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Key Learning Goals

• What are speedup and scaleup, and how do 
we measure them for a given application?

– What is the theoretically best speedup possible?

• Is load balance a measure of good 
parallelization?

• Will adding more processors always speed up 
computation? Why or why not?

• What does Amdahl’s Law say? Give an 
example to illustrate it.
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Key Learning Goals

• Why is distributed programming with shared 
data structures generally not considered 
scalable?

• Show an example of a “concurrency bug” 
where concurrent access to a shared data 
structure causes inconsistency.

• Why is it beneficial to have data already pre-
partitioned across many machines before the 
computation starts?
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Consider a few simple examples to get a 
feeling for obvious and more subtle 
challenges when parallelizing an algorithm.



Sum Of Integers
• Consider a problem that is conceptually easy to 

parallelize: Given a large file of integers, compute their 
sum. The sequential program is straightforward:
– Open the file for reading, initialize SUM = 0.

– While there are more numbers in the file, read the next 
number and add it to SUM.

– Return SUM.

• Parallel computation is also trivial: Assign a data chunk 
to each processor to compute a local sum, then add up 
all intermediate results.

• While algorithmically simple, this parallel program 
might take longer to finish than the sequential version. 
Why?
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Sum Of Integers
• Consider a scenario with 2 machines M1 and M2, where 

the data is stored on M1. Assume M1’s CPU processes data 
at a rate of 50 MB/sec, while the disk can only transfer 25 
MB/sec. Then M1 alone can process 1 GB of data in 40 sec.

• The disk is the bottleneck, i.e., it is 100% busy during the 
entire time, while the CPU is only 50% utilized. Transferring 
data to another machine M2 requires splitting M1’s disk 
transfer capacity between the two machines, e.g., each 
CPU receives 0.5 GB of data at 12.5 MB/sec from M1’s disk. 
Then each machine still takes 0.5 GB/12.5 MB/sec = 40 sec 
to receive the data, while both CPUs are only 25% utilized.

• If we take into account that communication also adds 
latency, and that an additional summation step is needed 
to add up the values from M1 and M2, then total time will 
exceed 40 sec.

• What if the disk was faster? Let’s take a look.
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Sum of Integers Demo
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CPU

Disk 1 GB of 
data

50 MB/sec 
processing 
rate

100 MB/sec 
transfer rate

Let’s look at the computation with one machine. Assume the CPU is slow compared to the disk.

Machine 1

Time to sum up 
all numbers:
20 sec

Time to transfer 
all data to CPU:
10 sec

Time to 
complete the 
job:
20 sec



Sum of Integers Demo
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CPU

Disk

2*50 MB/sec 
processing 
rate

Let’s try to speed this up by using two machines. To balance the load, we send half of the data 
to CPU 2. As we hoped, the job completes in half the time.

1 GB of 
data

Machine 1

Time to sum up 
all numbers:
10 sec

Time to transfer 
all data to CPU:
10 sec

Time to 
complete the 
job:
10 sec

No 
data

Machine 2

100 MB/sec

50 MB/sec
50 MB/sec



Sum of Integers Demo
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CPU

Disk

4*50 MB/sec 
processing 
rate

However, as we are adding more machines, processing time does not improve any more. Even 
though all CPUs together could process the data in 5 sec, they must wait for the disk. As the disk 
became the bottleneck, adding more CPU capacity did not reduce job completion time.

1 GB of 
data

Machine 1

Time to sum up 
all numbers:
5 sec

Time to transfer 
all data to CPU:
10 sec

Time to 
complete the 
job:
10 sec

No 
data

Machine 2

100 MB/sec

25 MB/sec

No 
data

Machine 3

No 
data

Machine 4

25 MB/sec 25 MB/sec
25 MB/sec



Sum of Integers Demo
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CPU

Disk

4*50 MB/sec 
processing 
rate

However, as we are adding more machines, processing time does not improve any more. Even 
though all CPUs together could process the data in 5 sec, they must wait for the disk. As the disk 
became the bottleneck, adding more CPU capacity did not reduce job completion time.

1 GB of 
data

Machine 1

Time to sum up 
all numbers:
5 sec

Time to transfer 
all data to CPU:
10 sec

Time to 
complete the 
job:
10 sec

No 
data

Machine 2

100 MB/sec

25 MB/sec

No 
data

Machine 3

No 
data

Machine 4

25 MB/sec 25 MB/sec
25 MB/sec

This problem would 
disappear, if the data 

was already partitioned 
across the four machines 
before the computation 

starts.



Sum of Integers with Pre-Partitioned Data
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CPU

Disk

4*50 MB/sec 
processing 
rate

If each disk contains ¼ of the input, then each CPU can read locally at full speed. Now the slow 
CPU determines the processing rate, like in the single-machine scenario. However, each machine 
has only a fraction of the work. This is the ideal case, assuming the final aggregation step is fast.

¼ GB of 
data

Machine 1

Time to sum up 
all numbers:
5 sec

Time to transfer 
all data to CPU:
2.5 sec

Time to 
complete the 
job:
5 sec

¼ GB of 
data

Machine 2

100 MB/sec

¼ GB of 
data

Machine 3

¼ GB of 
data

Machine 4



Sum of Integers with Pre-Partitioned Data
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CPU

Disk

4*50 MB/sec 
processing 
rate

If each disk contains ¼ of the input, then each CPU can read locally at full speed. Now the slow 
CPU determines the processing rate, like in the single-machine scenario. However, each machine 
has only a fraction of the work. This is the ideal case, assuming the final aggregation step is fast.

¼ GB of 
data

Machine 1

Time to sum up 
all numbers:
5 sec

Time to transfer 
all data to CPU:
2.5 sec

Time to 
complete the 
job:
5 sec

¼ GB of 
data

Machine 2

100 MB/sec

¼ GB of 
data

Machine 3

¼ GB of 
data

Machine 4

Note that each machine 
holds only a partial result. 
To get the final sum, three 
workers need to send their 

results to the fourth, so that 
it can perform the final 
aggregation. This adds a 

(small) delay.



Lessons Learned
• Adding more compute power does not speed up 

computation when data transfer to the processors is 
the bottleneck.
– How can we see the issue in practice? During program 

execution, the CPUs have low utilization, because they 
wait for data.

• How can the problem be addressed?
– Store data partitions on the machines that will perform the 

computation. The distributed file system supports this 
transparently.

– If the data is transferred on-the-fly from a separate storage 
environment, e.g., Amazon S3, to a compute environment, 
e.g., Amazon EC2, then more bandwidth between storage 
and compute nodes should be provided for bigger data 
and larger compute clusters. Cloud providers usually do 
this automatically.
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Can we avoid the problem by using a shared 
memory approach?

Unfortunately, that has other downsides.



Word Count
• Word Count takes the SUM example a step 

further and highlights the problem of shared data 
structures. We are given a large collection of text 
documents. For each word in the collection, 
determine how many times it occurs in total.

• Sequential program
– For each document, update a counter for each word 

found in the document.
– Note: We use a single data structure, e.g., a hash map, 

to keep track of the count for each word.

• We can parallelize the counting process easily, 
but instead of a single SUM, we need to keep 
track of a count for each word.
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Word Count: Shared-Memory Version

• There is a single shared data structure—a hash 
map that maps a word to its count—that can be 
updated by all workers. As each worker processes 
a document, it attempts to update the data 
structure.
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Word Count

Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Update word counts
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Word Count

CS6240 10

is 100

yes 30

Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Current state (before the 2 new 
documents are being processed):
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Word Count

CS6240 10

is 100

yes 30

Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Update “is”

Update “yes”

Current state:
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Word Count

CS6240 10

is 100

yes 30

Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Update “is”

Update “yes”

New state:

Word Count

CS6240 10

is 101

yes 31

Old state:
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Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Update “CS6240”

Word Count

CS6240 10

is 100

yes 30

Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Update “is”

Update “yes”

New state:

Update “CS6240”

Word Count

CS6240 10

is 101

yes 31

Word Count

CS6240 10

is 101

yes 31

Old state:
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Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Update “CS6240”

Word Count

CS6240 10

is 100

yes 30

Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Update “is”

Update “yes”

New state:

Update “CS6240”

What could go wrong as 
both workers try to update 
the counter for “CS6240” 
concurrently?

Word Count

CS6240 10

is 101

yes 31

Word Count

CS6240 10

is 101

yes 31

Old state:



Concurrent Updates and Synchronization

• Updates to a simple hash map H are not atomic, 
i.e., they consist of multiple low-level operations.

– The documentation of the data structure would have 
to explicitly state any atomicity properties a more 
advanced hash-map implementation may guarantee.

• For simplicity, assume hash-map update 
H[word]++ consists of the following operations:

– Read current value of H[word]

– Add 1 to the value

– Write the updated value back to H[word]

• What could happen in our example?
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Problematic Concurrent Execution
• In this execution, shown advancing from top to 

bottom, one of the updates is lost. Depending on the 
system, there might also be an exception.

• This issue is difficult to debug, because the problem 
may or may not occur, depending on the timing of the 
operations.
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Action by Worker 1 Action by Worker 2

Read H[CS6240]: val = 10

Read H[CS6240]: val = 10

Add 1 to val: val = 11

Add 1 to val: val = 11

Write val back H[CS6240] = 11

Write val back H[CS6240] = 11



Preventing Concurrency Bugs
• To prevent the problem, the update operation 

must acquire a lock on the key.
– The lock ensures exclusive access, i.e., only the worker 

with the lock can proceed with the update. The other 
one must wait until the lock owner is done.
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Function increment (word w) {

    acquire lock on H[w]
    H[w]++
    release lock on H[w]
}

Action by Worker 1 Action by Worker 2

Acquire lock on H[CS6240]

Read H[CS6240]: val = 10

Wait for lock on H[CS6240]

Add 1 to val: val = 11

Write val back H[CS6240] = 11

Release lock on H[CS6240]

Acquire lock on H[CS6240]

Read H[CS6240] val = 11



Things Are More Complicated
• The first encounter of a word creates a new entry for this key. That 

operation also must be protected by locking. Unfortunately, we 
cannot lock the key if it is not in the hash map yet. Hence, we must 
lock the entire hash map.
– In general, we must lock the object that is accessed. Looking up and 

inserting a key are operations on the hash-map object.

• Not only updates, but even read-only access must be protected by 
locking. Otherwise, the value might be overwritten in the middle of 
the read operation.
– Some systems distinguish between read locks and write locks. There 

can be more than one concurrent reader, but as soon as a worker 
holds a write lock, no concurrent read or write is allowed.

• Locking reduces parallelism by forcing sequential execution of 
workers competing for the same lock. Hence one should lock as 
little as possible for as little time as possible.
– A lock on individual keys allows the update on “is” and on “yes” to 

proceed in parallel. If the update locks the entire hash map, then 
these two updates will happen sequentially!
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Lessons Learned

• Concurrent access to shared data structures 
requires careful synchronization, e.g., through 
locking.

• Locking reduces parallelism and increases 
computation cost for lock management.

• Ironically, the more workers we use for 
increased parallelism, the higher the 
probability of locking conflicts. For this reason, 
the shared-memory programming approach is 
generally not considered highly scalable.
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Word Count: “Shared-Nothing” Version

• Each worker creates its own local copy of the 
hash map. It has exclusive access to this copy and 
hence there are no concurrency issues.

• After all workers are done, they communicate 
their local counts in order to compute the final 
counts. This step requires a barrier primitive to 
ensure that all workers are done. (The barrier is 
also needed for the shared-memory version!)

• Communication cost may be high, depending on 
the sizes of the local hash maps. The extra post-
processing step can significantly delay job 
completion. (The shared-memory approach did 
not need this step!)
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Performance Metrics
• Before exploring parallel algorithms in more depth, how do 

we know if our parallel algorithm or implementation does 
well?

• There are many measures of program quality in general:
– Total execution time
– Total resources consumed
– Total amount of money paid
– Total energy consumed

• In practice, one could try to optimize some combination of 
the above, e.g., minimize total execution time, subject to a 
monetary cost constraint.

• All these measures matter for both sequential and parallel 
programs. For parallel programs, there are additional 
measures of success that determine the effectiveness of 
the parallelization: speedup and scaleup.
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Speedup
• Ideally, if the sequential execution of a program takes 

time t, then the parallel execution on n processors 
should take time t/n. We measure how close we come 
to this ideal scenario by using speedup:
– Speedup = sequentialTime / parallelTime

• Note: to determine speedup, the work to be done is 
fixed!

• On n identical machines, the theoretically best possible 
speedup is n.
– To see this, note that a sequential program can execute 

each of the n parallel tasks, one after the other. This takes 
at most n times as much as the longest of these n tasks.
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Scaleup
• Another goal for successful parallelization is to keep the job’s 

response time constant if the number of processors increases at 
same rate as the “amount of work.” We measure how close we 
come to this ideal scenario by using scaleup:
– Scaleup = workDoneParallel / workDoneSequential

• Note: to determine scaleup, the time to work on the job is fixed!
• On n identical machines, the theoretically best possible scaleup is n. 

(The argument is similar to the one for speedup.)
• In practice, it is not easy to measure the “work done.” For simplicity, 

it is often set equal to input size. However, this can lead to 
confusion when algorithm complexity is not linear in input size.
– Consider a quadratic algorithm. Doubling input size creates four times 

the work for the algorithm. Hence it is not realistic to expect that 
doubling the number of machines will ensure the same job completion 
time on twice the input.

– For more realistic scaleup, one should take algorithm complexity into 
account. In practice, we can estimate the work done for a given input 
by measuring processing time on a single machine.

30



Scalability Through Load Balancing
• Load balancing is not a measure of program quality. It is a means of 

achieving higher speedup and scaleup by distributing work evenly over the 
processors. This avoids overloading one processor while another is idle.

• To see why balanced load is not a good goal in itself, note that we can 
“parallelize” a program by sending all data to all processors and having 
each processor execute the entire program sequentially. This perfectly 
balances load but results in poor speedup and scaleup.

• Also note that load balancing optimizes for response time, but not 
necessarily for other metrics such as throughput or energy consumption.

• There are two types of load balancing:
– Static load balancing happens before program execution at compile time. An 

optimizer analyzes program and data to determine how to partition the work 
into multiple tasks. It cannot react to runtime events, e.g., an unexpectedly 
slow machine.

– Dynamic load balancing happens at runtime, i.e., during program execution. It 
can react to changes in system state, but incurs additional overhead for 
monitoring and reacting, e.g., the cost of transferring data and code from one 
machine to another. Dynamic load balancing is easy for tasks with a simple 
structure like Web search, but difficult for more complex problems such as 
joins.
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Amdahl’s Law
• How do we know if our program’s speedup is “good”? And how do we 

determine how many machines to use for a task? Amdahl’s Law can help 
answer both questions.

• Consider a job taking sequential time 1 and consisting of two sequential 
tasks taking time t and 1-t, respectively. The first task must be completed 
before the second can start.

• Assume we can perfectly parallelize the first task on n processors, but the 
second is not parallelizable. Then the best possible parallel running time 
we can hope for is t/n + (1 – t).

• Hence, we obtain a speedup of 1 / (1 – t(n-1)/n). To understand this 
formula better, consider an example where the first task makes up 90% of 
the total work, i.e., only 10% of the job cannot be parallelized. Now use 
the formula to determine the speedup for different numbers of machines:
– t=0.9, n=2: speedup = 1.81
– t=0.9, n=10: speedup = 5.3
– t=0.9, n=100: speedup = 9.2
– As n approaches infinity, we obtain the maximal possible speedup for t=0.9 as 

1/(1-0.9) = 10
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Intuition Behind Amdahl’s Law

33

parallelizable not parallelizable1 worker

t 1-t

worker 1 not parallelizable2 workers

t/2 1-t

worker 2

w1 not parallelizable4 workers

t/4 1-t

w2

w4

w3



A More Realistic View

• Parallelization may introduce additional steps, 
e.g., to communicate and combine the partial 
results from different workers. For some 
problems this can negate any positive effect of 
parallelization.
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w1 not parallelizable

t/4 1-t

w2

w4

w3

w1 not parallelizable

t/4 1-t

w2

w4

w3

extra step



Implications of Amdahl’s Law
• Parallelize the tasks that take the longest. They have the 

greatest effect on speedup.
• Sequential steps inherently limit the maximum possible 

speedup. If fraction x of the job is inherently sequential, 
speedup can never exceed 1/x. Hence there is no point 
running the job on an excessive number of processors.
– For x = 0.1, going from 10 to 100 machines improves speedup by 

less than a factor of 2. Going from 100 to 1000 has no significant 
effect on speedup.

• This kind of analysis matters in practice. When parallelizing 
work, we usually introduce additional communication 
between tasks, e.g., to transmit intermediate results. Such 
communication can inherently limit speedup, no matter 
how well the tasks themselves can be parallelized.
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Let’s summarize what we have learned so 
far.



Scalable Data Processing in a Nutshell

• In Big-Data processing, usually the same 
computation needs to be applied to a lot of 
data.

• We want to divide the work between multiple 
processors.

• When dividing work, we often need to 
combine intermediate results from multiple 
processors.

• We want an environment that simplifies 
writing such programs and executing them on 
many processors.
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This Is Not So Easy

• How can the work be partitioned without 
communicating too much intermediate data?

• How do we start up and manage 1000s of 
tasks for a job?

• How do we get large data sets to processors or 
move processing to the data?

• How do we deal with slow responses and 
failures?
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Technical Problems
• Shared resources limit scalability due to the cost of 

managing concurrent access, e.g., through locking.

• Shared-nothing and shared-disk architectures still need 
communication for processes to share data and 
coordinate with each other.

• Whenever multiple concurrent processes interact, 
there is a potential for deadlocks and race conditions.

• It is difficult to reason about the behavior and 
correctness of concurrent processes, especially when 
failures are part of the model.

• There is an inherent tradeoff between consistency, 
availability, and partition tolerance. We will discuss this 
in a future module.
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What Can We Do?
• As a programmer, work at the right level of abstraction:

– If the approach is too low-level, it becomes difficult to write 
programs. For instance, just imagine dealing with locks on 
shared data structures and managing communication between 
machines in application code, especially when having to handle 
failures.

– If the approach is too high-level, it could suffer from poor 
performance if control for a crucial bottleneck is “abstracted 
away.”

• One solution to this dilemma is to use a declarative style of 
programming. A declarative program specifies WHAT needs 
to be computed, not HOW this is done at the low level. A 
well-known success story for declarative programming is 
SQL for relational databases (RDBMS). An SQL query 
specifies what the user is looking for and the database 
optimizer automatically chooses an efficient 
implementation to compute the desired result.
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The MapReduce/Spark Way
• Use hardware that can scale out, not just up.

– MapReduce was initially designed for WSCs. Doubling the 
number of commodity servers in a cluster is easy but 
buying a double-sized SMP machine is not.

• Place the data near the processors.
– Moving too much data around tends to result in poor 

performance. MapReduce therefore tries to assign tasks to 
machines that already have the data on local disk. Spark 
takes this even further, by considering data in memory.

• Avoid centralized resources that are likely bottlenecks.
– Ise them only for “lighter” tasks, e.g., job management.

• Read and write data sequentially in large chunks to 
amortize latency. (More on this in another module.)
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