
Parallel Data-Processing Basics

Mirek Riedewald

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Key Learning Goals

• What are speedup and scaleup, and how do
we measure them for a given application?

– What is the theoretically best speedup possible?

• Is load balance a measure of good
parallelization?

• Will adding more processors always speed up
computation? Why or why not?

• What does Amdahl’s Law say? Give an
example to illustrate it.

2

Key Learning Goals

• Why is distributed programming with shared
data structures generally not considered
scalable?

• Show an example of a “concurrency bug”
where concurrent access to a shared data
structure causes inconsistency.

• Why is it beneficial to have data already pre-
partitioned across many machines before the
computation starts?

3

4

Consider a few simple examples to get a
feeling for obvious and more subtle
challenges when parallelizing an algorithm.

Sum Of Integers
• Consider a problem that is conceptually easy to

parallelize: Given a large file of integers, compute their
sum. The sequential program is straightforward:
– Open the file for reading, initialize SUM = 0.

– While there are more numbers in the file, read the next
number and add it to SUM.

– Return SUM.

• Parallel computation is also trivial: Assign a data chunk
to each processor to compute a local sum, then add up
all intermediate results.

• While algorithmically simple, this parallel program
might take longer to finish than the sequential version.
Why?

5

Sum Of Integers
• Consider a scenario with 2 machines M1 and M2, where

the data is stored on M1. Assume M1’s CPU processes data
at a rate of 50 MB/sec, while the disk can only transfer 25
MB/sec. Then M1 alone can process 1 GB of data in 40 sec.

• The disk is the bottleneck, i.e., it is 100% busy during the
entire time, while the CPU is only 50% utilized. Transferring
data to another machine M2 requires splitting M1’s disk
transfer capacity between the two machines, e.g., each
CPU receives 0.5 GB of data at 12.5 MB/sec from M1’s disk.
Then each machine still takes 0.5 GB/12.5 MB/sec = 40 sec
to receive the data, while both CPUs are only 25% utilized.

• If we take into account that communication also adds
latency, and that an additional summation step is needed
to add up the values from M1 and M2, then total time will
exceed 40 sec.

• What if the disk was faster? Let’s take a look.

6

Sum of Integers Demo

7

CPU

Disk 1 GB of
data

50 MB/sec
processing
rate

100 MB/sec
transfer rate

Let’s look at the computation with one machine. Assume the CPU is slow compared to the disk.

Machine 1

Time to sum up
all numbers:
20 sec

Time to transfer
all data to CPU:
10 sec

Time to
complete the
job:
20 sec

Sum of Integers Demo

8

CPU

Disk

2*50 MB/sec
processing
rate

Let’s try to speed this up by using two machines. To balance the load, we send half of the data
to CPU 2. As we hoped, the job completes in half the time.

1 GB of
data

Machine 1

Time to sum up
all numbers:
10 sec

Time to transfer
all data to CPU:
10 sec

Time to
complete the
job:
10 sec

No
data

Machine 2

100 MB/sec

50 MB/sec
50 MB/sec

Sum of Integers Demo

9

CPU

Disk

4*50 MB/sec
processing
rate

However, as we are adding more machines, processing time does not improve any more. Even
though all CPUs together could process the data in 5 sec, they must wait for the disk. As the disk
became the bottleneck, adding more CPU capacity did not reduce job completion time.

1 GB of
data

Machine 1

Time to sum up
all numbers:
5 sec

Time to transfer
all data to CPU:
10 sec

Time to
complete the
job:
10 sec

No
data

Machine 2

100 MB/sec

25 MB/sec

No
data

Machine 3

No
data

Machine 4

25 MB/sec 25 MB/sec
25 MB/sec

Sum of Integers Demo

10

CPU

Disk

4*50 MB/sec
processing
rate

However, as we are adding more machines, processing time does not improve any more. Even
though all CPUs together could process the data in 5 sec, they must wait for the disk. As the disk
became the bottleneck, adding more CPU capacity did not reduce job completion time.

1 GB of
data

Machine 1

Time to sum up
all numbers:
5 sec

Time to transfer
all data to CPU:
10 sec

Time to
complete the
job:
10 sec

No
data

Machine 2

100 MB/sec

25 MB/sec

No
data

Machine 3

No
data

Machine 4

25 MB/sec 25 MB/sec
25 MB/sec

This problem would
disappear, if the data

was already partitioned
across the four machines
before the computation

starts.

Sum of Integers with Pre-Partitioned Data

11

CPU

Disk

4*50 MB/sec
processing
rate

If each disk contains ¼ of the input, then each CPU can read locally at full speed. Now the slow
CPU determines the processing rate, like in the single-machine scenario. However, each machine
has only a fraction of the work. This is the ideal case, assuming the final aggregation step is fast.

¼ GB of
data

Machine 1

Time to sum up
all numbers:
5 sec

Time to transfer
all data to CPU:
2.5 sec

Time to
complete the
job:
5 sec

¼ GB of
data

Machine 2

100 MB/sec

¼ GB of
data

Machine 3

¼ GB of
data

Machine 4

Sum of Integers with Pre-Partitioned Data

12

CPU

Disk

4*50 MB/sec
processing
rate

If each disk contains ¼ of the input, then each CPU can read locally at full speed. Now the slow
CPU determines the processing rate, like in the single-machine scenario. However, each machine
has only a fraction of the work. This is the ideal case, assuming the final aggregation step is fast.

¼ GB of
data

Machine 1

Time to sum up
all numbers:
5 sec

Time to transfer
all data to CPU:
2.5 sec

Time to
complete the
job:
5 sec

¼ GB of
data

Machine 2

100 MB/sec

¼ GB of
data

Machine 3

¼ GB of
data

Machine 4

Note that each machine
holds only a partial result.
To get the final sum, three
workers need to send their

results to the fourth, so that
it can perform the final
aggregation. This adds a

(small) delay.

Lessons Learned
• Adding more compute power does not speed up

computation when data transfer to the processors is
the bottleneck.
– How can we see the issue in practice? During program

execution, the CPUs have low utilization, because they
wait for data.

• How can the problem be addressed?
– Store data partitions on the machines that will perform the

computation. The distributed file system supports this
transparently.

– If the data is transferred on-the-fly from a separate storage
environment, e.g., Amazon S3, to a compute environment,
e.g., Amazon EC2, then more bandwidth between storage
and compute nodes should be provided for bigger data
and larger compute clusters. Cloud providers usually do
this automatically.

13

14

Can we avoid the problem by using a shared
memory approach?

Unfortunately, that has other downsides.

Word Count
• Word Count takes the SUM example a step

further and highlights the problem of shared data
structures. We are given a large collection of text
documents. For each word in the collection,
determine how many times it occurs in total.

• Sequential program
– For each document, update a counter for each word

found in the document.
– Note: We use a single data structure, e.g., a hash map,

to keep track of the count for each word.

• We can parallelize the counting process easily,
but instead of a single SUM, we need to keep
track of a count for each word.

15

Word Count: Shared-Memory Version

• There is a single shared data structure—a hash
map that maps a word to its count—that can be
updated by all workers. As each worker processes
a document, it attempts to update the data
structure.

16

Word Count

Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Update word counts

17

Word Count

CS6240 10

is 100

yes 30

Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Current state (before the 2 new
documents are being processed):

18

Word Count

CS6240 10

is 100

yes 30

Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Update “is”

Update “yes”

Current state:

19

Word Count

CS6240 10

is 100

yes 30

Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Update “is”

Update “yes”

New state:

Word Count

CS6240 10

is 101

yes 31

Old state:

20

Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Update “CS6240”

Word Count

CS6240 10

is 100

yes 30

Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Update “is”

Update “yes”

New state:

Update “CS6240”

Word Count

CS6240 10

is 101

yes 31

Word Count

CS6240 10

is 101

yes 31

Old state:

21

Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Update “CS6240”

Word Count

CS6240 10

is 100

yes 30

Is
CS6240
hard?

Yes
CS6240

is
hard

Worker 1

Worker 2

Update “is”

Update “yes”

New state:

Update “CS6240”

What could go wrong as
both workers try to update
the counter for “CS6240”
concurrently?

Word Count

CS6240 10

is 101

yes 31

Word Count

CS6240 10

is 101

yes 31

Old state:

Concurrent Updates and Synchronization

• Updates to a simple hash map H are not atomic,
i.e., they consist of multiple low-level operations.

– The documentation of the data structure would have
to explicitly state any atomicity properties a more
advanced hash-map implementation may guarantee.

• For simplicity, assume hash-map update
H[word]++ consists of the following operations:

– Read current value of H[word]

– Add 1 to the value

– Write the updated value back to H[word]

• What could happen in our example?

22

Problematic Concurrent Execution
• In this execution, shown advancing from top to

bottom, one of the updates is lost. Depending on the
system, there might also be an exception.

• This issue is difficult to debug, because the problem
may or may not occur, depending on the timing of the
operations.

23

Action by Worker 1 Action by Worker 2

Read H[CS6240]: val = 10

Read H[CS6240]: val = 10

Add 1 to val: val = 11

Add 1 to val: val = 11

Write val back H[CS6240] = 11

Write val back H[CS6240] = 11

Preventing Concurrency Bugs
• To prevent the problem, the update operation

must acquire a lock on the key.
– The lock ensures exclusive access, i.e., only the worker

with the lock can proceed with the update. The other
one must wait until the lock owner is done.

24

Function increment (word w) {

 acquire lock on H[w]
 H[w]++
 release lock on H[w]
}

Action by Worker 1 Action by Worker 2

Acquire lock on H[CS6240]

Read H[CS6240]: val = 10

Wait for lock on H[CS6240]

Add 1 to val: val = 11

Write val back H[CS6240] = 11

Release lock on H[CS6240]

Acquire lock on H[CS6240]

Read H[CS6240] val = 11

Things Are More Complicated
• The first encounter of a word creates a new entry for this key. That

operation also must be protected by locking. Unfortunately, we
cannot lock the key if it is not in the hash map yet. Hence, we must
lock the entire hash map.
– In general, we must lock the object that is accessed. Looking up and

inserting a key are operations on the hash-map object.

• Not only updates, but even read-only access must be protected by
locking. Otherwise, the value might be overwritten in the middle of
the read operation.
– Some systems distinguish between read locks and write locks. There

can be more than one concurrent reader, but as soon as a worker
holds a write lock, no concurrent read or write is allowed.

• Locking reduces parallelism by forcing sequential execution of
workers competing for the same lock. Hence one should lock as
little as possible for as little time as possible.
– A lock on individual keys allows the update on “is” and on “yes” to

proceed in parallel. If the update locks the entire hash map, then
these two updates will happen sequentially!

25

Lessons Learned

• Concurrent access to shared data structures
requires careful synchronization, e.g., through
locking.

• Locking reduces parallelism and increases
computation cost for lock management.

• Ironically, the more workers we use for
increased parallelism, the higher the
probability of locking conflicts. For this reason,
the shared-memory programming approach is
generally not considered highly scalable.

26

Word Count: “Shared-Nothing” Version

• Each worker creates its own local copy of the
hash map. It has exclusive access to this copy and
hence there are no concurrency issues.

• After all workers are done, they communicate
their local counts in order to compute the final
counts. This step requires a barrier primitive to
ensure that all workers are done. (The barrier is
also needed for the shared-memory version!)

• Communication cost may be high, depending on
the sizes of the local hash maps. The extra post-
processing step can significantly delay job
completion. (The shared-memory approach did
not need this step!)

27

Performance Metrics
• Before exploring parallel algorithms in more depth, how do

we know if our parallel algorithm or implementation does
well?

• There are many measures of program quality in general:
– Total execution time
– Total resources consumed
– Total amount of money paid
– Total energy consumed

• In practice, one could try to optimize some combination of
the above, e.g., minimize total execution time, subject to a
monetary cost constraint.

• All these measures matter for both sequential and parallel
programs. For parallel programs, there are additional
measures of success that determine the effectiveness of
the parallelization: speedup and scaleup.

28

Speedup
• Ideally, if the sequential execution of a program takes

time t, then the parallel execution on n processors
should take time t/n. We measure how close we come
to this ideal scenario by using speedup:
– Speedup = sequentialTime / parallelTime

• Note: to determine speedup, the work to be done is
fixed!

• On n identical machines, the theoretically best possible
speedup is n.
– To see this, note that a sequential program can execute

each of the n parallel tasks, one after the other. This takes
at most n times as much as the longest of these n tasks.

29

Scaleup
• Another goal for successful parallelization is to keep the job’s

response time constant if the number of processors increases at
same rate as the “amount of work.” We measure how close we
come to this ideal scenario by using scaleup:
– Scaleup = workDoneParallel / workDoneSequential

• Note: to determine scaleup, the time to work on the job is fixed!
• On n identical machines, the theoretically best possible scaleup is n.

(The argument is similar to the one for speedup.)
• In practice, it is not easy to measure the “work done.” For simplicity,

it is often set equal to input size. However, this can lead to
confusion when algorithm complexity is not linear in input size.
– Consider a quadratic algorithm. Doubling input size creates four times

the work for the algorithm. Hence it is not realistic to expect that
doubling the number of machines will ensure the same job completion
time on twice the input.

– For more realistic scaleup, one should take algorithm complexity into
account. In practice, we can estimate the work done for a given input
by measuring processing time on a single machine.

30

Scalability Through Load Balancing
• Load balancing is not a measure of program quality. It is a means of

achieving higher speedup and scaleup by distributing work evenly over the
processors. This avoids overloading one processor while another is idle.

• To see why balanced load is not a good goal in itself, note that we can
“parallelize” a program by sending all data to all processors and having
each processor execute the entire program sequentially. This perfectly
balances load but results in poor speedup and scaleup.

• Also note that load balancing optimizes for response time, but not
necessarily for other metrics such as throughput or energy consumption.

• There are two types of load balancing:
– Static load balancing happens before program execution at compile time. An

optimizer analyzes program and data to determine how to partition the work
into multiple tasks. It cannot react to runtime events, e.g., an unexpectedly
slow machine.

– Dynamic load balancing happens at runtime, i.e., during program execution. It
can react to changes in system state, but incurs additional overhead for
monitoring and reacting, e.g., the cost of transferring data and code from one
machine to another. Dynamic load balancing is easy for tasks with a simple
structure like Web search, but difficult for more complex problems such as
joins.

31

Amdahl’s Law
• How do we know if our program’s speedup is “good”? And how do we

determine how many machines to use for a task? Amdahl’s Law can help
answer both questions.

• Consider a job taking sequential time 1 and consisting of two sequential
tasks taking time t and 1-t, respectively. The first task must be completed
before the second can start.

• Assume we can perfectly parallelize the first task on n processors, but the
second is not parallelizable. Then the best possible parallel running time
we can hope for is t/n + (1 – t).

• Hence, we obtain a speedup of 1 / (1 – t(n-1)/n). To understand this
formula better, consider an example where the first task makes up 90% of
the total work, i.e., only 10% of the job cannot be parallelized. Now use
the formula to determine the speedup for different numbers of machines:
– t=0.9, n=2: speedup = 1.81
– t=0.9, n=10: speedup = 5.3
– t=0.9, n=100: speedup = 9.2
– As n approaches infinity, we obtain the maximal possible speedup for t=0.9 as

1/(1-0.9) = 10

32

Intuition Behind Amdahl’s Law

33

parallelizable not parallelizable1 worker

t 1-t

worker 1 not parallelizable2 workers

t/2 1-t

worker 2

w1 not parallelizable4 workers

t/4 1-t

w2

w4

w3

A More Realistic View

• Parallelization may introduce additional steps,
e.g., to communicate and combine the partial
results from different workers. For some
problems this can negate any positive effect of
parallelization.

34

w1 not parallelizable

t/4 1-t

w2

w4

w3

w1 not parallelizable

t/4 1-t

w2

w4

w3

extra step

Implications of Amdahl’s Law
• Parallelize the tasks that take the longest. They have the

greatest effect on speedup.
• Sequential steps inherently limit the maximum possible

speedup. If fraction x of the job is inherently sequential,
speedup can never exceed 1/x. Hence there is no point
running the job on an excessive number of processors.
– For x = 0.1, going from 10 to 100 machines improves speedup by

less than a factor of 2. Going from 100 to 1000 has no significant
effect on speedup.

• This kind of analysis matters in practice. When parallelizing
work, we usually introduce additional communication
between tasks, e.g., to transmit intermediate results. Such
communication can inherently limit speedup, no matter
how well the tasks themselves can be parallelized.

35

36

Let’s summarize what we have learned so
far.

Scalable Data Processing in a Nutshell

• In Big-Data processing, usually the same
computation needs to be applied to a lot of
data.

• We want to divide the work between multiple
processors.

• When dividing work, we often need to
combine intermediate results from multiple
processors.

• We want an environment that simplifies
writing such programs and executing them on
many processors.

37

This Is Not So Easy

• How can the work be partitioned without
communicating too much intermediate data?

• How do we start up and manage 1000s of
tasks for a job?

• How do we get large data sets to processors or
move processing to the data?

• How do we deal with slow responses and
failures?

38

Technical Problems
• Shared resources limit scalability due to the cost of

managing concurrent access, e.g., through locking.

• Shared-nothing and shared-disk architectures still need
communication for processes to share data and
coordinate with each other.

• Whenever multiple concurrent processes interact,
there is a potential for deadlocks and race conditions.

• It is difficult to reason about the behavior and
correctness of concurrent processes, especially when
failures are part of the model.

• There is an inherent tradeoff between consistency,
availability, and partition tolerance. We will discuss this
in a future module.

39

What Can We Do?
• As a programmer, work at the right level of abstraction:

– If the approach is too low-level, it becomes difficult to write
programs. For instance, just imagine dealing with locks on
shared data structures and managing communication between
machines in application code, especially when having to handle
failures.

– If the approach is too high-level, it could suffer from poor
performance if control for a crucial bottleneck is “abstracted
away.”

• One solution to this dilemma is to use a declarative style of
programming. A declarative program specifies WHAT needs
to be computed, not HOW this is done at the low level. A
well-known success story for declarative programming is
SQL for relational databases (RDBMS). An SQL query
specifies what the user is looking for and the database
optimizer automatically chooses an efficient
implementation to compute the desired result.

40

The MapReduce/Spark Way
• Use hardware that can scale out, not just up.

– MapReduce was initially designed for WSCs. Doubling the
number of commodity servers in a cluster is easy but
buying a double-sized SMP machine is not.

• Place the data near the processors.
– Moving too much data around tends to result in poor

performance. MapReduce therefore tries to assign tasks to
machines that already have the data on local disk. Spark
takes this even further, by considering data in memory.

• Avoid centralized resources that are likely bottlenecks.
– Ise them only for “lighter” tasks, e.g., job management.

• Read and write data sequentially in large chunks to
amortize latency. (More on this in another module.)

41

	Default Section
	Slide 1: Parallel Data-Processing Basics
	Slide 2: Key Learning Goals
	Slide 3: Key Learning Goals
	Slide 4

	Sum of Integers
	Slide 5: Sum Of Integers
	Slide 6: Sum Of Integers
	Slide 7: Sum of Integers Demo
	Slide 8: Sum of Integers Demo
	Slide 9: Sum of Integers Demo
	Slide 10: Sum of Integers Demo
	Slide 11: Sum of Integers with Pre-Partitioned Data
	Slide 12: Sum of Integers with Pre-Partitioned Data
	Slide 13: Lessons Learned
	Slide 14

	Word Count
	Slide 15: Word Count
	Slide 16: Word Count: Shared-Memory Version
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Concurrent Updates and Synchronization
	Slide 23: Problematic Concurrent Execution
	Slide 24: Preventing Concurrency Bugs
	Slide 25: Things Are More Complicated
	Slide 26: Lessons Learned
	Slide 27: Word Count: “Shared-Nothing” Version

	Performance Metrics
	Slide 28: Performance Metrics
	Slide 29: Speedup
	Slide 30: Scaleup
	Slide 31: Scalability Through Load Balancing
	Slide 32: Amdahl’s Law
	Slide 33: Intuition Behind Amdahl’s Law
	Slide 34: A More Realistic View
	Slide 35: Implications of Amdahl’s Law
	Slide 36

	The Big Picture
	Slide 37: Scalable Data Processing in a Nutshell
	Slide 38: This Is Not So Easy
	Slide 39: Technical Problems
	Slide 40: What Can We Do?
	Slide 41: The MapReduce/Spark Way

