## DIFFERENTIALLY PRIVATE DECOMPOSABLE SUBMODULAR MAXIMIZATION

# Anamay Chaturvedi<sup>†</sup>, Huy Lê Nguyễn<sup>†</sup>, Lydia Zakynthinou<sup>†</sup>

<sup>†</sup>Northeastern University



#### Problem

We consider the problem of differentially private decomposable submodular maximization.

• Submodular functions  $f: 2^V \to \mathbb{R}_+$  have diminishing returns:

$$S \subset T, u \not\in T \Rightarrow f(S \cup \{u\}) - f(S) \ge f(T \cup \{u\}) - f(T).$$

Decomposable submodular:

$$f_D(S) = \sum_{\mathsf{agent}_p \in D} f_p(S)$$

- Want to privately maximize decomposable submodular functions subject to a matroid constraint.
- Central model of differential privacy.
- Motivation: Posed by Papadimitriou, Schapira, and Singer 2008, derived from notion of social welfare maximization.
- Applications: exemplar-based clustering image summarization recommender systems – document and corpus summarization

#### Approach

Continuous greedy methods of Vondrák 2008 and Feldman, Naor, and Schwartz 2011.

• Maximise multilinear relaxation of  $f_D$ 

$$F_D(x) = \sum_{S \subset 2^V} f_D(S) \prod_{i \in S} x_i \prod_{i \notin S} (1 - x_i).$$

- T rounds. Iteratively pick feasible i maximising F(x) on increasing  $x_i$  by a 1/T step (monotone  $f_D$ );  $(1-x_i)/T$  step (non-monotone  $f_D$ ); .
- x in convex hull of feasible sets. Swap-rounding of Chekuri, Vondrak, and Zenklusen 2010 returns feasible solution with good utility.

### Highlights

- Greedy picks via exponential mechanism following Gupta et al. 2010 get loss in privacy independent of number of rounds.
- Estimate  $F_D$  by sampling and sharing randomness between rounds this avoids additional utility loss in each round.
- Directly replacing each round of continuous greedy by the private greedy does not work.
- Additive error  $\sim O\left(rac{r}{\epsilon}\log nr \cdot \log rac{1}{\delta}
  ight)$  close to known lower bound of  $O\left(rac{r}{\epsilon}\log n/r
  ight)$  .

#### Results

• Monotone rank r matroid-constrained case we are  $(\epsilon, \delta)$ -private using T rounds with expected utility

$$(1-1/e - O(1/T))f( exttt{OPT}) - O\left(rac{rT}{\epsilon}\log nrT \cdot \log rac{1}{\delta}
ight)$$

Analogous non-monotone case:

$$(1/e - O(1/T))f( exttt{OPT}) - O\left(rac{rT}{\epsilon}\log nrT \cdot \log rac{1}{\delta}
ight)$$

Related work:

- Work by Gupta et al. 2010 and Mitrovic et al. 2017 used a discrete greedy algorithm. By adapting continuous methods improve multiplicative factor from (1/2) (Mitrovic et al. 2017) to (1-1/e-O(1/T)) in the monotone case.
- Rafiey and Yoshida 2020 also adapt continuous greedy methods but obtain significantly higher additive error of  $nr^7 \log n/\epsilon^3$ .

### **Experimental results**

We replicate the **Uber location selection** experiment of Mitrovic et al. 2017.

- Given a set of pick-up locations in Manhattan, the goal is to pick locations close to pick-ups while private with respect to pick-ups.
- Scaled  $\ell_1$  distance between location l and pick-up p:

$$M(l,p) = \frac{|l_x - p_x| - |l_y - p_y|}{C} \le 1.$$

• Utility of locations S evaluated on pick-ups D:

$$f_D(S) = \sum_{p \in D} \left( 1 - \min_{l \in S} M(l, p) \right) = |D| - \sum_{p \in D} \min_{l \in S} M(l, p). \tag{1}$$

 $f_D$  is monotone decompasable submodular function. We conduct two experiments:

- a rank constrained location selection for 100 agents at a time. Comparison with more general algorithm of Mitrovic et al. 2017 that uses the composition laws of privacy instead of the Gupta privacy analysis.
- simple 3-element partition matroid instance measuring per-capita utility versus dataset size. Comparison with discrete method for matroids of Mitrovic et al. 2017



