Decentralized Network Design

PhD Thesis Proposal Laura Poplawski 2/4/09

Results Mentioned are from...

- Nikolaos Laoutaris, Laura J. Poplawski, Rajmohan Rajaraman, Ravi Sundaram, Shang-Hua Teng. Bounded Budget Connection (BBC) Games or How to Make Friends and Influence People, on a Budget. In PODC '08, pages 165–174, 2008.
- Nikolaos Laoutaris, Laura J. Poplawski, Rajmohan Rajaraman, Ravi Sundaram, Shang-Hua Teng. Bounded Budget Connection (BBC) Games or How to make friends and influence people, on a budget. arXiv:0806.1727v1 [cs.GT]
 - arxiv:0806.1727V1[cs.G1]
- Laura J. Poplawski, Rajmohan Rajaraman, Ravi Sundaram, Shang-Hua Teng. Preference Games and Personalized Equilibria, with Applications to Fractional BGP. arXiv:0812.0598v2 [cs.GT]

Decentralization

Decentralization

Techniques

- Algorithmic Game Theory
- First define a game:
 - Players = Nodes in the network
 - Actions = Connections they can make
 - Costs/Payoffs = How close am I to the other nodes?
- Then, study pure Nash equilibria
 - Do they always exist? Can we find them? What do they look like?
 - Only studying pure Nash equilibria

Techniques

Simplest Game

- Players = Nodes in the network
- Actions = Connections they can make
 - One edge to any other node
- Costs/Payoffs = How close am I to the other nodes?
 - Average hop-count distance to all other nodes

Simplest Game

- Players = Nodes in the network
- Actions = Connections they can make
 - One edge to any other node
- Costs/Payoffs = How close am I to the other nodes?
 - Average hop-count distance to all other nodes

- Players = Nodes in the network
- Actions = Connections they can make
 - Two edges to any other node
- Costs/Payoffs = How close am I to the other nodes?
 - Average hop-count distance to all other nodes

Average utility = $O(\sqrt{n})$

Bounded Budget Connection (BBC) Games

- Players = Nodes in the network
- Actions = Connections they can make
 - Budget to spent on edges
 - Cost for each edge
- Costs/Payoffs = How close am I to the other nodes?
 - Length on each edge
 - Affinity for each other node
 - Average affinity-weighted shortest path distance to all other nodes

The Model

- Number of nodes
- Affinity for each directed pair of nodes
- Link cost for each directed pair of nodes
- Budget of allowed link cost per node, k(v)
- Length metric from the perspective of each node
- Each node v spends $\leq k(v)$ on links to minimize

\(\sum_{\text{other nodes}} \) (affinity * shortest path distance)

or disconnection penalty if no path exists.

Related Work on Network Connection Games

- Cost per edge built into utility instead of a budget built into actions.
 - Fabrikant, Luthra, Maneva, Papadimitriou, and Shenker. On a network creation game. PODC, 2003.
 - Albers, Eilts, Even-Dar, Mansour, and Roditty. On Nash equilibria for a network creation game. SODA, 2006.
 - Demaine, Hajiaghavi, and Mahini. The Price of Anarchy in Network Creation Games. PODC, 2007.
 - Halevi and Mansour. A Network Creation Game with Nonuniform Interests. WINE, 2007.

Related Work on Network Connection Games

- Experimental results on very similar game.
 - Chun, Fonseca, Stoica, and Kubiatowicz. Characterizing selfishly constructed overlay routing networks. INFOCOM, 2004.
 - Laoutaris, Smaragdakis, Bestavros, John Byers. Implications of selfish neighbor selection in overlay networks. INFOCOM, 2007.

May be no Nash equilibrium

- Number of nodes
- Affinity for each directed pair of nodes
- Link cost for each directed pair of nodes
- Budget of allowed link cost per node, k(v)
- Length metric from the perspective of each node
- Each node v spends $\leq k(v)$ on links to minimize

\(\sum_{\text{other nodes}} \) (affinity * shortest path distance)

or disconnection penalty if no path exists.

BBC Games

Open Questions

- Only budgets or lengths are non-uniform
- All nodes have same affinity function

BBC Games

Do Nash equilibria always exist? NO Can we find whether one exists? Are there simpler cases where NP Hard they do always exist? YES, k-connection games

Fractional Games

Fractional BBC Game

- Players = Nodes in the network
- Actions = Connections they can make
 - Budget to spend on edges, cost per edge
 - Fractionally purchase adjacent edges, spending up to the budget
- Costs/Payoffs = How close am I to the other nodes?
 - Affinities for other nodes, lengths for each edge
 - Affinity-weighted average cost of 1-unit minimum cost flow (capacity = purchased amount)

- Number of nodes
- Affinity for each directed pair of nodes
- Link cost for each directed pair of nodes
- Budget of allowed link cost per node, k(v)
- Length metric from the perspective of each node
- Each node v spends $\leq k(v)$ on links to minimize

(affinity * cost of min cost 1 unit flow)

other nodes

or disconnection penalty if

no path exists.

- Number of nodes
- Affinity for each directed pair of nodes destination node
- Link cost for each directed pair of nodes
- Budget of allowed link cost per node, k(v)
- Length metric from the perspective of each node
- Each node v spends $\leq k(v)$ on links to minimize

cost of min cost 1 unit flow to destination

or disconnection penalty if no path exists.

- Number of nodes
- Affinity for each directed pair of nodes destination node
- Link cost for each directed pair of nodes =1
- Budget of allowed link cost per node, k(v) =1
- Length metric from the perspective of each node
- Each node v spends $\leq k(v)$ on links to minimize

cost of min cost 1 unit flow to destination

or disconnection penalty if no path exists.

- Universal destination node
- Link cost = 1
- Budget = 1
- Length metric from the perspective of each node
- Each node v spends 1 on links to minimize cost of min cost 1 unit flow to destination

Fractional BGP Game

- Universal destination node
- Weight 1 to spread across paths
- Preference list across paths to the destination
- Cannot use a path more than the next node along the path
- Best Response: Take as much as possible of highest preference paths.

 Rehkter, Li. A Border Gateway Protocol (BGP version 4). RFC 1771, 1995.

Fractional Stable Paths Problem

 Haxell and Wilfong. A fractional model of the border gateway protocol (BGP). SODA, 2008.

Fractional Games

- Reduces to both fractional BBC and fractional BGP games.
- A pure Nash equilibrium always exists.
- In fact, a rational pure Nash equilibrium always exists.
- Seems like it should be easy to "solve"
- If preferences follow some rules, it is easy to solve.

- In general: PPAD hard to find an equilibrium (even an approximate equilibrium)
 - PPAD = Same as "end of the line"
 - Papadimitriou. On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence. JCSS 48(3), 1994.
 - As hard as finding mixed Nash in general games
 - Daskalakis, Goldberg, Papadimitriou. The Complexity of Computing a Nash Equilibrium In STOC, 2006.
 - Goldberg, Papadimitiou. Reducibility Among Equilibrium Problems. STOC, 2006.
 - Chen, Deng, and Teng. Computing Nash Equilibria: Approximation and Smoothed Complexity. FOCS, 2006.

Fractional Games

Open questions on fractional games

Open questions on fractional games

Fractional BBC Games, k=1

- Number of nodes = n
- Affinity for each directed pair of nodes = 1
- Link cost for each directed pair of nodes = 1
- Budget of allowed link cost per node, k(v) = 1
- Length metric = [1]
- Each node v spends $\leq k(v)$ on links to minimize

 $\sum_{\text{other nodes}}$ (cost of min cost 1 unit flow)

or disconnection penalty if no path exists.

Fractional BBC Games, k=1

Fractional BBC, k=1

- If each node can get 1 unit of flow to each other, it is an equilibrium.
- Is this condition necessary?

Characterizing Fractional Games

Mixed Nash for the integral version:

- If you play an action 1/3, you play must this 1/3 of the time against each set of opponents' actions.
- If two opponents play actions 1/4 each, you may only play 1/16 against that combination.

Pure Nash in the fractional version:

- If you play an action 1/3, you may use this with any legal 1/3 of the opponents' actions.
- If two opponents play actions 1/4 each, you may play 1/4 against this combination.

Mixed Nash for the integral version:

- If you play an action 1/3, you play must this 1/3 of the time against each set of opponents' actions.
- If two opponents play actions 1/4 each, you may only play 1/16 against that combination.

Pure Nash in the fractional version:

- If you play an action 1/3, you may use this with any legal 1/3 of the opponents' actions.
- If two opponents play actions 1/4 each, you may play 1/4 against this combination.

same rules in general matrix games.

Mixed Nash: 1/3 on each

Payoff =
$$1/3 * ((1/3)*0 + (1/3)*-1 + (1/3)*1) + 1/3 * ((1/3)*1 + (1/3)*0 + (1/3)*-1) + 1/3 * ((1/3)*-1 + (1/3)*1 + (1/3)*0) = 0$$

Personalized, 1/3 each – can match up actions to best personal advantage

Payoff =
$$(1/3)*1 + (1/3)*1 + (1/3)*1 = 1$$

- Rational Equilibrium always exists (solution to union of many linear programs)
- 2-player: fully characterized (can be represented by linear program)
- 3-player: ???
- 4-player: PPAD hard to compute
- 5+-player: PPAD hard to approximate

Segue Slide

- Games between overlay network nodes
 - BBC Games
 - Fractional BBC Games
 - Fractional BGP Games
- Characterizing Fractional Games
 - Preference Games
 - Personalized Equilibria
- Interaction Between Decentrally Designed Network and Centralized Algorithm

Centralized Algorithm

Centralized Algorithm

Centralized Algorithm

Centralized Algorithm

Centralized Algorithm

Steiner Tree Facility Location

- Network is result of a BBC game
- Each node will pick cheapest subgraph connecting it to commodities of interest

Steiner Tree Facility Location

- G = (V,E) with edge lengths
- Set T of types
- Interest sets: I(v) = Subset of T
- Cost to build type t at node v: c(t,v)
- Budget per type
 k(t)
- Want to find sets L(t) ≤ V (for each t) to minimize:

$$\sum_{v \text{ in } V} x(v) + \sum_{t \text{ in } T} \sum_{v \text{ in } L(t)} c(t,v)$$

x(v) is the cost of the minimum Steiner tree connecting v to at least one node in L(t) for each t in I(v)

Related Work on Steiner Tree and Facility Location

- R. Ravi , A. Sinha. Multicommodity facility location. SODA, 2004.
- Naveen Garg, Goran Konjevod, R. Ravi, A polylogarithmic approximation algorithm for the Steiner group tree problem, SODA, 1998.

Steiner Tree Facility Location

- Most general version: would also solve Group Steiner problem, which is NP hard to approximate to better than O(log² n), even on trees.
- Simplifications:
 - Set c(t,v) = c(t,u) for all u,v (9-approximation on trees)
 - Also set k(t) = 1 for all t (solve optimally on trees)

What if commodity building were part of the game?

- A single additional player who is trying to solve STFL.
- Each commodity is its own player.

 How does the fact that our graph was created as a result of a game help or hurt the algorithm? The equilibria in the game?

Results Mentioned are from...

- Nikolaos Laoutaris, Laura J. Poplawski, Rajmohan Rajaraman, Ravi Sundaram, Shang-Hua Teng. Bounded Budget Connection (BBC) Games or How to Make Friends and Influence People, on a Budget. In PODC '08, pages 165–174, 2008.
- Nikolaos Laoutaris, Laura J. Poplawski, Rajmohan Rajaraman, Ravi Sundaram, Shang-Hua Teng. Bounded Budget Connection (BBC) Games or How to make friends and influence people, on a budget. arXiv:0806.1727v1 [cs.GT]
- Laura J. Poplawski, Rajmohan Rajaraman, Ravi Sundaram, Shang-Hua Teng. Preference Games and Personalized Equilibria, with Applications to Fractional BGP. arXiv:0812.0598v2 [cs.GT]

Thesis Plan February - March

March 2009

onday	Tuesday	Wednesday	Thursday	Friday	Saturday
2	3	4	5	6	7

February 2009

day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28

- Uniform Fractional BBC Game, k=1
- More on the Preference Game
- Integral BBC Game, all uniform except budget, all uniform except length.

Thesis Plan April - June

June 2009

esday	Wednesday	Thursday	Friday	Saturday
2	3	4	5	6

May 2009

onday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1	2

APRIL 2009

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30		

- STFL: general problem approximation algorithm
- Commodities are controlled by BBC players

Thesis Plan July - August

AUGUST 2009

onday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1
3	4	5	6	7	8

JULY 2009

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	

- Follow loose ends
- Write thesis
- Defense

Example

Example

Example

