains locks on (sets of) accessed
objects and holds them until the end
< REPEATABLE READ: same locks as for serializable
Xact, but does not lock sets of objects at higher level
< READ COMMITTED: obtains X-locks before writing
and holds them until the end; obtains S-locks before
reading, but releases them immediately after reading
<« READ UNCOMMITTED: does not obtain S-locks for
reading; not allowed to perform any writes
= Does not request any locks ever

Summary

% Concurrency control is one of the most important
functions provided by a DBMS.
% Users need not worry about concurrency.

= System automatically inserts lock/unlock requests and can
schedule actions of different Xacts in such a way as to
ensure that the resulting execution is equivalent to
executing the Xacts one after the other in some order.

< DBMS automatically undoes the actions of aborted
transactions.

= Consistent state: Only the effects of committed Xacts
seen.

23

