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We consider the problem of differentially private decomposable submod-
ular maximization.
» Submodular functions f : 2" — R, have diminishing returns:

SCT,ugT= f(SU{u}) — £(S) > £(T U{u}) — F(T).

 Decomposable submodular:

fp(S) = Z fp(S)
* Want to privately maximize decomposable submodular functions sub-
ject to a matroid constraint.
- Central model of differential privacy.

* Motivation:Posed by Papadimitriou, Schapira, and Singer 2008, derived
from notion of social welfare maximization.

* Applications: — exemplar-based clustering — image summarization
— recommender systems — document and corpus summarization

Approach

Continuous greedy methods of Vondrak 2008 and Feldman, Naor, and
Schwartz 2011.

* Maximise multilinear relaxation of fp

Fp(z)= > fo(S) ][ ] (1 — ).
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« T rounds. lteratively pick feasible : maximising F'(x) on increasing x; by
a 1/T step (monotone fp); (1 — x;)/T step (non-monotone fp); .

« x in convex hull of feasible sets. Swap-rounding of Chekuri, Vondrak,
and Zenklusen 2010 returns feasible solution with good utility.
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Experimental results

» Greedy picks via exponential mechanism - following Gupta et al. 2010 get
loss in privacy independent of number of rounds.

« Estimate Fp by sampling and sharing randomness between rounds -
this avoids additional utility loss in each round.

* Directly replacing each round of continuous greedy by the private greedy
does not work.

- Additive error ~ O (“lognr -log;) close to known lower bound of
O (Xlogn/r).

- Monotone rank » matroid-constrained case we are (e, d)-private using
T" rounds with expected utility

(1—1/e—0O(1/T))f(0PT) — O (g log nrT - log %)

* Analogous non-monotone case:
T 1
(1/e — O(1/T))f(0PT) — O ("“— log nrT - log g>
€

Related work:

* Work by Gupta et al. 2010 and Mitrovic et al. 2017 used a discrete greedy
algorithm. By adapting continuous methods improve multiplicative factor
from (1/2) (Mitrovic et al. 2017)to (1 —1/e — O(1/T) inthe monotone
case.

 Rafiey and Yoshida 2020 also adapt continuous greedy methods but obtain
significantly higher additive error of nr” log n /€.

We replicate the Uber location selection experiment of Mitrovic et al. 2017.

 Given a set of pick-up locations in Manhattan, the goal is to pick locations
close to pick-ups while private with respect to pick-ups.

« Scaled ¢, distance between location [ and pick-up p:

by — pz| — |1y —
M(l,p):| p‘C‘y py’§1

» Utility of locations S evaluated on pick-ups D:

o) =3 (1= mind(0.p)) = D] - Yomindrltp). (1)
peD - peD -

fp I1s monotone decompasable submodular function. We conduct two experi-
ments:

* a rank constrained location selection for 100 agents at a time. Comparison
with more general algorithm of Mitrovic et al. 2017 that uses the composition
laws of privacy instead of the Gupta privacy analysis.

* simple 3-element partition matroid instance measuring per-capita utility ver-
sus dataset size. Comparison with discrete method for matroids of Mitrovic
et al. 2017

Utility versus rank, e = 0.1 Utility versus number of data, e = 0.1
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