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Problem

We consider the problem of differentially private decomposable submod-
ular maximization.
• Submodular functions f : 2V → R+ have diminishing returns:

S ⊂ T, u 6∈ T ⇒ f(S ∪ {u})− f(S) ≥ f(T ∪ {u})− f(T ).

• Decomposable submodular:

fD(S) =
∑

agentp∈D
fp(S)

• Want to privately maximize decomposable submodular functions sub-
ject to a matroid constraint.

• Central model of differential privacy.

• Motivation:Posed by Papadimitriou, Schapira, and Singer 2008, derived
from notion of social welfare maximization.

• Applications: – exemplar-based clustering – image summarization
– recommender systems – document and corpus summarization

Approach

Continuous greedy methods of Vondrák 2008 and Feldman, Naor, and
Schwartz 2011.

• Maximise multilinear relaxation of fD
FD(x) =

∑
S⊂2V

fD(S)
∏
i∈S

xi
∏
i 6∈S

(1− xi).

•T rounds. Iteratively pick feasible i maximising F (x) on increasing xi by
a 1/T step (monotone fD); (1− xi)/T step (non-monotone fD); .

• x in convex hull of feasible sets. Swap-rounding of Chekuri, Vondrak,
and Zenklusen 2010 returns feasible solution with good utility.

Highlights

• Greedy picks via exponential mechanism - following Gupta et al. 2010 get
loss in privacy independent of number of rounds.

• Estimate FD by sampling and sharing randomness between rounds -
this avoids additional utility loss in each round.

• Directly replacing each round of continuous greedy by the private greedy
does not work.

• Additive error ∼ O
(
r
ε
lognr · log 1

δ

)
close to known lower bound of

O
(
r
ε
logn/r

)
.

Results

• Monotone rank r matroid-constrained case we are (ε, δ)-private using
T rounds with expected utility

(1− 1/e− O(1/T ))f(OPT)− O
(
rT

ε
lognrT · log

1

δ

)
• Analogous non-monotone case:

(1/e− O(1/T ))f(OPT)− O
(
rT

ε
lognrT · log

1

δ

)
Related work:

• Work by Gupta et al. 2010 and Mitrovic et al. 2017 used a discrete greedy
algorithm. By adapting continuous methods improve multiplicative factor
from (1/2) (Mitrovic et al. 2017) to (1− 1/e−O(1/T ) in the monotone
case.

• Rafiey and Yoshida 2020 also adapt continuous greedy methods but obtain
significantly higher additive error of nr7 logn/ε3.

Experimental results

We replicate the Uber location selection experiment of Mitrovic et al. 2017.

• Given a set of pick-up locations in Manhattan, the goal is to pick locations
close to pick-ups while private with respect to pick-ups.

• Scaled `1 distance between location l and pick-up p:

M(l, p) =
|lx − px| − |ly − py|

C
≤ 1.

• Utility of locations S evaluated on pick-ups D:

fD(S) =
∑
p∈D

(
1−min

l∈S
M(l, p)

)
= |D| −

∑
p∈D

min
l∈S

M(l, p). (1)

fD is monotone decompasable submodular function. We conduct two experi-
ments:

• a rank constrained location selection for 100 agents at a time. Comparison
with more general algorithm of Mitrovic et al. 2017 that uses the composition
laws of privacy instead of the Gupta privacy analysis.

• simple 3-element partition matroid instance measuring per-capita utility ver-
sus dataset size. Comparison with discrete method for matroids of Mitrovic
et al. 2017
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