
Analyzing Sandboxed Interpreters with Abstract Interpretation

Phillip Mates
University of Utah

phillip.mates@utah.edu
50 S. Central Campus Drive, Room 3190, SLC, UT 84112

Advisor: Matthew Might
Undergraduate

Extended Abstract
0.1 Problem and Motivation:
The Android platform provides a coarse-grained per-application
permission policy. While this approach works in general, applica-
tions that contain multiple subprograms would benefit from more
fine-grained permission guarantees. For instance, an advertisement-
serving GPS app requires both Internet and Location permissions,
but provides no guarantee that your location won’t be leaked. An-
other example is when applications use embedded interpreters to
enable execution of user-defined plugins. Interpreting code at run-
time in an application that’s granted myriad permissions has the
potential to introduce information leaks. This makes it important to
be able to prove that an embedded interpreter cannot make use of
certain permissions available to its host application.

To ensure that interpreters are properly sandboxed, we imple-
ment an abstract interpreter for the Dalvik bytecode, capable of
soundly approximating an Android application’s state space. The
motivations for this research are two-fold: We would like to pro-
vide a useful tool for statically verifying that an embedded inter-
preter does not abuse the permissions granted to its host applica-
tions. Secondly, this is a solid step toward verifying the absence
of malware and conducting deep, interprocedural optimization of
object-oriented code.

0.2 Background and Related Work:
Permissions granted to an Android application are defined in a
Manifest File and set at installation. These permissions specify
the application’s ability to access sensitive system calls and other
applications’ interfaces. For an in-depth description of the Android
permission model, we refer the reader to [1].

The inflexibility of this model has lead researchers to develop
numerous refinements, both dynamic [5] [2] and static [4] [3]. Dy-
namic approaches require additional CPU services on the mobile
device to monitor data flow [2] or re-route permission requests
through a gatekeeper application [5]. Static approaches make use
of Java static analysis suites to uncover potential permission viola-
tions and require either the original Java source code [4] or decom-
pilation [3].

Our approach also looks to statically enforce permission prop-
erties but only requires the packaged application, since we target
the Dalvik bytecode.

0.3 Approach and Uniqueness:
We have implemented two interpreters: the Lambda interpreter
and the Lambad interpreter, both embedded in identical host An-
droid applications. The Lambda interpreter operates on a vanilla λ-
calculus language that is extended with numbers and simple arith-
metic operations. The Lambad interpreter is identical but secretly

extends its environment to include a publishLocation function
freely available in the hosting application. To show that code in-
terpreted by the Lambad can introduce privacy leaks while the
Lambda interpreter cannot, we’ve developed an abstract interpreter
to soundly approximate states reachable by each embedded inter-
preter.

Our abstract interpreter operates over Dalvik bytecode and
was built using methodologies described in [7]. We incrementally
tweaked a concrete CESK machine until the infinite structures and
values were made finite. The abstract domain for primitives and
objects is flat and we employ an abstract garbage collector [6] for
improved precision and run-time complexity. The result is a highly
adjustable k-CFA style analyzer capable of soundly approximating
Android applications.

For simplicity, we currently do not handle listeners, intents,
or threads. Library function calls are simulated by returning an
abstract object of the given function’s return type.

This approach to abstract interpretation is novel because it takes
techniques such as abstract garbage collection [6] or tunable inter-
preters [7], which have previously been implemented on simple toy
languages, and applies them to an industrial strength language.

0.4 Results and Contributions:
Our research is still in its early stages. We’ve implemented an
abstract interpreter that is capable of analyzing small segments
of Android code, such as the recursive Fibonacci function seen
in Fig 1. We are very close to being able to analyze the Lambda
and Lambad embedded interpreters, but our analysis is still too
imprecise.

While a tool able to prove an embedded interpreter is incapable
of malicious activity will be useful, we see this as the first of many
applications for abstract interpretation in the Android development
environment. There are still numerous theoretical results in abstract
interpretation waiting to be put to use in an industrial setting.

Project source code available at:
https://github.com/phillipm/dalvik-abstract-interpreter

Interactive version of Fig 1:
http://eng.utah.edu/~mates/files/fib/

0

3
6

2
2

3
1

6
2

3
5

1 8
3

4
3

8
5

7
5

2

5
7

8
9

3

7
8

2
6

4

7
6

5

9

5
9

6 6
1

2
1

2
8

5
0

7

4
2

4
8

6
5

1
0

8 4
5

1
5

1
9

3
3

5
8

3
2

1
1

2
5

1
8

3
4

1
2

4
1

1
3

6
6

5
4

4
6

1
4

7
1

2
0

7
21
6

1
7

8
4

4
0

8
8

8
6

2
9

3
0

4
4

6
7

2
3

9
1

2
4

6
8

9
0

5
5

9
3

2
74

9

8
2

3
7

5
2

7
0

3
8

8
7

7
4

8
0

3
9

6
3

8
1

7
9

4
7

5
1

7
3

5
3

5
6

6
0

6
9

6
4

7
7

9
2

Figure 1. A state space graph of a Fibonacci function

1 2012/7/13



References
[1] W. Enck, M. Ongtang, and P. Mcdaniel. Mitigating android software

misuse before it happens. Technical report, 2008.
[2] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and

A. N. Sheth. Taintdroid: an information-flow tracking system for re-
altime privacy monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
OSDI’10, pages 1–6, Berkeley, CA, USA, 2010. USENIX Associ-
ation. URL http://dl.acm.org/citation.cfm?id=1924943.
1924971.

[3] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of
android application security. In Proceedings of the 20th USENIX
conference on Security, SEC’11, pages 21–21, Berkeley, CA, USA,
2011. USENIX Association. URL http://dl.acm.org/citation.
cfm?id=2028067.2028088.

[4] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. Scandroid :
Automated security certification of android applications. Read,
10, 2010. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.148.2511&rep=rep1&type=pdf.

[5] J. Jeon, K. K. Micinski, J. A. Vaughan, N. Reddy, Y. Zhu, J. S. Fos-
ter, and T. Millstein. Dr. Android and Mr. Hide: Fine-grained security
policies on unmodified Android. Technical Report CS-TR-5006, De-
partment of Computer Science, University of Maryland, College Park,
December 2011.

[6] M. Might and O. Shivers. Improving flow analyses via ΓCFA: Abstract
garbage collection and counting. In Proceedings of the 11th ACM
International Conference on Functional Programming (ICFP 2006),
pages 13–25, Portland, Oregon, September 2006.

[7] D. Van Horn and M. Might. Abstracting abstract machines. In
Proceedings of the 15th ACM SIGPLAN international conference
on Functional programming, ICFP ’10, pages 51–62, New York,
NY, USA, 2010. ACM. ISBN 978-1-60558-794-3. doi: 10.
1145/1863543.1863553. URL http://doi.acm.org/10.1145/
1863543.1863553.

2 2012/7/13


