A Kripke Logical Relation for Linear Functions:

The Story of a Free Theorem in the Presence of Non-termination

Phillip Mates & Amal Ahmed Northeastern University

Programmers shouldn't have to think about compilers

Fully abstract compiler

Fully abstract compiler

preserves equivalence $\mathbf{e}_1 \approx_S^{ctx} \mathbf{e}_2 : \tau \implies \mathbf{e}_1 \approx_T^{ctx} \mathbf{e}_2 : \tau^+$

Fully abstract compiler

reflects equivalence

 $\mathbf{e}_1 \approx_S^{ctx} \mathbf{e}_2 : \tau \longleftarrow \mathbf{e}_1 \approx_T^{ctx} \mathbf{e}_2 : \tau^+$

Verifying a CPS translation fully abstract

Outline

Finding a fully abstract CPS translation w/ $\,\mu\,\alpha.\tau$

- Standard CPS 关
- Polymorphic CPS (volv in a pure setting)
- Linear + polymorphic CPS

Proving full-abstraction

Towards a semantic model for linearly-treated functions

Standard CPS isn't fully abstract

$$\mathbf{e}: \tau \iff \mathbf{e}: (\tau^+ \to \mathrm{ans}) \to \mathrm{ans}$$

$$\operatorname{int}^{+} = \operatorname{int}^{+} ((\tau_{1} \to \tau_{2})^{+} = \tau_{1}^{+} \to ((\tau_{2}^{+} \to \operatorname{ans}) \to \operatorname{ans})$$

 $v_1 = \lambda(f, g) \cdot f \; 0; g \; 0; 0$ $v_2 = \lambda(f, g) \cdot g \; 0; f \; 0; 0$

Standard CPS isn't fully abstract

Standard CPS isn't fully abstract $e: \tau \rightsquigarrow e: (\tau^+ \rightarrow ans) \rightarrow ans$ $f,g:int \rightarrow int$ $v_1 = \lambda(f,g) \cdot f \ 0; g \ 0; 0$ $v_2 = \lambda(f,g) \cdot g \ 0; f \ 0; 0$

 $\mathbf{v}_1 = \lambda(\mathbf{f}, \mathbf{g}, \mathbf{k} : \mathsf{int} \to \operatorname{ans}) \cdot (\mathbf{f} \ \mathbf{0})(\lambda_- (\mathbf{g} \ \mathbf{0})(\lambda_- \mathbf{k} \ \mathbf{0}))$ $\mathbf{v}_2 = \lambda(\mathbf{f}, \mathbf{g}, \mathbf{k} : \mathsf{int} \to \operatorname{ans}) \cdot (\mathbf{g} \ \mathbf{0})(\lambda_- (\mathbf{f} \ \mathbf{0})(\lambda_- \mathbf{k} \ \mathbf{0}))$

Standard CPS isn't fully abstract

$$\mathbf{e}: \tau \iff \mathbf{e}: (\tau^+ \to \operatorname{ans}) \to \operatorname{ans}$$

 $f, g: \operatorname{int} \to \operatorname{int}$
 $\mathbf{v}_1 = \lambda(\mathbf{f}, \mathbf{g}) \cdot \mathbf{f} \ \mathbf{0}; \mathbf{g} \ \mathbf{0}; \mathbf{0}$
 $\mathbf{v}_2 = \lambda(\mathbf{f}, \mathbf{g}) \cdot \mathbf{g} \ \mathbf{0}; \mathbf{f} \ \mathbf{0}; \mathbf{0}$
 $\mathbf{f}, g: \operatorname{int} \to ((\operatorname{int} \to \operatorname{ans}) \to \operatorname{ans})$
 $\mathbf{v}_1 = \lambda(\mathbf{f}, \mathbf{g}, \mathbf{k}: \operatorname{int} \to \operatorname{ans}) \cdot (\mathbf{f} \ \mathbf{0})(\lambda_-.(\mathbf{g} \ \mathbf{0})(\lambda_-.\mathbf{k} \ \mathbf{0}))$
 $\mathbf{v}_2 = \lambda(\mathbf{f}, \mathbf{g}, \mathbf{k}: \operatorname{int} \to \operatorname{ans}) \cdot (\mathbf{g} \ \mathbf{0})(\lambda_-.(\mathbf{f} \ \mathbf{0})(\lambda_-.\mathbf{k} \ \mathbf{0}))$

$$\mathbf{C} = \lambda \mathbf{k} . [\cdot] (\lambda_{-} . \lambda_{-} . (\mathbf{k} \ \mathbf{1}), \lambda_{-} . \lambda_{-} . (\mathbf{k} \ \mathbf{2}), \mathbf{k})$$

 $\mathbf{v}_1 = \lambda(\mathbf{f}, \mathbf{g}, \mathbf{k} : \mathsf{int} \to \operatorname{ans}) \cdot (\mathbf{f} \ \mathbf{0})(\lambda_- (\mathbf{g} \ \mathbf{0})(\lambda_- \mathbf{k} \ \mathbf{0}))$ $\mathbf{v}_2 = \lambda(\mathbf{f}, \mathbf{g}, \mathbf{k} : \mathsf{int} \to \operatorname{ans}) \cdot (\mathbf{g} \ \mathbf{0})(\lambda_- (\mathbf{f} \ \mathbf{0})(\lambda_- \mathbf{k} \ \mathbf{0}))$

$$\mathbf{C} = \lambda \mathbf{k} \cdot [\cdot] (\lambda_{-} \cdot \lambda_{-} \cdot (\mathbf{k} \ \mathbf{1}), \lambda_{-} \cdot \lambda_{-} \cdot (\mathbf{k} \ \mathbf{2}), \mathbf{k})$$
$$\mathbf{C} [\mathbf{v_1}] id \Downarrow \mathbf{1}$$

 $\mathbf{v}_1 = \lambda(\mathbf{f}, \mathbf{g}, \mathbf{k} : \mathsf{int} \to \operatorname{ans}) \cdot (\mathbf{f} \ \mathbf{0})(\lambda_- \cdot (\mathbf{g} \ \mathbf{0})(\lambda_- \cdot \mathbf{k} \ \mathbf{0}))$ $\mathbf{v}_2 = \lambda(\mathbf{f}, \mathbf{g}, \mathbf{k} : \mathsf{int} \to \operatorname{ans}) \cdot (\mathbf{g} \ \mathbf{0})(\lambda_- \cdot (\mathbf{f} \ \mathbf{0})(\lambda_- \cdot \mathbf{k} \ \mathbf{0}))$

$$\mathbf{C} = \lambda \mathbf{k} \cdot [\cdot] (\lambda_{-} \cdot \lambda_{-} \cdot (\mathbf{k} \ \mathbf{1}), \lambda_{-} \cdot \lambda_{-} \cdot (\mathbf{k} \ \mathbf{2}), \mathbf{k})$$
$$\mathbf{C} [\mathbf{v_1}] id \Downarrow \mathbf{1} \qquad \mathbf{C} [\mathbf{v_2}] id \Downarrow \mathbf{2}$$

 $\mathbf{v}_1 = \lambda(\mathbf{f}, \mathbf{g}, \mathbf{k} : \mathsf{int} \to \operatorname{ans}) \cdot (\mathbf{f} \ \mathbf{0})(\lambda_- (\mathbf{g} \ \mathbf{0})(\lambda_- \mathbf{k} \ \mathbf{0}))$ $\mathbf{v}_2 = \lambda(\mathbf{f}, \mathbf{g}, \mathbf{k} : \mathsf{int} \to \operatorname{ans}) \cdot (\mathbf{g} \ \mathbf{0})(\lambda_- (\mathbf{f} \ \mathbf{0})(\lambda_- \mathbf{k} \ \mathbf{0}))$

How can we modify the standard CPS translation to be fully abstract?

Standard CPS

 $e: \tau \rightsquigarrow e: (\tau^+ \rightarrow ans) \rightarrow ans$ int⁺ = int $(\tau_1 \rightarrow \tau_2)^+ = \tau_1^+ \rightarrow ((\tau_2^+ \rightarrow ans) \rightarrow ans)$

Ahmed & Blume's polymorphic CPS $\mathbf{e}: \tau \iff \mathbf{e}: \forall \alpha.(\tau^+ \rightarrow \alpha) \rightarrow \alpha$ $\mathbf{int}^+ = \mathbf{int}$ $(\tau_1 \rightarrow \tau_2)^+ = \tau_1^+ \rightarrow (\forall \alpha.(\tau_2^+ \rightarrow \alpha) \rightarrow \alpha)$

Standard CPS

 $e: \tau \rightsquigarrow e: (\tau^+ \rightarrow ans) \rightarrow ans$ int⁺ = int $(\tau_1 \rightarrow \tau_2)^+ = \tau_1^+ \rightarrow ((\tau_2^+ \rightarrow ans) \rightarrow ans)$

Ahmed & Blume's polymorphic CPS

$$\mathbf{e}: \tau \iff \mathbf{e}: \forall \alpha. (\tau^+ \rightarrow \alpha) \rightarrow \alpha$$

 $\mathbf{int}^+ = \mathbf{int}$
 $(\tau_1 \rightarrow \tau_2)^+ = \tau_1^+ \rightarrow (\forall \alpha. (\tau_2^+ \rightarrow \alpha) \rightarrow \alpha)$

What happens when we add non-termination?

Standard CPS

$$e: \tau \rightsquigarrow e: (\tau^+ \rightarrow ans) \rightarrow ans$$

int⁺ = int
 $(\tau_1 \rightarrow \tau_2)^+ = \tau_1^+ \rightarrow ((\tau_2^+ \rightarrow ans) \rightarrow ans)$

Ahmed & Blume's polymorphic CPS

$$\mathbf{e}: \tau \iff \mathbf{e}: \forall \alpha. (\tau^+ \rightarrow \alpha) \rightarrow \alpha$$

 $\operatorname{int}^+ = \operatorname{int}$
 $(\tau_1 \rightarrow \tau_2)^+ = \tau_1^+ \rightarrow (\forall \alpha. (\tau_2^+ \rightarrow \alpha) \rightarrow \alpha)$

Linear + polymorphic CPS $\mathbf{e}: \tau \rightsquigarrow \mathbf{e}: \forall \alpha.(\tau^+ \rightarrow \alpha) \multimap \alpha$ $\mathbf{int}^+ = \mathbf{int}$ $(\tau_1 \rightarrow \tau_2)^+ = \tau_1^+ \rightarrow (\forall \alpha.(\tau_2^+ \rightarrow \alpha) \multimap \alpha)$

Outline

Finding a fully abstract CPS translation w/ $\mu\,\alpha.\tau$

Proving full-abstraction

- Polymorphic CPS proof
- Scaling to a non-terminating setting using linearity

Towards a semantic model for linearly-treated functions

Proving polymorphic CPS fully abstract

Ahmed + Blume's approach relies on a **type isomorphism**:

$$\tau \cong \forall \alpha . (\tau \to \alpha) \to \alpha$$

Proving polymorphic CPS fully abstract

The type isomorphism relies on a **parametric condition**:

$$f: \forall \alpha. (\tau \to \alpha) \to \alpha$$
$$k: \tau \to \tau_k$$
$$id: \tau \to \tau$$

 $f [\tau_k] k \approx^{ctx} k (f [\tau] id) : \tau_k$

 $f [\tau_k] k \stackrel{?}{\approx} tx k (f [\tau] id) : \tau_k$

$$f: \forall \alpha. (\text{int} \to \alpha) \to \alpha$$

$$f = \lambda[\alpha](x_k : \text{int} \to \alpha).(x_k \ 0); (x_k \ 1)$$

$$k: \text{int} \to \tau_k$$

$$k = \lambda(n: \text{int}).if0 \ n \ then \ \Omega \ else \ n$$

$$?$$

$$f [\tau_k] k \dot{\approx}^{ctx} k (f [int] id) : \tau_k$$

$$f: \forall \alpha. (\operatorname{int} \to \alpha) \to \alpha$$

$$f = \lambda[\alpha](x_k : \operatorname{int} \to \alpha).(x_k \ 0); (x_k \ 1)$$

$$k: \operatorname{int} \to \tau_k$$

$$k = \lambda(n : \operatorname{int}).if0 \ n \ then \ \Omega \ else \ n$$

$$f \ [\tau_k] \ k \quad \stackrel{?}{\approx} ctx \quad k \ (f \ [\operatorname{int}] \ id) : \tau_k$$

$$\uparrow$$

Ahmed & Blume's polymorphic CPS $\mathbf{e}: \tau \iff \mathbf{e}: \forall \alpha.(\tau^+ \rightarrow \alpha) \rightarrow \alpha$

Ahmed & Blume's polymorphic CPS $\mathbf{e}: \tau \iff \mathbf{e}: \forall \alpha.(\tau^+ \rightarrow \alpha) \rightarrow \alpha$

$\tau \cong \forall \alpha. (\tau \to \alpha) \to \alpha$

Ahmed & Blume's polymorphic CPS $\mathbf{e}: \tau \iff \mathbf{e}: \forall \alpha.(\tau^+ \rightarrow \alpha) \rightarrow \alpha$

$\tau \cong \forall \alpha. (\tau \to \alpha) \to \alpha$

Ahmed & Blume's polymorphic CPS $\mathbf{e}: \tau \iff \mathbf{e}: \forall \alpha.(\tau^+ \rightarrow \alpha) \rightarrow \alpha$

$\tau \cong \forall \alpha. (\tau \to \alpha) \to \alpha$

Linear + polymorphic CPS $\mathbf{e}: \tau \rightsquigarrow \mathbf{e}: \forall \alpha.(\tau^+ \rightarrow \alpha) \multimap \alpha$

Ahmed & Blume's polymorphic CPS $\mathbf{e}: \tau \iff \mathbf{e}: \forall \alpha.(\tau^+ \rightarrow \alpha) \rightarrow \alpha$

$\tau \cong \forall \alpha. (\tau \to \alpha) \to \alpha$

Linear + polymorphic CPS $\mathbf{e}: \tau \iff \mathbf{e}: \forall \alpha.(\tau^+ \rightarrow \alpha) \multimap \alpha$ requires

$$\tau \cong \forall \alpha. (\tau \to \alpha) \multimap \alpha$$

Ahmed & Blume's polymorphic CPS $\mathbf{e}: \tau \iff \mathbf{e}: \forall \alpha.(\tau^+ \rightarrow \alpha) \rightarrow \alpha$

requires $\tau \cong \forall \alpha. (\tau \to \alpha) \to \alpha$

Linear + polymorphic CPS $\mathbf{e}: \tau \rightsquigarrow \mathbf{e}: \forall \alpha.(\tau^+ \rightarrow \alpha) \multimap \alpha$ requires $\tau \cong \forall \alpha.(\tau \rightarrow \alpha) \multimap \alpha$

A "linear" parametric condition in presence of non-termination

$$f: \forall \alpha. (\tau \to \alpha) \longrightarrow \alpha$$

$$k: \tau \to \tau_k$$

$$id: \tau \to \tau$$

 $f [\tau_k] k \approx^{ctx} k (f [\tau] id) : \tau_k$

How do you prove this new parametric condition, which uses continuations linearly?

Free theorem: use a logical relation

 $e_1 \approx^{log} e_2 : \tau =$ $e_1 \precsim^{log} e_2 : \tau \land e_2 \precsim^{log} e_1 : \tau$

Free theorem: use a logical relation

$$e_1 \approx^{log} e_2 : \tau =$$

$$e_1 \precsim^{log} e_2 : \tau \land e_2 \precsim^{log} e_1 : \tau$$

$$e_{1} \precsim^{log} e_{2} : \tau = \\ \forall v_{1} \cdot e_{1} \Downarrow v_{1} \Longrightarrow \\ \exists v_{2} \cdot e_{2} \Downarrow v_{2} \land v_{1} \precsim^{log} v_{2} : \tau$$
Free theorem: use a logical relation

$$f[\tau_k] k \approx^{log} k (f[\tau] id) : \tau_k$$
$$\exists v_2 \cdot e_2 \Downarrow v_2 \land v_1 \precsim^{log} v_2 : \tau$$

Free theorem: use a logical relation

$$f[\tau_k] k \approx^{log} k (f[\tau] id) : \tau_k$$

$$f[\tau_k] k \precsim^{log} k (f[\tau] id) : \tau_k \checkmark$$

$$\exists v_2 \cdot e_2 \Downarrow v_2 \land v_1 \precsim^{log} v_2 : \tau$$

Free theorem: use a logical relation

$$f [\tau_k] k \approx^{log} k (f [\tau] id) : \tau_k$$

$$f [\tau_k] k \precsim^{log} k (f [\tau] id) : \tau_k \checkmark$$

$$k (f [\tau] id) \precsim^{log} f [\tau_k] k : \tau_k ?$$

$$\exists v_2 \cdot e_2 \Downarrow v_2 \land v_1 \precsim^{log} v_2 : \tau$$

know $f[\tau] id \mapsto^* v_{id}$

know $f[\tau] id \mapsto^* v_{id}$ $k v_{id} \mapsto^* v_1$

know $f[\tau] id \mapsto^* v_{id}$ $k v_{id} \mapsto^* v_1$

show $f[\tau_k] \ k \mapsto^* v_2$

know $f[\tau] id \mapsto^* v_{id}$ $k v_{id} \mapsto^* v_1$

show $f[\tau_k] k \mapsto^* v_2$ $v_1 \precsim^{\log} v_2$

know:
$$f \preceq^{log} f : \forall \alpha . (\tau \to \alpha) \multimap \alpha$$

know:
$$f \preceq^{log} f : \forall \alpha . (\tau \to \alpha) \multimap \alpha$$

show:
$$id \precsim^{log} k : \tau \to \alpha$$

Proving
$$k$$
 $(f [\tau] id) \preceq^{log} f [\tau_k] k : \tau_k$

know
$$f[\tau] id \mapsto^* v_{id}$$
 show $f[\tau_k] k \mapsto^* v_2$
 $k v_{id} \mapsto^* v_1$ $v_1 \precsim^{\log} v_2$

know:
$$f \precsim^{\log} f : \forall \alpha . (\tau \to \alpha) \multimap \alpha$$

show:
$$id \preceq^{log} k : \tau \to \alpha \mid \alpha \mapsto (\tau, \tau_k, R)$$

know $v_1 \precsim^{log} v_2 : \tau$

know $v_1 \precsim^{log} v_2 : \tau$

know *id* $v_1 \Downarrow$

know $v_1 \precsim^{log} v_2 : \tau$

know $id v_1 \Downarrow$

show $k v_2 \Downarrow$

know $v_1 \precsim^{log} v_2 : \tau$

know $id v_1 \Downarrow$

Proving
$$id \preceq^{log} k : \tau \to \alpha$$

know $v_1 \precsim^{log} v_2 : \tau$ know $id \ v_1 \Downarrow$ show $k \ v_2 \Downarrow$

$$f: \forall \alpha. (\tau \to \alpha) \multimap \alpha$$
$$k \ (f \ [\tau] \ id) \ \precsim^{log} f \ [\tau_k] \ k : \tau_k$$

Proving
$$id \preceq^{log} k : \tau \to \alpha$$

know $v_1 \precsim^{log} v_2 : \tau$ know $id \ v_1 \Downarrow$ show $k \ v_2 \Downarrow$

$$f: \forall \alpha. (\tau \to \alpha) \multimap \alpha$$
$$k \ (f \ [\tau] \ id) \ \precsim^{log} f \ [\tau_k] \ k : \tau_k$$
$$(f \ [\tau] \ id) \longmapsto^* v_{id}$$

Outline

Finding a fully abstract CPS translation w/ $\,\mu\,\alpha.\tau$

Proving full-abstraction

Towards a semantic model for linearly-treated functions

Function semantics: case I

$$f: (\tau_1 \to \tau_2) \to \tau_3 \qquad g, g': \tau_1 \to \tau_2$$

 $f g \precsim^{log} f g': \tau_3$

$$g \precsim^{log} g' : \tau_1 \to \tau_2$$
 ?

Function semantics: case I

$$f: (\tau_1 \to \tau_2) \to \tau_3 \qquad g, g': \ \tau_1 \to \tau_2$$

 $f \ g \precsim^{log} f \ g': \tau_3$

Function semantics: case 2

$$f: (\tau_1 \multimap \tau_2) \to \tau_3 \qquad g, g': \tau_1 \multimap \tau_2$$

 $f g \precsim^{log} f g': \tau_3$

$$g\precsim^{log}g': \underbrace{\tau_1 \multimap \tau_2}_{\text{unrestricted}} \qquad \begin{array}{c} \text{for all possible inputs \&}\\ \text{treat inputs linearly} \end{array}$$

Function semantics: case 3

$$f: (\tau_1 \rightarrow \tau_2) \multimap \tau_3 \qquad g, g': \tau_1 \rightarrow \tau_2$$

 $f g \precsim^{log} f g': \tau_3$

Function semantics: case 4

$$f: (\tau_1 \multimap \tau_2) \multimap \tau_3 \qquad g, g': \tau_1 \multimap \tau_2$$

 $f g \precsim^{log} f g': \tau_3$

$$g \precsim^{log} g' : \underbrace{\tau_1 \multimap \tau_2}$$

linearly used

for particular inputs & treat input linearly

$$id \precsim^{log} k : \tau \to \alpha$$

$$id \precsim^{log} k : \tau \to \alpha$$

$$f \precsim^{log} f : \forall \alpha. (\tau \to \alpha) \multimap \alpha$$

$$W.\mathcal{I} =$$

$$id \precsim^{log} k : \tau \to \alpha$$

$$f \precsim^{log} f : \forall \alpha. (\tau \to \alpha) \multimap \alpha$$

$$W'.\mathcal{I} =$$

$$id \precsim^{log} k : \tau \to \alpha$$

$$f \precsim^{log} f : \forall \alpha. (\tau \to \alpha) \multimap \alpha$$

$$W'.\mathcal{I} = \square \square P$$

$$id \precsim^{log} k : \tau \to \alpha$$

$$v_1 \precsim^{log} v_2 : \tau$$
 where $P(v_1, v_2)$
 $P(v_1, v_2)$ iff $v_1 = v_{id}$

$$W'.\mathcal{I} = \boxed{ \dots } P$$

Linearity by default

$\tau \rightarrow \tau' = !\tau \multimap \tau'$

 $f_1 \precsim^{log}_W f_2 : \tau \multimap \tau' =$

 $f_1 \preceq^{\log}_W f_2 : \tau \multimap \tau' =$

$$f_1 \precsim_W^{log} f_2 : \tau \multimap \tau' =$$

$\forall v_1, v_2 . v_1 \precsim_{W'}^{log} v_2 : \tau \land P_f(v_1, v_2) \implies$ $f_1 v_1 \precsim_{W'}^{log} f_2 v_2 : \tau'$

$$W.\mathcal{I} = P_f$$

 $f_1 \preceq^{\log}_W f_2 : \tau \multimap \tau' =$

 $\forall v_1, v_2 . v_1 \precsim_{W'}^{log} v_2 : \tau \land P_f(v_1, v_2) \implies$ $f_1 v_1 \precsim_{W'}^{log} f_2 v_2 : \tau'$

$$f_1 \precsim_W^{log} f_2 : \tau \multimap \tau' =$$

$$\forall v_1, v_2 . v_1 \precsim_{W'}^{log} v_2 : \tau \land P_f(v_1, v_2) \Longrightarrow$$

$$f_1 v_1 \precsim_{W'}^{log} f_2 v_2 : \tau'$$

Kripke logical relation for linearity

 $f_1 \precsim^{\log}_W f_2 : \tau \multimap \tau' =$

 $\forall v_1, v_2 . v_1 \precsim_{W'}^{log} v_2 : \tau \land P_f(v_1, v_2) \implies$ $f_1 v_1 \precsim_{W'}^{log} f_2 v_2 : \tau'$

 $!g_1 \precsim^{\log}_W !g_2 : !(\tau \multimap \tau') \stackrel{\text{def}}{=} g_1 \precsim^{\log}_W g_2 : \tau \multimap \tau'$

Kripke logical relation for linearity

 $f_1 \precsim^{\log}_W f_2 : \tau \multimap \tau' =$

 $\forall v_1, v_2 . v_1 \precsim_{W'}^{log} v_2 : \tau \land P_f(v_1, v_2) \implies$ $f_1 v_1 \precsim_{W'}^{log} f_2 v_2 : \tau'$

 $!g_1 \precsim^{\log}_W !g_2 : !(\tau \multimap \tau') \stackrel{\text{def}}{=} g_1 \precsim^{\log}_W g_2 : \tau \multimap \tau'$

Kripke logical relation for linearity

$$f_1 \precsim^{\log}_W f_2 : \tau \multimap \tau' =$$

$$\forall v_1, v_2 . v_1 \precsim_{W'}^{log} v_2 : \tau \land P_f(v_1, v_2) \implies$$
$$f_1 v_1 \precsim_{W'}^{log} f_2 v_2 : \tau'$$

$$W.\mathcal{I} =$$

 $!g_1 \precsim^{\log}_W !g_2 : !(\tau \multimap \tau') \stackrel{\text{def}}{=} g_1 \precsim^{\log}_W g_2 : \tau \multimap \tau'$

$$P_{\top}(v_1, v_2) = \text{true}$$
⁷⁵

Related Work

Fully abstract CPS for PCF [Laird]

• Uses game semantics proof

Logical relation for linear free theorems [Zhao et. al.]

Open logical relation to ensure preservation of linear resources

TT logical relation for Lily [Bierman et. al.]

Conclusion

Fully abstract CPS in a language with rec. types using **operational** proof techniques

requires $\tau \cong \forall \alpha. (\tau \to \alpha) \multimap \alpha$ which requires $f [\tau_k] k \approx^{ctx} k (f [\tau] id) : \tau_k$

Conclusion

Fully abstract CPS in a language with rec. types using **operational** proof techniques

requires $\tau \cong \forall \alpha. (\tau \to \alpha) \multimap \alpha$ which requires $f [\tau_k] k \approx^{ctx} k (f [\tau] id) : \tau_k$

Kripke logical relation that can distinguish

Why polymorphism: ST boundary semantics

 $\mathbf{v}: \tau_1^+ \to (\forall \alpha . (\tau_2^+ \to \alpha) \to \alpha)$

 $\tau_1 \rightarrow \tau_2 ST \mathbf{v} \longmapsto$ $\lambda \mathbf{x} : \tau_1 \cdot \tau_2 \mathcal{ST}(\text{let } \mathbf{z} = (\mathcal{TS}^{\tau_1} \mathbf{x}))$ in $(\mathbf{v} \mathbf{z})[\tau_2^+] id$