Analyzing Android Applications
with Abstract Interpretation

SERN [
Qg’?.g UG N,l%\
S 7

N 5
2 “ 1 v:‘;l‘:':as § "<
iy

Phillip Mates

Motivation

We aim to use abstract interpretation to provide a static
analysis for verifying fine-grained application permissions on
the Android platform.

The current Android permission model offers coarse, per-
application specifications. This enables an app's sub-programs
to abuse all the permissions available to the greater host
application:

® An advertisement library could access location APIs in a GPS
App.

® A malicious user-plugin interpreter embedded in an
application could allow arbitrary API usage at run-time.

Background

Dalvik bytecode is a register-based variant of the Java
bytecode used by the Android platform.

(new-instance vO0 java/lang/StringBuilder)
(invoke-virtual {v0 v1} java/lang/StringBuilder/append [object java/lang/String])

Abstract interpretation is a sound, terminating
approximation of a program's concrete interpretation.

CESK machine is an abstract state machine consisting of
Control, Environment, Store and Kontinuation components.

s € 2= Stmts X FramePointer x Store X Kont x Time
fp € FramePointer an infinte set

o € Store = Addr — ¢, Value

k € Kont = fnk(Stmts, fp, a.) | halt

a € Addr = RegAddr | HeapAddr | KontAddr

a, € RegAddr = (fp, register)

ap, a, are elements in an infinte set

t € Time an infinite set

alloc : Y — FramePointer
tick : X2 — Taime

Time-stamped CESK* machine state space

Con) T

Kont Value

Y

FramePointer Stmts Addr

Infinite

Finite

Time-stamped CESK* state space dependency graph

Control flow graph of Fibonacci

THEU

UNIVERSITY
OFUTAH

Method

1. Build a concrete CESK interpreter for Dalvik bytecode.

2. Turn concrete into abstract by removing infinite structures

Abstract Domains: abstract value spaces as finite lattices.
We use a flat domains: 'string, 'number, etc.

Addresses: restrict address allocation to be finite, make
the store map addresses to sets of values, and use joins in
place of strong updates.

Frame Pointer & Time: let time be the last k statements
and use the current time for frame pointer allocation.

3. Compute a sound approximation of visited states using this
abstracted CESK interpreter. Perform a reachability analysis
on the set of visited states.

Results

(method (attrs public static) fib(int)int

» parameter[0] : v2 (int)

(const/4 vO 1)

(if-gt v2 vO 18c4)

(label 18c2)

(return v2)

(label 18c4)

(add-int/lit8 vO v2 255)

(invoke-static {v0} org/ucombinator/FibonacciApp/fib int)
(move-result vO)

(add-int/lit8 v1 v2 254)

(Invoke-static {v1} org/ucombinator/FibonacciApp/fib int)
(move-result v1)

(add-int v2 vO v1)

(goto 18c2)

-.gueeuuso @ Ul

I
08 0-0-8-0-0-0

Abstract 1-CFA visited states graph of Fibonacci

