

PAC-Bayes, MAC-Bayes, and Conditional Mutual Information:

Fast rate bounds that handle general VC classes

Peter Grünwald, Thomas Steinke, Lydia Zakynthinou CWI & Leiden University, Google Research (Brain Team), Northeastern University

Generalization bounds

- Sample i.i.d dataset Z of size n from unknown distribution \mathcal{D} over \mathcal{Z} .
- Loss function $\ell: \Delta(\mathcal{F}) \times \mathcal{Z} \to [0,1]$ indicates quality of (randomized) $f \in \mathcal{F}$.

True:
$$L(A|Z; \mathcal{D}) = \mathbb{E}_{f \sim A|Z, Z' \sim \mathcal{D}}[\ell(f; Z')]$$

Empirical:
$$L(A|Z;Z) = \mathbb{E}_{f \sim A|Z} \left[\frac{1}{n} \sum_{i=1}^{n} \ell(f;Z_i) \right]$$

Standard PAC-Bayes/MI bounds

[McAllester 1998, 2003], [Audibert 2004], [Catoni 2007]

$$L(A|Z;\mathcal{D}) - L(A|Z;Z) \leq_{\text{whp \& } \mathbb{E}}$$

$$\sqrt{L(A|Z;Z) \cdot \frac{\text{KL}(A|Z \parallel \pi)}{n}}$$

independent of Z

[Russo and Zhou 2016], [Xu and Raginsky 2017]

$$\mathbb{E}_{Z}[L(A|Z;\mathcal{D}) - L(A|Z;Z)] \le \sqrt{\frac{2 \cdot I(A|Z;Z)}{n}}$$

Directions of improvement over standard

1. Do not capture fast rates: $\sim \sqrt{\frac{\text{COMPLEXITY}}{n}}$

Rewriting PAC-Bayes excess risk bounds:

$$R(A|Z;Z) + \left(\frac{\mathrm{KL}(A|Z \parallel \pi)}{n}\right)^{\gamma}$$
, where $\gamma \in \left[\frac{1}{2},1\right]$.

[Mhammedi, Grünwald, Guedj 2019] extend PAC-Bayes to capture fast rates when a Bernstein condition holds (e.g. random label noise, bounded squared error loss).

2. Do not handle general VC classes: bound can be infinite for cases where Uniform Convergence implies generalization [Bassily, Moran, Nachum, Shafer, Yehudayoff 2018], [Livni and Moran 2020]

Conditional Mutual Information:

[Steinke and Zakynthinou 2020] extend MI to handle general VC classes, proposing $CMI_{\mathcal{D}}(A)$. Subsequently [Hellström and Durisi 2020] extend to PAC-Bayes.

Conditional, faster rate PAC-Bayes/MI bound

Theorem. If a γ -Bernstein condition holds, for arbitrary almost exchangeable data-dependent priors $\pi | \langle Z_0, Z_1 \rangle$

$$L(A(Z_0); \mathcal{D}) - L(A(Z_0); Z_0) \leq \left(2 - \frac{1}{\gamma}\right) \cdot R(A(Z_0); Z_0) + \left(\frac{\mathbb{E}_{Z_1}[\mathrm{KL}(A(Z_0) \parallel \pi | \langle Z_0, Z_1 \rangle)]}{n}\right)^{\gamma}$$

Real dataset
$$Z_0 \sim \mathcal{D}^n$$
 Ghost dataset $Z_1 \sim \mathcal{D}^n$ $\langle Z_0, Z_1 \rangle = \{Z_{2,0}, Z_{1,1}\}$ \vdots $\{Z_{n,0}, Z_{n,1}\}$

Claim (VC+New bound). For any class \mathcal{F} with VCdim=d, $\exists A$ (ERM with a consistency property) and prior π such that for any \mathcal{D} , $\mathrm{KL}(A|Z_0 \parallel \pi|\langle Z_0, Z_1 \rangle) \leq d \log 2n$

Main Technical Lemma. Let $S \sim \mathrm{Ber}(1/2)$, $\bar{S} = 1 - S$, and $|r_0|$, $|r_1| \leq 1$. Then for all $\eta < 1/4$, $r_{\bar{S}} - r_S \trianglelefteq \mathcal{C} \cdot \eta \cdot r_{\bar{S}}^2$

Future directions

- •Extend to unbounded (e.g. subgaussian) losses.
- •Extend to *observable* bound (now might need to know γ , f^* , \mathcal{D})