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ABSTRACT

The Curry-Howard Isomorphism is the correspondence between the intuitionistic frag-

ment of classical logic and simply typed lambda calculus (λ→). It states that the type

signatures of functions in λ→ correspond to logical propositions, and function bodies are

equivalent to proofs of those propositions. In this survey we will explore the implications of

this isomorphism and how it scales to higher order logic and type systems, such as System

F and Dependent Types. Furthermore, we will look at how the Curry-Howard Isomorphism

is being put to use in modern programming languages and academic research.
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INTRODUCTION

The Curry-Howard Isomorphism states that there is a direct correspondence between intu-

itionistic logic and typed lambda calculus. More specifically, a type declaration given in a

programming language corresponds to a logical proposition and an implementation of that

type declaration is a proof of that proposition. Figure 1.1 shows the Haskell type signature

for const and the corresponding logical proposition via the Curry-Howard Isomorphism.

Since intuitionistic logic is a special subset of classical logic, providing a well-typed im-

plementation to the function’s type signature is the same as giving a logical proof. The

proof of const is const a b = a. The example in figure 1.1 is somewhat uninteresting

since it deals with first-order logic. However, as will be shown, the Curry-Howard Isomor-

phism holds for higher levels of logic and has led to many useful concepts in Programming

Languages research.

1.1 How is it useful?

One might ask how useful the Curry-Howard Isomorphism is? While it isn’t directly ap-

plicable to the average programmer, it is heavily used in research. Programming Language

researchers are coming up with crazy new programming languages that make use of Curry-

Howard Isomorphism. For example, Cayenne and Omega, two relatively new languages

use dependent types, which correspond to higher-order logic. The Curry-Howard Isomor-

phism enables Mathematicians and Computer Scientists to benefit from each other’s dis-

coveries. Computer scientists have traditionally researched reductions in lambda calculus,

const :: a -> b -> a

(a) Haskell type signature

Γ, α ` β
Γ ` α→ β → α

(b) Intuitionistic logical proposition

Figure 1.1: Corresponding const type signature and logical proposition
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while mathematicians have worked on normalizations in proof theory. Thus, a discovery in

one domain directly translates into the other domain [19].

The remainder of this survey will follow accordingly: Section 2 introduces intuitionistic

logic and how it differs from classical logic. Section 3 explores the second order type

system known as System F. Section 4 delves further into the intricacies of System F by way

of parametric polymorphism. Section 5 introduces type operators and dependent types.
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INTUITIONISTIC LOGIC

The Curry-Howard Isomorphism uses a fragment of classical logic called intuitionistic

logic. What differentiates intuitionistic logic from other forms of logic?

Simply stated, intuitionistic logic is designed such that proving a theorem is done by

constructing an example that satisfies that theorem from a set of givens. Intuitionistic logic

originates from mathematicians concerned about unsound applications of classical logic.

From Weyl 1946:

“According to his view and reading of history, classical logic was abstracted

from the mathematics of finite sets and their subsets. ... Forgetful of this lim-

ited origin, one afterwards mistook that logic for something above and prior to

all mathematics, and finally applied it, without justification, to the mathematics

of infinite sets.”

This is troubling indeed, so Mathematicians began studying the intuitionistic fragment

of classical logic, and in essence the distinction of this fragment is how it treats the infinite.

In classical logic, “the infinite is treated as actual or completed or extended or existen-

tial.” While in intuitionistic logic “the infinite is treated only as potential or becoming or

constructive.” [5]

What sort of implications does this have? There is no longer the classical notions of

a single Truth (>) or Falsity (⊥). Logical propositions are True if a construction can be

shown for them, that is if we can derive a construction from a rule system and a set of

knowns. False becomes the non-constructable or the absurd. Thus the law of excluded

middle and double negation elimination do not hold.

2.1 Rejection of double negation elimination

Negation of a proposition, ¬P , in intuitionistic logic can be thought of as P → ⊥, that is

every construction of P is turned into a non-existent object. Thus to prove double negation
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in intuitionistic logic, we must show that P → ¬¬P and ¬¬P → P . The proof of the first,

which should be expanded to P → ((P → ⊥)→ ⊥) is as follows :

Given a proof of P , here is a proof of P → ((P → ⊥) → ⊥): Take a proof

P → ⊥. It is a method to translate proofs of P into proofs of ⊥. Since we

have a proof of P , we can use this method to obtain a proof of ⊥. [19]

Going the other way is where we encounter problems. ((P → ⊥)→ ⊥)→ P doesn’t hold

because we don’t have a construction of P .

2.2 Rejection of the law of excluded middle

According to [8]

“Brouwer [1908] observed that LEM was abstracted from finite situations, then

extended without justification to statements about infinite collections. For ex-

ample, if x, y range over the natural numbers 0, 1, 2, . . . and B(x) abbreviates

the property (there is a y > x such that both y and y + 2 are prime numbers),

then we have no general method for deciding whether B(x) is true or false for

arbitrary x, so ∀x.(B(x) ∨ ¬B(x)) cannot be asserted in the present state of

our knowledge. And if A abbreviates the statement ∀x.B(x), then (A ∨ ¬A)

cannot be asserted because neither A nor ¬A has yet been proved.”
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SYSTEM F

System F is a second-order typed lambda calculus that allows universal quantification over

types. The Curry-Howard Isomorphism extends to System F, providing a direct correspon-

dence to second order intuitionistic logic. It was discovered independently by the Logician

Jean-Yves Girard and Computer Scientist John C. Reynolds. Girard developed System F

as a proof notation for second-order logic, while Reynolds invented System F when trying

to build a type system for a polymorphic programming language. [19]

3.1 A Quick Intuition on System F

The practical idea of System F is to add polymorphism to typed lambda calculus. For

instance if we want to define the untyped function composition = λf.λg.λx.f (g x) in

λ→, we would potentially need to define an infinite number of functions in order to satisfy

all possible types:

compositionInt = λf : Int→ Int. λg : Int→ Int. λx : Int. f (g x)

compositionBool = λf : Bool → Bool. λg : Bool → Bool. λx : Bool. f (g x)

. . .

To circumvent this, we add universal quantification (∀) over types to the calculi and call

it λ2. The composition function now looks like this:

composition = λX. λf : X → X. λg : X → X. λx : X. f (g x)

The idea being that the type is abstracted out of the term, allowing for type variables to

later be applied to it: composition[Int] → [X 7→ Int]composition. More formally, type

abstractions and applications are added to the syntax and reduction rules of λ→ (see pg.

343 of [10] for the rules).

Adding universal quantification over types means that we’re now working with second

order logic, which we will explore now.
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3.2 Fun with Quantifiers

First-order logic only uses variables that range over individuals (elements of the domain of

discourse) [23]. For instance, ∀x ∈ S . (x+ 1 > 12) where S = {1, 2, . . . , 10}

In second-order logic variables can also range over sets of individuals. As in it al-

lows for quantification over not only individuals (terms in System F), but also over pred-

icates (types in System F). For example: ∀x ∈ Odds(S) . ∃y ∈ Evens(S) . (x + y =

11) where S = {1, 2, . . . , 10}.

We must remember that we are still playing with intuitionistic logic, so it is worth

exploring what quantifiers really mean in this context. [19] does a good job of explaining

the difference between quantification in classical and intuitionistic logics:

“The intended meaning of ∀pϕ(p) is that ϕ(p) holds for all possible meanings

of p. The meaning of ∃pϕ(p) is that ϕ(p) holds for some meaning of p. Clas-

sically, there are just two possible such meanings: the two truth values. Thus,

the statement ∀pϕ(p) is classically equivalent to ϕ(>) ∧ ϕ(⊥), and ∃pϕ(p) is

equivalent to ϕ(>) ∨ ϕ(⊥). . . . In the intuitionistic logic, there is no finite set

of truth-values, and the propositional quantifiers should be regarded as ranging

over some infinite space of predicates.”

3.3 Correspondence in the Girard-Reynolds Isomorphism

According to Wadler in [9], in addition to System F, Girard proved a Representation Theo-

rem: every function on natural numbers that can be proved total in second-order predicate

calculus can be represented in System F. While Reynolds proved an Abstraction Theorem:

every term in System F satisfies a suitable notion of logical relation.

Girard’s Representation Theorem results in a projection from second order logic into

System F, while Reynolds’ Abstraction Theorem results in an embedding of System F
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into second order logic. Quoting Wadler loosely from [9]: Second order logic is larger

than System F’s image under the Curry-Howard isomorphism. Second order logic con-

tains quantifiers over individuals, types, and predicates, while System F only allows for

quantification over types. Girard’s projection from second order logic onto System F is

similar to the Curry-Howard isomorphism, in that it takes propositions to types and proofs

to terms, but differs in that it erases information about individuals. This mapping preserves

reductions, hence it is no mere surjection but a true epimorphism.

Thus the Reynolds embedding followed by the Girard projection is the identity. While

Girard’s projection followed by Reynolds’ embedding is not since the projection discards

all information about individuals.

3.4 System F in use

System F enables us to reason about programs with polymorphism. This power comes with

a downside, type inference becomes undecidable. To mitigate this many modern languages

use weaker forms of polymorphism, such as Rank-2 Polymorphism, in which type inference

is decidable. In addition to formalizing polymorphism, System F has yielded interesting

results in language security ([22]) and lead to the notion of free theorems.
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PARAMETRICITY

With universal quantification (∀) over types, System F allows us to reason about polymor-

phic functions. System F’s polymorphism is called parametric polymorphism, as compared

to the ad-hoc polymorphism of method overloading in most imperative languages. The gen-

erality of this parametric polymorphism has much to offer.

4.1 Theorems for Free

In “Theorems for Free!” [21], Wadler refines some ideas on parametric polymorphism

presented by Reynolds in [13]. The overarching idea is that parametrically polymorphic

functions behave uniformly across all types. With this uniformity we can derive certain

simple theorems from only the type signature.

Take, for instance, this polymorphic function type f : ∀A.A → A. If we exclude the

ability to do runtime type analysis, there is no way to do operations that distinguish between

types. Hence, the only possible function body that could inhabit f is the identity function

f = λA . λx : A . x

Extending this idea to functions that operate over lists, a function type such as g :

∀A.[A] → [A] can only operate over the elements provided to it. Wadler, making use

of this, shows that polymorphic functions in System F commute with all functions that

operate on more specific types. For instance, given function signatures f : ∀A.[A] → [A]

and g : Char → Int, Wadler shows that map g ◦ fChar ≡ fInt ◦map g.

Figure 4.1 is a continuation of this example in Haskell using the ExistentialQuantifica-

tion extension. We let f be the reverse function, and g be ord, which takes characters to

their ascii values.
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{-# LANGUAGE ExistentialQuantification #-}

f :: forall a . [a] -> [a]
f = reverse

g :: Char -> Int
g = ord

> map g . f $ [’a’..’f’]
[102,101,100,99,98,97]

> f . map g $ [’a’..’f’]
[102,101,100,99,98,97]

Figure 4.1: Example demonstrating a free theorem

4.2 Pffft, is this useful?

While trivial looking, these simple commuting theorems are actually useful. They enable

us to add function commutativity to our arsenal of algebraic manipulations when we are

reasoning about programs [21]. In addition, [18] states that the reordering of function

applications can lead to improved efficiency of code by enabling additional transformations

and analysis.

Can we scale the idea of free theorems to more complicated languages, such as those

in use today? It turns out that there is a lot of recent research making use of free theorems.

4.3 Parametricity with Haskell

You may have noticed by now that languages like Haskell have runtime type analysis, as

well as imprecise error semantics, both of which prevent us from deriving free theorems

from polymorphic functions. By imprecise error semantics, we mean that the error raised

by a program is not guaranteed to be the same exception that would be encountered by

a straight forward sequential execution [4]. This means that when making use of free

theorems in Haskell, there is no guarantee that new errors will won’t be introduced.
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-- produces ***Exception: divide by zero
l = [[i] | i <- [1..(div 1 0)]]

-- can produce *** Exception: Prelude:tail: empty list
tail

-- can only propagate errors
null
takeWhile

-- only propagates errors
map tail

-- can possibly produce empty list or divide by zero errors
(takeWhile (null . tail) l)

-- by parametric free theorems the following should hold:
map tail (takeWhile (null . tail) l) ==
takeWhile null (map tail l)

-- but this could produce 2 different errors
map tail (takeWhile (null . tail) l)

-- while this could only produce 1 error
takeWhile null (map tail l)

Figure 4.2: Example of Haskell’s imprecise error semantics

Let us look at the example in Figure 4.2, which is derived from [18]. This example

shows that Haskell’s non-deterministic error semantics might introduce new errors when

free theorems are used. [18] is able to formulate a way to use free theorems in the presence

of imprecise errors.

As for runtime type analysis, the essence of the problem is that polymorphic functions

can treat inputs of different types non-uniformly. Hence there is no straight forward way to

derive free theorems from polymorphic functions that analyze types, such as the function f ′

from [20], which is shown in Figure 4.3. The authors of [20] remedy this problem by using

representation types. Languages such as λR use term representation of types to simulate

runtime type analysis [2]. The idea is to have terms represent types, so if term e represents
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-- Without runtime type analysis functions of type a -> a
-- can only be inhabited by the identity
f :: forall a . a -> a
f x = x

-- With runtime type analysis anything is possible!
-- NOTE: the folloing function is psuedo code
f’ :: forall a . a -> a
f’ x = if (typeOf x) == (typeOf 1)

then succ x
else x

g :: forall a . a -> Int
g _ = 42

-- The free theorem for f and g:
f . g == g . f

-- No free theorem for f’ and g since:
f’ . g /= g . f’

Figure 4.3: Free theorems aren’t possible in the presence of runtime type analysis

type t, then term e has type R t.

The introduction of GADTs (generalized algebraic datatypes) has enabled representa-

tion types to be used with parametricity. This is best seen in Figure 4.4, which is an example

from [20] that uses Haskell’s GADT language extension. In Figure 4.4 the general free the-

orem (g[τ ] r) ◦ h ∼= h ◦ (g[τ ] r) doesn’t hold because of Rint, yet if we are analyzing Rany

it holds: (g[τ ] (Rany[τ ])) ◦ h ∼= h ◦ (g[τ ] (Rany[τ ])) [20]

The work in [20] starts to lay the theoretical foundations needed to start reasoning about

complex languages such as Haskell in terms of parametricity.

4.4 Additional Research into Parametricity

We’ve shown how the generality provided by parametric polymorphism is useful for de-

riving simple theorems over functions. While novel, recent research has been working to
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-- representation type of Int, Func, and Any
data R a where

Rint :: R Int
Rarrow :: R a -> R b -> R (a -> b)
Rany :: R a

-- runtime type analysis using representation types
g :: (R a) -> a -> a
g t y = case t of

Rint -> succ y
Rany -> y

> Rint 1
2

> Rany ’a’
’a’

> Rint ’a’

***Couldn’t match expected type ‘Int’ with actual type ‘Char’

Figure 4.4: Representation Types in Haskell using GADTs

make parametricity more applicable to modern languages such as Haskell. In addition to

the research presented in this section, there are a number of other interesting projects in

this area. “Generalizing Parametricity Using Information-flow” [22] looks to provide secu-

rity and confidentiality to module writers utilizing parametric polymorphism in the face of

runtime type analysis. “A Logic for Parametric Polymorphism” [12] introduces a logic that

formalizes parametric polymorphism and follows in the steps of the Logic for Computable

Functions, taking the first steps towards creating a full fledged logic for polymorphic pro-

grams.
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DEPENDENT TYPES

We’ve covered second order lambda calculus and its connection to second order logic, but

how much more expressive can we make type systems? It turns out there are two other

extensions to λ→ that we can make, ω and P . λω formalizes type operators, enabling the

creation of Algebraic Data Types. Exploring ADT’s generalization, Generalized Algebraic

Data Types, will then carry us into Dependent Types (λP or λΠ).

5.1 Dependent Types in a Nutshell

So far we have seen terms that depend on terms (lambda abstractions), terms that depend on

types (polymorphism and simple type abstractions), and soon we’ll see types that depend

on types (type operators). This leaves one additional possibility, types that depend on

terms, or dependent types. Having types that depend on terms lets us move a lot of a

program’s computation into the type checker, yielding crazy possibilities: lists that carry

their length in their type [7], an AVL tree implementation whose type guarantees certain

balanced properties [15], a sorting algorithms whose type proves well-ordered output [1],

and so on. But first let’s explore the λω system.

5.2 Type Operators

Suppose you want to create a new type from existing types. The lambda systems we’ve

explored so far don’t support this expressive of type level operations. System F lets us use

simple type applications and abstractions to model polymorphism, but it doesn’t allow for

the creation of new types. For instance, let’s try constructing Haskell’s Either type using

an ADT: data Either a b = Left a | Right b. On the left is the type, where

any two types can be substituted for a and b. On the right are the two terms that inhabit

that type. Formally, the type looks like Either Y Z = ∀X.(Y → X) → (Z → X) → X

or λY.λZ.∀X.(Y → X) → (Z → X) → X , where Y and Z are type parameters and X
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is the new type produced. Either is a type that depends on other types. If we add some

simple type application and abstraction rules we are good to go, right?

Not really. We now have two types of types, proper types with arity of 0, as well as

partially applied types, or type families, with arity greater than 0. Using type families

in type signatures doesn’t make sense, so we need to ensure that our type signatures are

themselves well typed. So enters the notion of kinds.

5.3 Kinds

What is the type of a type? Let us denote it as a kind (∗). The kind of a proper type is

denoted Int :: ∗. Things get interesting now that we have type operators. The type con-

structor Either is of the kind ∗ → ∗ → ∗. And of course you can curry type constructors:

Either Int :: ∗ → ∗,

Going deeper, what is the type of a kind? According to [6]:

“As the kind of ∗ is itself ∗, we can encode a variation of Russell’s paradox,

known as Girards paradox. This allows us to create an inhabitant of any type.

To fix this, the standard solution is to introduce an infinite hierarchy of types:

the type of ∗ is ∗1, the type of ∗1 is ∗2 , and so forth.”

So basically it is turtles all the way down...

5.4 Generalized Algebraic Data Types (GADT)

ADTs are great, but we might ask, can we squeeze more expressiveness out them? The

answer is yes, and it comes in the form of GADTs. The key distinction between ADTs

and GADTs is that pattern matching causes type refinement. Take, for example, the ADT

in Figure 5.1 (a). The construction of a Lit1 term in Figure 5.1(b) doesn’t lead to the

type refinement of a into Int in the type Term′ a. Lit2 does refine a to Char but this
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data Term’ a = Lit1 Int
| Lit2 a
| Succ’ Int

(a)

> :t Lit1 1
Lit1 1 :: Term’ a

> :t Lit2 ’a’
Lit2 ’a’ :: Term’ Char

(b)

Figure 5.1: datatype exemplifying ADT type refinement

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a
Pair :: Term a -> Term b -> Term (a,b)

(a)
> :t Lit 1
Lit 1 :: Term Int

> :t IsZero $ Lit 1
IsZero $ Lit 1 :: Term Bool

(b)

Figure 5.2: Demonstrating the expressiveness possible with GADTs

type refinement is too restrictive. Let’s remedy this by using the GADT from [3], Term a

(Figure 5.2 (a)), which can be used to define a well-typed eval function. a is refined to Int

in 5.2(b), and some expressiveness is gained since a is allowed to be refined to Bool in

IsZero.

5.5 Faking dependent types with GADT

In some instances we can use GADTs to fake dependent typing. Since GADTs separate

values from types, that is, terms aren’t allowed in type operations, we have to use singleton

types that represent values. This is the approach taken by Sheard et. al. in the design of

Ωmega [14].

Take, for instance, this series of ADTs:
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-- Phantom Types
data Zero
data Succ n

type One = Succ Zero
type Two = Succ One
type Three = Succ Two
type Four = Succ Three

data Vec n a where
Nil :: (Show a) => Vec Zero a
Cons :: (Show a) => a -> Vec n a -> Vec (Succ n) a

instance Show (Vec n a) where show = showVec

showVec :: Vec n a -> String
showVec Nil = ""
showVec (Cons x xs) = show x ++ " " ++ showVec xs

foo = Cons 3 (Cons 2 (Cons 1 Nil))

> show foo
"3 2 1"

Figure 5.3: Mimicking dependent typing with GADTs

data V ec0 α = V ec0

data V ec1 α = V ec1 α

data V ec2 α = V ec2 α α

data V ec3 α = V ec3 α α α

These ADTs are trying to capture length information of the vector. There is a pattern

here, and it would be nice to create an abstraction for it, such as: ∀α :: ∗.∀n :: Nat.V ec n α,

where n represents the length, and α the data [6]. Using GADTs we can create types to

represent the natural numbers and successfully achieve the abstraction above. See Figure

5.3 for an instance of this that has been modified from [7].

While this is nice, things can get cumbersome when you have to create parallels be-

tween the type and term worlds.
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5.6 Pi Types

In literature, the Π type represents the dependent product type, and is a generalization of

λ in simply typed lambda calculus. It abstracts arrows, accepting type-level arguments, as

well as term-level arguments. Hence S → T is the same as Πx : S . T , where x does not

appear free in T .

According to [11], 1st order predicate logic is isomorphic to dependent types. A predi-

cate B over type A is viewed as a type value function over A, and hence universal quantifi-

cation is the same as dependent product: ∀x : A.B(x) is equivalent to Πx : A.B(x)

5.7 Challenges with Type Checking

Dependent typing lets us move a lot of computation to the type checking phase, giving us

the ability to construct more expressive proofs via the Curry-Howard Isomorphism. Unfor-

tunately, we can’t get all this proof-carrying code without incurring a cost.

The main problem is that now there are terms in our types, so to check type equality we

need to evaluate our types to a normal form. If we aren’t careful and encode too powerful of

a language into our types the result is a non-terminating type checker. Modern dependently

type languages remedy this problem differently: “Ωmega type-level programs are written

as term rewriting systems, that have to terminate; Epigram and Coq programs are written

in total languages - every program terminates; in Agda, programs are interrupted when

they get stuck in a loop - soundness is regained through a separate termination check (I

think). In practice, non-termination doesn’t seem to be a big problem.” [17]. Where total

languages are those that provably terminate, and hence are not Turing-Complete, while

partial languages are Turing-Complete.

Language designers must tread lightly. Total languages are restrictive and require a

certain approach to problems, while partial languages require tricks to ensure termination
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and soundness of type checking.

5.8 Are Dependent Types the Way to the Future?

There is a lot of stigma against dependently typed languages:

“Most Haskell programmers are hesitant to program with dependent types. It

is said that type checking becomes undecidable; the phase distinction between

type checking and evaluation is lost; the type checker will always loop; and

that dependent types are really, really hard.

The same Haskell programmers, however, are perfectly happy to program with

a ghastly hodgepodge of generalized algebraic data types, multi-parameter

type classes with functional dependencies, impredicative higher-ranked types,

and even data kinds. They will go to great lengths to avoid dependent types.”

[6]

At the same time, a lot of smart people are pushing dependent types. For instance,

[16] sees a dependently typed, pay-as-you-go approach to language verification as the next

logical step in the progression of languages.

What is certain is that there is a long ways to go, in terms of both programmer intellect

and language development, before we start seeing the adoption of these mind bending type

systems.
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CONCLUSION

The Curry-Howard Isomorphism relates intiutionistic logic with programming language

type systems. We’ve explored the ideas behind intiutionistic logic and how it differs from

the notions of classical logic. With System F, we got a feel for type systems that allow for

quantification over predicates, or types. In addition to polymorphism, quantification over

predicates enabled us to derive certain theorems about our programs for free. We concluded

with a study of dependent types, which move much of the program’s computation into the

type level, yielding proof-carrying code. Throughout the survey special attention was paid

to demonstrating how these ideas have found their way into modern programming language

implementations such as Haskell. The Curry-Howard Isomorphism has yielded rich results

in both programming language theory and implementation. We must wonder, what else

does it have to offer?
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