
Randomized Online Algorithms for Minimum Metric Bipartite

Matching

Adam Meyerson ∗ Akash Nanavati † Laura Poplawski ‡

Abstract

We present the �rst poly-logarithmic competitive online
algorithm for minimum metric bipartite matching. Via
induction and a careful use of potential functions, we
show that a simple randomized greedy algorithm is com-
petitive on a hierarchically separated tree. Application
of recent results on randomized embedding of metrics
into trees yield the poly-logarithmic result for general
metrics.

1 Introduction

Matching is one of the most basic problems in algo-
rithms. Natural applications include assignment of re-
sources to jobs or wireless nodes to base stations. In
addition, matching is a subroutine in a wide variety of
algorithms.

In the online bipartite matching problem, nodes
from one side of the matching arrive one at a time,
and each must be matched when it arrives. This mod-
els resource allocation in a changing environment (for
example). As the matching problem has wide applica-
tions, this has been the subject of considerable previ-
ous study. Unfortunately, the general online matching
problem is intractable. A single �incorrect" match can
cause some subsequent node to have no feasible match-
ing at all. This was �rst observed by Karp et al [7] and
an online algorithm was given which would match half
the nodes. Because of this intractability of the general
problem, it is reasonable to consider the restricted case
where distances between nodes form a metric (satisfy
symmetry and triangle inequality). The goal is now to
�nd a matching of minimum cost (matchings of maxi-
mum cost were addressed by [5, 8]). The quality of an
online algorithm is measured via the competitive ratio
(the worst-case ratio of the cost of the matching found

∗Department of Computer Science, University of California,

Los Angeles. Email: awm@cs.ucla.edu.
†Google Inc, Mountain View CA 94043. Email:

akash@google.com. This work was done while the author

was at UCLA, supported in part by NSF.
‡Department of Computer Science, University of California,

Los Angeles. Email: laurap@cs.ucla.edu.

by our algorithm to the cost of the best possible match-
ing given the metric and points to be matched).

The Permutation algorithm of Khuller et al [8]
(also discovered independently by Kalyanasundaram
and Pruhs [5, 6]) gives a competitive ratio of 2k − 1
for the problem, where k is the number of nodes to
be matched. No deterministic algorithm can perform
better than this for general metrics.

At this point, previous work focused on improv-
ing the competitive ratio for speci�ed simple metrics.
For example, it was conjectured that the Work Func-
tion Algorithm of Koutsoupias and Papadimitriou [10]
would obtain better performance on the line. Constant-
competitive performance was later disproved by Kout-
soupias and Nanavati [9], and a lower bound of 9.001
on the line was given by Fuchs et al [4]. While sev-
eral previous papers mentioned the randomized case as
an open problem, to our knowledge no randomized al-
gorithms with sub-linear (expected) competitive ratios
were previously known for general metrics.

In this paper, we consider a simple randomized
greedy algorithm. As each node arrives to be matched,
it will be paired with its closest available mate. If there
is a tie (several possibilities at the same distance) then
one will be selected at random. It is straightforward
that this algorithm will not be competitive on general
metrics. However, by making use of a carefully chosen
potential function, we shall prove that the randomized
greedy is poly-logarithmic (expected) competitive on
hierarchically separated trees with a su�ciently large
separation factor between the lengths of edges.

A series of recent papers by Yair Bartal [1, 2],
culminating in the result of Fakcharoenphol et al [3]
attain bounds on the expected distortion created by
a randomized embedding of an arbitrary metric into a
hierarchically separated tree. By combining this result
with our analysis of randomized greedy, we can obtain a
randomized algorithm with (expected) poly-logarithmic
competitive ratio for general metrics.

We leave open the possibility of improving our
competitive ratio to Θ(log k). However, we observe that
the techniques of this paper (combining tree embedding
with an algorithm for hierarchically separated trees) will

not attain such an improvement � this follows from the
fact that there is a logarithmic competitive lower bound
even on a tree.

The most compelling open problem arising from
this result is a randomized algorithm for the k-server
problem. Previous authors have observed a connec-
tion between online matching and k-server (in partic-
ular the work function algorithm has been applied to
both). The only lower bounds for k-server in a random-
ized setting come from paging, and these bounds are
poly-logarithmic. A randomized online algorithm with
sub-linear expected competitive ratio would be quite
valuable.

2 Algorithms and Lower Bounds on the

Uniform Metric

In this section, we will formally de�ne the problem and
the competitive ratio measurement. We will develop
various upper and lower bounds for online matching.
In most cases these results were previously known,
however they form the base case of our induction and are
illustrative of the functioning of our greedy algorithms,
so we will include them for completeness. We formally
state the online matching problem as follows:

Problem Statement 1. We are given a metric V, d
(where V is a possibly-in�nite set of vertices and d is
a function from V × V to <+ such that d(x, x) = 0,
d(x, y) = d(y, x), and d(x, y) + d(y, z) ≥ d(x, z) for
all x, y, z ∈ V). In addition, we are given a set of
distinguished �right-hand" nodes R ⊆ V with |R| = k.
Nodes designate themselves as members of the set of
�left-hand" nodes L ⊆ V one at a time. We will permit
R and L to be non-disjoint. As each node x ∈ L is
designated, we must immediately match it to some node
µ(x) ∈ R. This matching is permanent, in that the value
of µ(x), once assigned, can never be changed. We must
maintain that µ(x) 6= µ(y) for any x, y ∈ L (i.e. µ is a
matching). Our goal is to minimize Σx∈Ld(x, µ(x)).

In designing an algorithm for this problem, our goal
will be to minimize the competitive ratio. This measure
is standard in the online algorithms literature, and can
be de�ned as follows:

Definition 1. The competitive ratio of an algorithm
for the online matching problem is the maximum, over
all possible inputs V, d,R, L (where V, d is a metric, R
is a subset of V , and L is an ordered subset of V) of
the ratio costUS/costOPT . Here costUS is the cost of
the matching produced by the algorithm, and costOPT

is the cost of the best matching of R to L. In general
this competitive ratio might grow large as the sizes of
sets V,R, L increase, so our goal is to bound it by a

function of k = |R| (hopefully independent of n = |V |,
the number of points in the metric space).

Restricting ourselves to the uniform metric, we will
�rst consider deterministic online algorithms for the
problem. The greedy algorithm assigns µ(x) to be the
closest unmatched y ∈ R. Somewhat unsurprisingly,
this is best-possible for the uniform metric, as we prove
below.

Theorem 2.1. The greedy algorithm attains a compet-
itive ratio of k on the uniform metric. No deterministic
algorithm can attain a competitive ratio better than k.

Proof. If the optimum o�ine matching has a cost of
zero, then the optimum matching must be µ∗(x) = x
for all x ∈ L. The greedy algorithm will always assign
µ(x) = x when possible, so it will also have a cost
of zero. On the other hand, if optimum o�ine has a
nonzero cost, then the cost must be at least one (by the
nature of the uniform metric). The greedy algorithm, at
worst, has d(x, µ(x)) = 1 for all x ∈ L, which would give
a cost of k. Thus the competitive ratio of greedy is at
most k. On the other hand, consider an adversary which
�rst designates x1 ∈ L for some x1 which is not in R.
The greedy algorithm matches this to µ(x1) = y1. The
adversary then continues by designating xi ∈ R where
xi = yi−1. Notice that the greedy can never match xi

to itself, since at each step xi was already matched (in
the previous iteration). Thus greedy has d(xi, yi) = 1
and pays a total of k. On the other hand, the o�ine
optimum could match µ∗(xi) = yi−1 for all i > 1, and
match x1 to yk (the last remaining point), yielding a
total cost of one. This proves that the competitive ratio
of greedy is exactly k. We observe that the adversary
described above works against any deterministic online
algorithm, giving a general lower bound of k on the
competitive ratio.

For a general metric, the lower bound on the
competitive ratio is 2k − 1. This bound comes from
the same example in the theorem above, except that
the �rst node (x1) will be at distance 1

2 from all
nodes in R. Thus the optimum pays only 1

2 whereas
any deterministic algorithm pays at least 1

2 + (k − 1).
The Permutation algorithm obtains this best-possible
competitive bound [8].

Since our results deal with greedy algorithms, we
observe that greedy does not obtain a particularly good
competitive ratio on general metrics.

Theorem 2.2. There exists an instance of the online
matching problem on a line metric, such that the greedy
algorithm has a competitive ratio of Ω(2k).

Proof. We place the nodes of R on the line at y0 = 0 and
yi = 2i for each 1 ≤ i < k. The nodes of L arrive one at
a time, with x0 = 1 and xi = 2i for each 1 ≤ i < k. The
optimum o�ine matching matches µ∗(xi) = yi for a cost
of 1. However, greedy can match µ(xi) = yi+1 for each
0 ≤ i < k − 1 and then match µ(xk−1) = y0. In each
case the greedy had a choice of two equidistant points
to select from (we can force this behavior from greedy
by adding small epsilons to the distance between the
points.) This yields a cost of 1+2+4+...+2k−1 = 2k−1
for greedy.

Since the deterministic problem has essentially been
resolved, both for the uniform metric and for general
metrics, we consider the case of randomized algorithms.
The matching returned by a randomized algorithm
depends not only upon the inputs, but also upon the
random bits generated and used by that algorithm.
While an �adversary� is assumed to generate worst-case
inputs, this adversary is not aware of the random bits;
this is the oblivious adversary model which is standard
in analysis of randomized online algorithms. We can
measure performance of a randomized algorithm for
online matching via the expected competitive ratio:

Definition 2. The expected competitive ratio of an al-
gorithm is the maximum, over all inputs V, d,R, L, of
the expected value E[costUS/costOPT]. This expectation
is taken over the random bits generated by the algorithm.
Since the inputs themselves are worst case (and not ran-
dom), the cost of the best matching does not depend upon
any random bits. It follows that E[costUS/costOPT] =
E[costUS]/costOPT . Once again costUS and costOPT

represent the cost of the matching generated by our al-
gorithm, and the best matching of R to L respectively.

We will make use of the following randomized
greedy algorithm.

Algorithm 1. Randomized Greedy: When point
x ∈ L arrives, we select the unmatched point y ∈ R
which minimizes d(x, y). If there are multiple points
in R which satisfy this condition, then we select one of
them uniformly at random. We set µ(x) = y.

Of course, the randomized greedy is as bad as de-
terministic greedy on general metrics. We can force
�wrong� choices by applying small epsilons to the dis-
tances, thus ensuring that there are no ties and the ran-
domized choice never occurs. On the other hand, the
randomized greedy performs quite well on the uniform
metric.

Theorem 2.3. Randomized greedy has an expected
competitive ratio of Hk = Θ(log k) on the uniform met-
ric. This is the best possible for any randomized algo-
rithm.

Proof. If each node of L is collocated with a node of R,
costUS = costOPT = 0. Therefore, assume at least one
left-hand node is not collocated with a right-hand node.
Let m = the number of left-hand nodes that are not
collocated with right-hand nodes (m > 0). This gives
costOPT = m.

Now consider our algorithm. When a node arrives
that is not collocated, we will pay 1, for a total over
all non-collocated nodes of m. When a node arrives
that is collocated, our cost is 1 times the probability
that another node is already matched to the collocated
right-hand node.

Look at the ith collocated left-hand node to arrive,
call it xi. Call its collocated right-hand node yi. Let
m(i) ≤ m be the number of non-collocated left-hand
nodes that have already arrived. We know that i − 1
of the previous left-hand nodes to arrive have been
matched to the i − 1 previous collocated right-hand
nodes (since, for each such right-hand node, either the
collocated left-hand node was matched to it or else
the collocated left-hand node was already matched).
Therefore, the total number of left-hand nodes that
could have been matched to yi is m(i), and the total
number of right-hand nodes to which each of these could
have been matched is k − (i − 1). So, the probability

that yi has already been matched is m(i)
k−(i−1) .

Summing over all left-hand nodes, we get

costUS = m +
k−m∑
i=1

m(i)
k − i + 1

≤ m +
k−m∑
i=1

m

k − i + 1

≤ m + m

k∑
i=m+1

1
i

≤ m(1 + Hk −Hm)
≤ costOPT Hk

For the lower bound, the adversary �rst designates
some node x0 which is not in R. It then repeatedly
designates the node in R which is not yet in L and
which is most likely to be already matched. The o�ine
optimum can pay 1. The online algorithm pays at
least 1 plus the sum of probabilities that each requested
node was already matched. The probability that xi

was already matched must be at least 1
k−i+1 since at

least one of the remaining nodes in R is matched. This
gives a cost of at least Hk for any randomized algorithm,
matching the upper bound for randomized greedy.

3 Randomized Greedy on a HST

We will now extend the analysis of randomized greedy
to a hierarchically separated tree. Because of various
results on metric embedding, this will be su�cient to
construct an algorithm for general metrics. An HST is
de�ned as follows:

Definition 3. An α-Hierarchically Separated Tree (α-
HST) metric is de�ned by a rooted tree T = (V,E) along
with a distance function on the edges d : E → <+.
The HST has the following additional properties on the
distance metric:

1. For any v ∈ V , if c1(v) and c2(v) are children of v
in the rooted tree, d(v, c1(v)) = d(v, c2(v)).

2. For any v ∈ V , let p(v) be the parent of v and c(v)
be a child of v. Then d(v, p(v)) = αd(v, c(v)).

3. All leaves are at the same level of the tree. Thus
if v ∈ V and λ1(v), λ2(v) are leaves which are
descendants of v, then d(v, λ1(v)) = d(v, λ2(v)).

We will assume that only leaf nodes are members
of sets L and R. Our proof of the competitive ratio
will proceed by induction on the number of levels in the
tree. Since the proof is somewhat notation-heavy, we
will de�ne our notation in the following table.

δ the distance from the root to each
of its children

(β + 1)δ the distance from the root to each
leaf

x the number of children of the root
Si the subtree rooted at the ith child

of the root
ri the number of right-hand nodes

in Si

li the number of left-hand nodes in
Si

mi |ri − li|

M

∑x

i=1
mi

2 , or the number of left-
hand nodes that the optimal solu-
tion must match to di�erent sub-
trees.

M∗
i the set of left-hand nodes not

in Si that randomized greedy
matches to right hand nodes in
Si

m∗
i |M∗

i |
costUS(Si) the cost of our algorithm to

match nodes within Si

costOPT (Si) the cost for the best possible
matching within Si

We will �rst prove a useful lemma, which bounds
the expected number of nodes which randomized greedy
matches on paths through the root.

Lemma 3.1.

E

[
x∑

i=1

m∗
i

]
≤ 1 + 2M ln k

Proof. By de�nition of m∗
i , the sum of the m∗

i s is the
expected number of left-hand nodes that our algorithm
will match to right-hand nodes in di�erent subtrees.
Label the left-hand nodes in the reverse of the order
in which they arrive, {lk, lk−1, ..., l2, l1}. We consider
an o�ine algorithm OFF which matches the points so
as to minimize the number matched between subtrees
(via the root). De�ne a potential function Φ as follows:

Φt =
t−1∑
i=1

{
2 ln i if µOFF (li) outside Si

0 otherwise

Also de�ne ρt = the number of left-hand nodes that
randomized greedy has matched outside their subtrees
after lt is matched.

Claim: ∀t > 1, E[Φt + ρt] ≤ 2M ln k
Base case: t = k + 1 (the �rst left-hand node has

not arrived yet). OFF will match exactly M left-hand
nodes outside their subtrees. Since k ≥ i for all possible
values of i, we have

Φk+1 ≤
M∑
i=1

2 ln k ≤ 2M ln k

Of course ρk+1 = 0, since the algorithm has not yet
matched any nodes. Combining these two yields the
base case of the claim.

Inductively assume the claim is true for all nodes
arriving before lt (ie, for all t′ > t). Now suppose lt
arrives. If there are unmatched right-nodes in this sub-
tree, then we will match to one of these. We can modify
the solution of OFF to also match to this right-node,
bumping whichever left-node matched there before to
wherever OFF matched lt. This can only decrease the
potential value, since the only possible change to the
set of nodes matched outside their subtree is replacing
lt with a later node (thus decreasing potential). Thus
the only interesting case is where no unmatched right-
nodes exist in this subtree. Both the randomized greedy
and OFF must match this node to some other subtree;
the di�culty exists because the greedy might pick the
�wrong� subtree to match to.

In this case, we know ρt = ρt+1 + 1. We need
to bound the change in the potential function. The

randomized greedy is equally likely to match to the
right-hand node OFF intended for each of the left-hand
nodes {lt, lt−1, ..., l2, l1}.

Say we match lt to the right-hand node intended
for li. At worst, OFF can match li with the right-hand
nodes intended for lt. In this case the potential will
decrease by 2 ln t (since the matching of lt is no longer
part of the potential) and increase by 2 ln i (unless we
select i = t in which case the potential does not increase
at all).

This gives the expected value of the potential:

E[Φt] ≤ Φt+1 − 2 ln t +
1
t

t−1∑
i=1

2 ln i

≤ Φt+1 − 1

when t > 1, using
∑t−1

i=1 2 ln i < 2
∫ t

1
(ln i)di ≤

(2t ln t)− (2t− 2) ≤ (2t ln t)− t for t > 1. So,

E[Φt + ρt] ≤ Φt+1 − 1 + ρt+1 + 1
≤ Φt+1 + ρt+1

≤ 2M ln k by inductive assumption

When the last node arrives, the potential reduces
to zero. Since at most this single node was matched
via the root, we have ρ1 ≤ ρ2 + 1. It follows that
E[ρ1] ≤ 1 + E[ρ2] ≤ 1 + E[Φ2 + ρ2] ≤ 1 + 2M ln k,
proving the lemma.

Theorem 3.1. The competitive ratio is R = O(log k)
provided that α ≥ 1 + 2 ln k.

Proof. The proof is by induction on the number of levels
in the tree. The base case is just a star: this is the same
as the uniform metric and we apply theorem 2.3. We
now consider the inductive step.

By de�nition of costOPT (Si) and de�nition of M ,
costOPT (T) ≥

∑x
i=1 costOPT (Si) + 2(β + 1)δM

De�ne S∗
i as Si∪M∗

i ,where the distance from each
left-hand node in M∗

i to the root of Si is replaced with 0.
That is, S∗

i includes all left-hand nodes that we match
to right-hand nodes in Si at the root of the subtree.
Since the distance from each left-hand node in M∗

i to
the root of Si is bounded by (β + 1)δ, we can write:

costUS(T) ≤
x∑

i=1

costUS(S∗
i) +

x∑
i=1

(2δ + βδ) m∗
i

By the inductive assumption, costUS(S∗
i) ≤ R ∗

costOPT (S∗
i). Since OPT could use the solution of

Si to solve S∗
i , matching the other m∗

i nodes in
M∗

i to whichever right-hand nodes remain unmatched,
costOPT (S∗

i) ≤ costOPT (Si) + βδm∗
i . So, costUS(S∗

i) ≤
R(costOPT (Si) + βδm∗

i). Now we have costUS(T) is
bounded by:

R
x∑

i=1

costOPT (Si) + (Rβδ + 2δ + βδ)
x∑

i=1

m∗
i(3.1)

In order for the induction to hold, we need a
guarantee that the quantity in equation 3.1 is no larger
than R times the optimum cost. This means we require:

costUS(T) ≤ R
x∑

i=1

costOPT (Si) + 2R(β + 1)Mδ

Simplifying this expression and applying lemma 3.1
yields:

(Rβ + 2 + β)(1 + 2M ln k) ≤ 2(β + 1)MR

Suppose that we set R = 12 ln k. We observe that
α ≥ 1 + 2 ln k implies that β ≤ 1

2 ln k . We can then
guarantee:

(Rβ + 2 + β)(1 + 2M ln k) ≤ 24M ln k + 1.5M

≤ 2(β + 1)MR

This completes the induction.

This analysis of randomized greedy on a hierarchi-
cally separated tree is essentially tight. Consider an
adversary which designates only one right-hand node
which is not a left-hand node, then designates collocated
nodes one subtree at a time, starting with the subtree
containing the non-collocated node. Such an adversary
could pay as little as αλ−1 in the o�ine setting, where λ
is the number of levels. On the other hand, by repeating
the lower bound proof from the star, randomized greedy
will pay an expected (log k)λ. It follows that we must
require α = Ω(log k) to obtain any competitive ratio
which is independent of the number of levels.

4 Extension to General Metrics

In order to extend our result to general metrics, we
�rst embed the metric randomly into a tree. Once
this computation has been performed, we can use
randomized greedy on the (randomly generated) tree
to obtain the competitive ratio. We �rst summarize
(without proof) the result of Fakcharoenphol et al [3].

Theorem 4.1. Given any metric (V, d), we can ran-
domly produce an α-HST metric T = (VT , dT) such that
the leaves of the tree correspond to the nodes of V . For
any two nodes u, v ∈ V we can guarantee that dT (u, v) ≥
d(u, v) and also that E[dT (u, v)] ≤ O(α log |V |)d(u, v).
Here the expectation is over randomly selected HST met-
rics.

Our randomized algorithm for online matching pro-
ceeds by �rst creating such a tree and then executing
randomized greedy. The following result is immediate:

Theorem 4.2. There is a randomized algorithm
for online matching with expected competitive ratio
O(log n log2 k). Here n is the number of points in the
metric given, and k is the number of left-hand nodes.

Proof. The optimum matching has expected cost of
α log n times its original cost when transferred to the
new HST metric. Thus randomized greedy will produce
a matching of expected cost at most Rα log n. Using
the bounds on R and α from the previous section gives
the required bound.

This result is not particularly useful, because of the
dependence on the number of nodes in the metric (n).
In particular, our initial metric might be in�nite. We
can improve this result (and eliminate dependence on n)
by restricting the metric to only the right-hand nodes
given. Our �nal algorithm functions as follows:

1. Construct a (2 ln k + 1)-HST randomly on the
metric formed by the k right-hand nodes given,
using the method of [3].

2. Whenever a left-hand node li arrives, �nd its
nearest right-hand node in the original graph: νi.

3. Find the nearest unmatched right-hand node to νi

in the HST. If there is a tie, then select one of the
tied nodes uniformly at random. Call the selected
node ri.

4. Match µ(li) = ri and continue.

Theorem 4.3. The algorithm has an (expected) com-
petitive ratio bounded by O(log3 k).

Proof. If each arriving left-hand node had li = νi the
proof would be immediate (we could consider the entire
metric to be �nite and consist only of the nodes in R).
We observe that

∑
i d(li, νi) is a lower bound on the

optimum cost. Let OPT ′ be the cost to match the
nodes νi to the ri; the triangle inequality implies that
OPT ′ ≤ 2OPT (match each node νi �rst to li and then
to the appropriate ri; this cost must exceed OPT ′, but

cannot exceed 2OPT). Thus the expected total distance
between the νi and µ(νi) constructed by our algorithm
is bounded by O(log3 k) times optimum. Again using
the bound on d(li, νi) (and applying triangle inequality
again) gives the required bound.

References

[1] Y. Bartal. Probabilistic approximation of metric
spaces and its algorithmic applications. 37th IEEE
Symposium on Foundations of Computer Science, 1996.

[2] Y. Bartal. On approximating arbitrary metrics by
tree metrics. 30th ACM Symposium on Theory of
Computing, 1998.

[3] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight
bound on approximating arbitrary metrics by tree
metrics. ACM Symposium on Theory of Computing,
2003.

[4] B. Fuchs, W. Hochstattler, and W. Kern. Online
matching on a line. Theoretical Computer Science
332(1-3), 2005.

[5] B. Kalyanasundaram and K. Pruhs. Online weighted
matching. Journal of Algorithms 14(3) (also SODA
1991), 1993.

[6] B. Kalyanasundaram and K. Pruhs. Online trans-
portation problem. Journal of Discrete Mathematics
13(3) (also ESA 1995), 2000.

[7] R. Karp, U. Vazirani, and V. Vazirani. An optimal
algorithm for online bipartite matching. 22nd ACM
Symposium on Theory of Computing, 1990.

[8] S. Khuller, S. Mitchell, and V. Vazirani. On-line
algorithms for weighted bipartite matching and stable
marriages. Theory of Computer Science 127(2), 1994.

[9] E. Koutsoupias and A. Nanavati. The online matching
problem on a line. Workshop on Approximation and
Online Algorithms, 2003.

[10] E. Koutsoupias and C. Papadimitriou. On the k-server
conjecture. Journal of the ACM 42(5), 1995.

