
Resource and Application 
Management

Mirek Riedewald

This work is licensed under the Creative Commons Attribution 4.0 International License. 
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.



Key Learning Goals

• What is the difference between cluster 
resource manager and application master?

• What is the driver of a job?

• What is the difference between a job and a 
task?

• What is the main reason for separating 
resource management from application 
management?

2



Introduction
• Clusters have resources; jobs and services need resources. 

The resource manager decides who gets which resources 
when. Cluster resource managers usually focus on CPU 
cores and memory.

• There is a single resource manager for the entire cluster. As 
we have seen for the distributed file system, this greatly 
simplifies consensus in a distributed system. And like the 
GFS master process, the resource manager only exchanges 
small control messages with processes requesting 
resources.
– In addition to MapReduce and Spark, many other services and 

applications may run in a cluster. They all communicate with the 
same cluster resource manager.

• Scheduling is a classic computer-science problem with 
many solutions. We focus on the functionality of YARN, a 
popular open-source scheduler.

3



Basic View of Cluster Resource 
Management

4

Client

Running on 
machine in-
or outside 
the cluster

Cluster

Resource 
manager

1. Run this container. It needs 
2 cores and 4 GB RAM.

2 cores
4 GB Node 

manager

Available: 
1 core,
16 GB

Node 
manager

Available: 
8 cores,
32 GB

Node 
manager

Available: 
3 cores,
8 GB

Node 
manager

Available: 
2 cores,
3 GB



Who Will Run the Application?

5

Client

Running on 
machine in-
or outside 
the cluster

Cluster

Resource 
manager

1. Run this container. It needs 
2 cores and 4 GB RAM.

2 cores
4 GB Node 

manager

Available: 
1 core,
16 GB

Node 
manager

Available: 
8 cores,
32 GB

Node 
manager

Available: 
3 cores,
8 GB

Node 
manager

Available: 
2 cores,
3 GB

Too few cores.

Not enough 
memory

Possible

Possible



Who Will Run the Application?
• The resource manager communicates with the node 

managers running on the machines to keep an up-to-
date view about available resources.

• Any machine with sufficient resources could run the 
application container. In practice, the scheduler will 
typically use a heuristic to make a choice. There are 
many reasonable options:
– For even load distribution, select the least loaded machine 

or the machine with the most resources available.
– To avoid small resource leftovers, assign the application to 

the machine with the “best fit.” This means that the 
machine will have the least leftover resources.

• For our example, let’s assume the latter strategy is 
used. The resource manager will communicate with the 
corresponding node manager to start the container.

6



Basic View of Cluster Resource 
Management (cont.)

7

Client

Cluster

Resource 
manager

1. Run this container. It needs 
2 cores and 4 GB RAM.

2 cores
4 GB Node 

manager

Available: 
1 core,
16 GB

Node 
manager

Available: 
8 cores,
32 GB

Node 
manager

Available: 
3 cores,
8 GB

Node 
manager

Available: 
2 cores,
3 GB

2. Start 
container.

2 cores
4 GB



Basic View of Cluster Resource 
Management (cont.)

8

Client

Cluster

Resource 
manager

1. Run this container. It needs 
2 cores and 4 GB RAM.

2 cores
4 GB Node 

manager

Available: 
1 core,
16 GB

Node 
manager

Available: 
8 cores,
32 GB

Node 
manager

Available: 
1 core,
4 GB

Node 
manager

Available: 
2 cores,
3 GB

2. Start 
container.

2 cores
4 GB

3. Application 
is running.

2 cores
4 GB

3. Get status



Scheduling Policies
• The resource manager also decides what to do 

when there are insufficient resources. It collects 
requests in a queue, where they wait until 
resources become available from completed or 
terminated jobs.

• A scheduling policy decides which request will be 
next in line. Here are some examples:
– First-in first-out (FIFO) is the simplest approach: 

requests are served in order of arrival.

– FAIR: the next request served is for the user who has 
been waiting the longest.

– Priority: requests with higher priority are served first.

9



How Many Resources to Request?
• The resource manager, together with the node managers, 

enforces resource consumption limits. This means that if an 
application exceeds its requested resources, it will be 
terminated. However, asking for too much makes it harder 
to find a machine with enough memory and CPUs.

• Hadoop MapReduce and Spark can automatically 
determine the number of cores needed for application 
master and worker processes.

• The user only needs to worry about the amount of 
memory. This is essentially the same problem as 
determining the heap size limit for a Java program.
– A good programmer will analyze memory consumption of their 

program and then choose accordingly. In the worst case, one 
can apply trial-and-error: start with a “good guess,” then 
increase container memory size if necessary.

10



Application Management
• A distributed data-processing job consists of many tasks

that are running on different machines. These tasks must 
be coordinated, as we will discuss in a future module.

• Should the cluster resource manager do this?
– Pro: We already have a centralized process that is aware of 

available resource, so let’s use it. The old Hadoop 0.* and 1.* 
versions took this route.

– Con: The resource manager would have to be aware of 
application semantics. For MapReduce, it would have to 
understand in what order Map or Reduce tasks can be 
scheduled and what to do when one fails. For Spark or a 
database service, there are other task types and different ways 
to react to failures.

• The current trend is to separate resource management 
from application management. This way a single generic 
resource manager like YARN can support diverse 
applications and services on the same cluster.

11



Spark Application Management
• To see how resource and application management interact, we take a 

closer look at the execution of a Spark job. You will become more familiar 
with terminology like job, task, and executor as we progress in the course. 
For now, be aware that a Spark job consists of many tasks, which can run 
independently on different machines.

• The Spark job is initiated by a client process running in a Java Virtual 
Machine (JVM). In cluster-deploy mode, the client first requests resources 
from the resource manager to start up the application master, including 
the driver program. There is exactly one master per Spark job.
– Notice again that a single coordinator is used to achieve consensus between 

many actors, in this case the tasks of a job.

• The application master then requests resources for executors from the 
resource manager. Executors then communicate with the master to (1) 
receive Spark tasks, (2) inform the driver about their status, and (3) emit 
their output.
– The cluster resource manager is not involved in the application-specific 

communication or data transfer. It only assigns the applications to resources as 
requested. Then the application master takes over. This way resource and 
application management are cleanly separated.

12



13

Client JVM

Resource 
manager

Node 
manager

Node 1

Node 2

Node 
manager

YARN cluster (Spark in cluster deploy mode)

Illustration based on Zecevic/Bonaci book



14

Client JVM

Resource 
manager

Node 
manager

Node 1

Node 2

Node 
manager

Get status

YARN cluster (Spark in cluster deploy mode)

Illustration based on Zecevic/Bonaci book

1: submit application



15

Client JVM

Resource 
manager

Node 
manager

Node 1

Node 2

Node 
manager

2: start application 
master (AM) container

Get status

YARN cluster (Spark in cluster deploy mode)

Illustration based on Zecevic/Bonaci book

1: submit application



16

Client JVM

Resource 
manager

Node 
manager

Scheduler

Spark 
context

Spark driver

Spark 
application 
master

JVM heap

Container

Node 1

Node 2

Node 
manager

2: start application 
master (AM) container

3: launch AM container

Get status

YARN cluster (Spark in cluster deploy mode)

Illustration based on Zecevic/Bonaci book

1: submit application



17

Client JVM

Resource 
manager

Node 
manager

Scheduler

Spark 
context

Spark driver

Spark 
application 
master

JVM heap

Container

Node 1

Node 2

Node 
manager

2: start application 
master (AM) container

3: launch AM container

4: request resources for 
application

Get status

YARN cluster (Spark in cluster deploy mode)

Illustration based on Zecevic/Bonaci book

1: submit application



18

Client JVM

Resource 
manager

Node 
manager

Scheduler

Spark 
context

Spark driver

Spark 
application 
master

JVM heap

Container

Node 1

Node 2

Node 
manager

2: start application 
master (AM) container

3: launch AM container

4: request resources for 
application

5: start 
executor 
container

5: start executor container

Get status

YARN cluster (Spark in cluster deploy mode)

Illustration based on Zecevic/Bonaci book

1: submit application



19

Client JVM

Resource 
manager

Node 
manager

Scheduler

Spark 
context

Spark driver

Spark 
application 
master

JVM heap

Container

Executor

JVM heap

Container

Node 1

Node 2

Node 
manager Executor

JVM heap

Container

2: start application 
master (AM) container

3: launch AM container

4: request resources for 
application

5: start 
executor 
container

5: start executor container

6: launch executor container

6: launch executor container

Get status

YARN cluster (Spark in cluster deploy mode)

Illustration based on Zecevic/Bonaci book

1: submit application



20

Client JVM

Resource 
manager

Node 
manager

Scheduler

Spark 
context

Spark driver

Spark 
application 
master

JVM heap

Container

T

Executor

JVM heap

Container

Node 1

Node 2

Node 
manager

T

Executor

JVM heap

Container

T

2: start application 
master (AM) container

3: launch AM container

4: request resources for 
application

5: start 
executor 
container

5: start executor container

6: launch executor container

6: launch executor container

7: Spark communication 
(independent of 
resource manager)

Get status

YARN cluster (Spark in cluster deploy mode)

Illustration based on Zecevic/Bonaci book

1: submit application



References

• Petar Zecevic and Marko Bonaci: Spark in 
Action. Manning Publications, 2016

21


