
Randomized K-Server on Hierarchical Binary Trees

Aaron Coté
Computer Science

Department
UCLA

4732 Boelter Hall
Los Angeles, CA 90095

acote@ucla.edu

Adam Meyerson
Computer Science

Department
UCLA

4732 Boelter Hall
Los Angeles, CA 90095

awm@cs.ucla.edu

Laura Poplawski
College of Computer and

Information Science
Northeastern University
360 Huntington Avenue

Boston, MA 02115
ljp@ccs.neu.edu

ABSTRACT
We design a randomized online algorithm for k-server on
binary trees with hierarchical edge lengths, with expected
competitive ratio O(log ∆), where ∆ is the diameter of the
metric. This is one of the first k-server algorithms with
competitive ratio poly-logarithmic in the natural problem
parameters, and represents substantial progress on the ran-
domized k-server conjecture. Extending the algorithm to
trees of higher degree would give an O(log2 ∆ log n)-competitive
algorithm for the k-server problem on general metrics with
n points and diameter ∆.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Non-numerical Algo-
rithms and Problems—Computations on Discrete Structures

General Terms
Algorithms, Theory

Keywords
Online Competitive Analysis, K-Server

1. INTRODUCTION
The metric k-server problem is among the oldest and most-
studied problems in online algorithms. We are given a set
of k initial server locations (an initial configuration) in some
underlying metric space. Requests for service arrive at vari-
ous nodes in this space, and as each request arrives we must
move one of our k servers to that location (thus obtaining a
new configuration which includes the new request as one of
the server nodes). The goal is to minimize the total distance
traveled by the k servers; in the offline setting this can be
solved optimally using flow techniques, but many of the nat-
ural applications are online, where we are unable to see the
future requests before determining which server to move.

Our main result is a randomized online algorithm for k-
server on hierarchically structured binary trees, which guar-

STOC’08, May 17–20, 2008, Victoria, British Columbia, Canada.

antees an expected cost of at most O(log ∆) times optimum,
where ∆ is the diameter of the metric space. This is one of
the first sub-linear competitive ratios for any non-uniform
metric with n > k +O(1) (n is the number of nodes), and is
particularly interesting because of a potential extension to
non-binary trees, which would give a sub-linear competitive
ratio for general graphs by applying the metric embedding
techniques of Bartal [1, 2] or Fakcharoenphol et al [14].

Once we are considering a binary tree, we model the prob-
lem as a set of many online decision makers, one residing
at each node i of the tree. Each decision-maker sees the re-
quest stream in an online fashion, and also sees a dynamic
number of servers available in the subtree rooted at node
i over time. The job of this decision-maker is to partition
its servers between the subtrees rooted at its children, thus
passing a similar problem down to the next layer. We bound
the cost thus passed down, as well as the cost paid to transfer
servers between child subtrees, summing over all levels to get
a general bound of O(L), where L is the number of levels of
the tree. Because of the hierarchical nature of the distances,
the number of levels must be bounded by O(log ∆), allowing
us to obtain the overall bound claimed.

We view our results as making progress towards the ran-
domized k-server conjecture, that there exists an O(log k)-
competitive randomized online algorithm for the problem.
Of course, our results depend heavily on the underlying
graph, but currently the only case where any similar ratio is
known for general graphs comes from algorithms for metrical
task systems [5] which apply only when n = k + O(1).

1.1 Previous Work
Online k-server has been studied at least since 1990, when
Manasse, McGeoch and Sleator presented an (n−1)-competitive
algorithm for (n − 1) servers, a 2-competitve algorithm for
2 servers, and a deterministic lower bound of k for the com-
petitive ratio. They also introduced the “k-server conjec-
ture” - the conjecture that there exists a deterministic k-
competitive solution [20]. The same year, Fiat, Rabani and
Ravid showed that a competitive algorithm exists for any
metric space and any k [17]. The best known general deter-
ministic algorithm is the work function algorithm by Kout-
soupias and Papadimitriou [19], which achieves a competi-
tive ratio of 2k − 1 on any metric.

While no known deterministic algorithm has a competitive
ratio better than 2k − 1 for arbitrary metrics, there are k-

competitive deterministic algorithms for many special classes
of metric. In addition to the case where k = n−1 and where
k = 2. Chrobak, Karloff, Payne, and Vishwanathan gave a
k-competitive algorithm on the line and the star graph [8].
Chrobak and Larmore gave a k-competitive algorithm on
trees [11]. The work function algorithm is k-competitive on
the line, the weighted star, and metrics with k+2 points [6].

There is also a great deal of interest in randomized algo-
rithms for k-server, since in many cases randomized algo-
rithms obtain better performance for online problems (against
an adversary which is oblivious to the random choices). The
“randomized k-server conjecture” states that there exists an
O(log k)-competitive randomized algorithm. So far, no ran-
domized O(polylog(n, k)) algorithm has been published for
the general k-server problem on arbitrary metrics. However,
there are known randomized algorithms for a number of spe-
cial cases. Perhaps the best-known example is the marking
algorithm of Fiat et al for the paging problem (k-server on
a uniform metric) [15]. Chrobak and Sgall presented the
HARMONIC algorithm, which is 3-competitive when k=2
[10, 12]. Csaba and Lodha gave a O(n2/3 log n)-competitive
randomized algorithm for equally spaced points on a line
[13]. Seiden proved the existence O(polylog(k)) random-
ized algorithms for metrics consisting of some number (poly-
logarithmic in k) of widely separated subspaces [22]. Sei-
den also provided an algorithm that is O(h log n log log n)-
competitive on any metric with h-HSTs (Hierarchically Sep-
arated Subtrees), as long as h = Θ > 2k. Bartal and
Mendel gave an algorithm for graphs with bounded growth-
rate that is O(∆1−(1/(ρ+2))polylog(n))-competitive, where ρ
is the growth-rate and ∆ is the diameter of the graph [7].

Blum, Karloff, Rabani, and Saks proved a lower bound of
Ω(

p

log k/ log log k) for any randomized algorithm on any
metric where k < n [5]. Bartal, Bollobás, and Mendel im-
proved this to Ω(log k/ log2 log k) [3].

Throughout our algorithm and analysis, we use the con-
cept of the work function, which was initially discussed by
Chrobak and Larmore in 1992 [9] and was used to deter-
ministically solve the k-server problem by Koutsoupias and
Papadimitriou [19]. The work function value is the opti-
mum offline cost to handle all requests up through time t
and end with servers in a particular configuration C. The
work function algorithm of Koutsoupias and Papadimitriou
[19] handles each request by moving the servers to the con-
figuration which minimizes the sum of the work function
value and the distance from the prior configuration.

2. PROBLEM STATEMENT
A k-server instance (V, d, C[0], ρ, k) is defined by a metric
space (V, d), assumed to satisfy symmetry and the triangle
inequality, along with an initial configuration C[0] ⊆ V with
|C[0]| = k and a sequence of requests ρ = {ρ[1], ρ[2], ..., ρ[m]} ∈
V m.

A solution to this instance is a sequence of configurations
{C[1], C[2], ..., C[m]} where C[t] ⊆ V and |C[t]| = k, with
the requirement that ρ[t] ∈ C[t] for each t. The cost of the
solution is Σm

t=1d(C[t− 1], C[t]) where the distance between
two configurations is defined to be the cost of the minimum-
cost matching between them on a complete bipartite graph

weighted by the distance function d.

We observe that the k-server problem can be solved to op-
timality in polynomial time via minimum-cost flow on a
time-dilated graph with flow requirements on the vertices.
Typically we will be interested in the online version of the
problem, where the request sequence ρ arrives one at a time
in order, and we must select C[t] immediately after the ar-
rival of ρ[t], without knowledge of the yet-to-arrive ρ[u] for
u > t. The competitive ratio for an online algorithm for
k-server is the maximum over all instances of the ratio of
the cost of the solution constructed by the online algorithm
to the cost of the minimum-cost (offline) solution. For a
randomized online algorithm, replace the cost of the solu-
tion constructed with the expected cost of the solution con-
structed. It is known that the online version of the problem
has a 2k − 1 competitive deterministic algorithm and that
no deterministic algorithm can have competitive ratio bet-
ter than k. Algorithms with competitive ratio k are known
for some special metrics (for example uniform metric and
trees). Randomized algorithms might be able to improve
upon the competitive ratio; it is known that no randomized
algorithm can have competitive ratio better than log k, but
results better than 2k − 1 are only known for a few special
cases of the problem.

3. QUASI-CONVEXITY
We state a general version of the quasi-convexity lemma first
proved by Koutsoupias and Papadimitriou [19]. These will
be used in sections 5 and 6.

Theorem 1. Quasi-Convexity: Let (V, d, C[0], ρ, k) be
a k-server instance. For any configuration X, define c(X) to
be the cost of the best solution to this instance which ends in
configuration X (we can suppose X = C[m] in the solution,
or more generally allow ρ[m] /∈ X by adding a null ρ[m+1] to
the request sequence and setting X = C[m+1]). For any pair
of configurations A, B there exists a matching µ : A → B
which guarantees that for all partitions A1 ⊆ A and A2 =
A−A1, we have c(A1∪µ(A2))+c(µ(A1)∪A2) ≤ c(A)+c(B).
Further, for any vertex x ∈ A ∩ B, we have µ(x) = x.

Proof. We can solve k-server offline by constructing a
time-dilated graph G. The vertices of this graph come from
V m+1, with a directed edge ((u, i), (v, i + 1)) for every ver-
tices u, v ∈ V and every 0 ≤ i ≤ m. The cost of this edge
will be d(u, v). We add a source node with capacity one,
cost zero edges to each vertex (v, 0) with v ∈ C[0]. We add
a sink node with a capacity one, cost zero edge from each
vertex (v, m). A k-server solution corresponds to a flow on
this graph with the added condition that for each vertex ρ[t]
we have at least one unit of flow through (ρ[t], t). The cost
of the k-server solution is equal to the cost of the flow.

For each of the configurations A, B there are correspond-
ing flows fA, fB in this graph. Consider constructing the
residual graph GA corresponding to flow fA. This graph
has some reverse direction edges where fA(e) > 0, and these
edges have potentially negative cost. Flow fB−fA is feasible
in this residual graph and has cost c(B) − c(A). Note that
fB − fA does not place any flow on edges from the source
(these edges have equal flow in both fA and fB); this flow

travels from the sink to the sink, exiting via reverse edges
into the nodes of A and returning to the sink via edges from
the nodes of B. Like any integral flow, we can decompose
fB − fA into paths each of which carries one unit of flow.
Call these paths P1, P2, ..., Pk and let Pi connect ai to bi.
We define µ(ai) = bi.

Now consider any partition A1, A2 of configuration A. One
possible solution ending in configuration A1 ∪ µ(A2) corre-
sponds to the flow which starts from fA and adds paths Pi

for ai ∈ A2. This flow has cost c(A)+Σai∈A2
c(Pi). Similarly

we can end in configuration µ(A1) ∪ A2 by adding paths Pi

for ai ∈ A1, finding a flow with cost c(A) + Σai∈A1
c(Pi).

Of course, there might be a better (cheaper) flow corre-
sponding to the same configuration, so we conclude that
c(A1∪µ(A2)) ≤ c(A)+Σai∈A2

c(Pi) and that c(µ(A1)∪A2) ≤
c(A) + Σai∈A1

c(Pi). Combining these two inequalities, and
noticing that c(A) + Σai∈Ac(Pi) = c(B) gives the desired
inequality.

For the further point, any x ∈ A∩B has fA(x, t) = fB(x, t) =
1 so there is no flow on (x, t) in fB − fA. Thus no path
starts or ends at x (or equivalently there is a path which
both starts and ends at x without any nodes in between),
so µ(x) = x.

We can use this theorem to prove two useful corollaries.

Corollary 1. Let ρr be the request sequence ρ followed
by one additional request r. Then for any k, we have:

c(V, d,C[0], ρr, k + 1) − c(V, d, C[0], ρ, k + 1) ≤

c(V, d, C[0], ρr, k) − c(V, d, C[0], ρ, k)

Proof. Let A be the final configuration in the optimum
solution to (V, d, C[0], ρ, k + 1) and B be the final config-
uration for the optimum solution to (V, d, C[0], ρr, k). We
observe that r ∈ B. We can consider B to instead be a
solution to (V, d, C[0], ρ, k); it will not necessarily be an op-
timum such solution. We now observe that there are flows
fA and fB through the time-dilated graph corresponding to
the solutions of (V, d, C[0], ρ, k+1) and (V, d, C[0], ρ, k) end-
ing in A and B respectively, and that the costs of these flows
are equal to c(V, d, C[0], ρ, k + 1) and c(V, d, C[0], ρr, k) re-
spectively. Despite the fact that the amount of flow differs
(k + 1 for fA and k for fB), we can still apply theorem 1
to find a partial mapping µ : A → B; however since the
values of the flows differ, there will be one path in the resid-
ual graph GA that leads from the sink to the source rather
than from sink to sink (this corresponds to the “extra” unit
of flow in fA). Recall that r ∈ B and let q ∈ A be such
that µ(q) = r. We now apply theorem 1 with A1 = {q}
and A2 = A − {q}, and note that µ(A2) = B − {r} to get
c({q} ∪ B − {r}) + c({r} ∪ A − {q}) ≤ c(A) + c(B). We
observe that |{q} ∪ B − {r}| = k. Thus this is a feasible
solution to (V, d, C[0], ρ, k), and the optimum solution costs
only less. Similarly, we have |{r} ∪ A − {q}| = k + 1 and
this is a feasible solution to (V, d, C[0], ρ, k + 1). Further,
this solution includes a server at r, meaning it is also a

solution to (V, d, C[0], ρr, k + 1) with the same cost. We
conclude that c(V, d, C[0], ρ, k) + c(V, d, C[0], ρr, k + 1) ≤
c({q} ∪ B − {r}) + c({r} ∪ A − {q}).

In other words, the difference in optimal cost when request
r is tacked on cannot be larger when an additional server is
available.

Corollary 2. Let c(V, d, C[0], ρ, x, X) represent the cost
of the cheapest solution to (V, d, C[0], ρ, x) which also has
final configuration C[m] = X for the given X ⊆ V . For any
X and x = |X|, and any integer y, there exists Y such that
|Y | = y, |X ∩ Y | = min(x, y), and:

c(V , d, C[0], ρ, y, Y) ≤

c(V, d, C[0], ρ, x, X) + c(V, d, C[0], ρ, y) − c(V, d, C[0], ρ, x)

Proof. Let A = X. Let B represent the final config-
uration in the optimum solution for (V, d, C[0], ρ, y); thus
c(V, d, C[0], ρ, y, B) = c(V, d, C[0], ρ, y). We now apply the-
orem 1, constructing flows fA and fB and considering the
flow through residual graph GA to transform fA to fB . This
will apply despite the fact that flows fA and fB have dif-
ferent values (x and y respectively). We will produce a
partial matching µ : A → B. First, suppose that x > y.
Then let Y ⊆ A be those members of A which are matched.
We have |X ∩ Y | = y. The partial matching guarantees
that c(A − Y ∩ B) + c(Y) ≤ c(A) + c(B). Since |A − Y ∩
B| = x, it is a feasible final configuration for (V, d, C[0], ρ, x)
and thus has cost at least the optimum cost for that prob-
lem. It follows that c(V, d, C[0], ρ, x)+c(V, d, C[0], ρ, y, Y) ≤
c(V, d, C[0], ρ, x, X) + c(V, d, C[0], ρ, y) which completes the
proof. We also need the case x < y. Here, let W ⊆ B be the
members of B which remain unmatched. Let Y = W ∪ A.
Now we again apply theorem 1 to guarantee that c(B−W)+
c(Y) ≤ c(A)+ c(B). We observe that |B−W | = x and thus
it is a feasible solution for (V, d, C[0], ρ, x) and has cost at
least the optimum cost for that problem. We conclude that
c(V, d, C[0], ρ, x) + c(V, d, C[0], ρ, y, Y) ≤ c(A) + c(B) which
again completes the proof.

This essentially says that for any y, there is some final con-
figuration of y servers that overlaps X as much as possible,
such that the additional optimal cost to end in this configu-
ration is at most the difference between the optimal cost to
end with any x server placements and the optimal cost to
end with any y server placements.

4. METRIC EMBEDDING AND HSTS
A sequence of results on metric embedding allows us to
transform the arbitrary metric space (V, d) given in the k-
server definition to a tree with hierarchical properties. The
following theorem is the main result of Fakcharoenphol et
al [14]:

Theorem 2. For any metric space (V, d) and any α > 1,
we can randomly construct a rooted, weighted tree (T, dT)
along with a function f : V → T . We write dT (x, y) for ver-
tices x, y ∈ T for the length of the path through T (according
to weighting function dT) between x and y. The construction
guarantees that:

1. If c1(x) and c2(x) are both children of x in T , then
dT (x, c1(x)) = dT (x, c2(x)).

2. For any node x ∈ T not the root or a leaf, let p(x) and
c(x) be a parent and a child of x respectively. Then
dT (x, p(x)) = αdT (x, c(x)).

3. All leaves of the tree are exactly logα ∆ hops from the
root (in other words, the depth of the tree is logα ∆)
where ∆ is the diameter of the metric space (V, d).

4. For all nodes u ∈ V , f(u) is a leaf of the tree T .

5. For any u, v ∈ V , dT (f(u), f(v)) ≥ d(u, v).

6. For any u, v ∈ V , E[dT (f(u), f(v))] ≤ (α log |V |)d(u, v).

Suppose that we could solve k-server as long as the metric
were a tree with the properties described. This would enable
us to solve k-server on any metric space, with a somewhat
worse competitive ratio.

Theorem 3. Suppose we could solve k-server online, with
some expected competitive ratio γ, provided that the metric
space given was a tree as described in theorem 2 with all re-
quests at the leaves. Then we have an expected O(γα log |V |)-
competitive randomized online algorithm for k-server on any
metric space.

5. A HIERARCHICAL ALGORITHM
We consider the following more general version of the k-
server problem. We are given a rooted tree with the prop-
erties described in theorem 2 which we additionally assume
to be a binary tree. We also have an initial configuration
and a vector κ telling us how many servers will be in this
subtree at each time, along with a sequence of requests.
Thus we are given (T, dT , C[0], ρ, κ), where |C[0]| = κ[0]
and both C[0] and all elements of ρ come from the leaves
of T . Let δ represent the distance from the root of T to
any leaf. The goal is to select a sequence of configura-
tions C[1], C[2], ..., C[m] such that ρ[t] ∈ C[t] for each t and
|C[t]| = κ[t] for each t. We define dT (C[t], C[t+1]) to be the
minimum cost of a matching between these two configura-
tions; the matching should be maximal, but since |C[t]| may
not equal |C[t+1]|, there can be unmatched vertices on one
side or the other (but not both). The cost of the solution is
Σm

t=1dT (C[t], C[t+1])+δg(κ) where g(κ) = Σt|κ[t]−κ[t+1]|.
Effectively this means that we must pay to move servers
which are leaving T to the root, or to move new incoming
servers from the root to their locations.

Note that solving this more general version of k-server in an
online scenario would allow us to solve k-server on a binary
tree (the more general version reduces to k-server if we set
κ[t] = k for all t).

Instead of actually solving this problem directly, we will
solve it in a hierarchical manner. We will construct (online)
vectors κ1, κ2 corresponding to the children of the root of T ,
representing the number of servers in that subtree at each
time. We will then recursively do the same for the instance
(Ti, dT , C[0]∩Ti, ρ∩Ti, κi) (here Ti is the subtree rooted at
the i’th child of the root, and ρ ∩ Ti represents the subset

of requests that are made to nodes in subtree Ti). We let
c(T, dT , C[0], ρ, κ) represent the optimum (minimum) cost
for any set of configurations acting as a solution to this in-
stance. Supposing that C[t] is the optimum configuration
for request t, we observe that we can set κi[t] = |C[t] ∩ Ti|.
We can then use C[t] ∩ Ti as the configuration for instance
(Ti, dT , C[0] ∩ Ti, ρ ∩ Ti, κi) at time t, implying that:

c(T , dT , C[0], ρ, κ) =

Σ2
i=1c(Ti, dT , C[0] ∩ Ti, ρ ∩ Ti, κi) + (δ − δ′)Σ2

i=1g(κi)

Where δ′ is the distance from the root of any child subtree
Ti to one of its leaves.

Ideally, we would like to be able to select the κi online in
order to minimize the right-hand side of this equation. This
would correspond to selecting the optimum such vectors,
and we could prove (by induction) that we would thereby
have an optimum solution to k-server. The problem is that
these vectors κi must be constructed online and will there-
fore not be optimum. We notice that there are two pieces
to the right-hand side of the equation in question: the first
part represents the cost which is “passed down” to the next
level of the hierarchical process and the second part repre-
sents the cost of moving servers between subtrees. These
parts should be considered separately, because multiplying
the second part (cost of moving servers) by a competitive
factor will lose us only the same competitive factor for our
overall algorithm, whereas multiplying the first part (cost
passed down) by a factor will lead to a competitive ratio
exponential in the number of levels. We will define two
functions which approximate these two costs and solve the
problem online. This is essentially an instance of metrical
task systems [4]; however, this instance has special proper-
ties which enable us to design a novel algorithm with much
improved competitive ratio.

Definition 1. The Move Cost of vectors κi for instance
(T, dT , C[0], ρ, κ) is

MC = δΣ2
i=1g(κi)

Definition 2. For ease of notation, we define ρt as the
sequence of requests {ρ[0], ρ[1], ..., ρ[t]}.

The Hit Cost of a set of vectors κi for instance (T, dT , C[0], ρ, κ)
is the sum over child trees Ti of the sum over all times t of:

c(Ti, dT , C[0]∩Ti, ρ
t∩Ti, κi[t])−c(Ti, dT , C[0]∩Ti, ρ

t−1∩Ti, κi[t])

Our main result will follow from hierarchically applying an
algorithm to construct vectors κi to minimize the move cost
and hit cost. There are three main parts to this proof: first,
we need to show that there in fact exists a solution with
low move cost and hit cost, second, that we can find such a
solution, and third, that such solutions imply that the cost
passed down to the next level of the hierarchy is bounded.

Lemma 1. In general δ′ ≤ 1
α

δ (where α is the hierarchical
separation factor, as described in theorem 2.

Proof. We observe that if there are L levels in the tree,
we have δ = ΣL

i=1α
i and δ′ = ΣL−1

i=1 αi. The lemma follows
(regardless of the value of L).

We define HC(κi) as the hit cost on subtree Ti resulting
from κi, so that the total hit cost is HC = Σ2

i=1HC(κi).
We define TC(κi) = c(Ti, dT , C[0] ∩ Ti, ρ ∩ Ti, κi), so the
total cost is TC = Σ2

i=1TC(κi).

Theorem 4. There exists a set of vectors κi with total
move cost plus hit cost MC∗+HC∗ ≤ α+2

α−1
c(T, dT , C[0], ρ, κ).

Proof. If C[1], C[2], ..., C[m] are the optimum configura-
tions, we will use vectors κi defined by κi[t] = |C[t] ∩ Ti|.
These vectors guarantee c(T, dT , C[0], ρ, κ) = Σ2

i=1TC(κi)+
(δ−δ′)Σ2

i=1g(κi). This means we need to show that MC∗ +
HC∗ is at most:

α + 2

α − 1
(TC(κ1) + TC(κ2) + (δ − δ′)(g(κ1) + g(κ2)))

Subtracting the move cost from both sides, it will be suffi-
cient to show that HC(κi) ≤ TC(κi) + α+2

α−1
(δ − δ′)g(κi) −

δg(κi). We observe based upon lemma 1 that this implies it
will be sufficient to show that HC(κi) ≤ TC(κi) + 2δ′g(κi).

We will prove this by induction on the value of g(κi). If this
value is zero, then κi[t] is the same for all t. In this case
the hit cost summation telescopes and the two sides of the
equation will be equal. This is the base case; we continue
to the inductive case. Here, we can assume that g(κi) > 0
so there exists some first time τ where κi[τ] 6= κi[τ + 1].
We define a new vector κ′

i by letting κ′

i[x] = κi[x] for x >
τ . For x ≤ τ , we set κ′

i[x] = κi[τ + 1]. We observe that
g(κ′

i) = g(κi)−|κi[τ]−κi[τ +1]|. By applying the inductive
hypothesis, the desired inequality will hold for κ′

i:

HC(κ′

i) ≤ TC(κ′

i) + 2δ′g(κ′

i)

We observe that most terms in the hit cost summation for κi,
κ′

i are the same, and the terms which are different telescope
in each sum. This yields:

HC(κi) − HC(κ′

i) =

c(Ti, dT , C[0] ∩ Ti, ρ
τ ∩ Ti, κi[τ])

−c(Ti, dT , C[0] ∩ Ti, ρ
τ ∩ Ti, κ

′

i[τ])

There is some set of configurations for κi. Let these be
C[0], C[1], ..., C[m]. These configurations have the sum of
their matching costs equal to TC(κi). We will modify these
configurations to get a sequence of configurations for κ′

i. In

particular, we set C′[x] = C[x] for x > τ . For x = τ , we
make use of corollary 2 to find a configuration C′[τ] such
that:

c(C′[τ], C′[τ + 1]) ≤ 2δ′|κi[τ]− κi[τ + 1]|+ c(C[τ], C[τ + 1])

c(Ti, dT , C[0] ∩ Ti, ρ
τ ∩ Ti, κ

′

i[τ], C′[τ]) ≤

c(Ti, dT , C[0] ∩ Ti, ρ
τ ∩ Ti, κi[τ], C[τ]) − HC(κi) + HC(κ′

i)

Of course, TC(κ′

i) cannot exceed the cost of this set of con-
figurations, so we have:

TC(κ′

i) ≤ TC(κi) + HC(κ′

i) − HC(κi) + 2δ′(g(κi) − g(κ′

i))

Substituting gives us the desired inequality.

Theorem 5. There is a randomized online algorithm which
can construct a set of vectors κi such that, if there exists a
set of vectors with move cost MC∗ and hit cost HC∗, we
guarantee E[MC] ≤ MC∗ + HC∗ and E[HC] ≤ MC∗ +
HC∗.

The proof of theorem 5 is our main algorithmic result, and
will be the subject of the next section. For now, we will
assume this theorem in order to see how it leads to a result
for the k-server problem in general.

Theorem 6. Suppose we compute a set of vectors κi with
hit cost HC and move cost MC. Then these vectors guar-
antee Σ2

i=1c(Ti, dT , C[0] ∩ Ti, ρ ∩ Ti, κi) ≤ HC + 1
α

MC.

Proof. Note that the left and right sides of the desired
inequality look very much like the sums over i of TC(κi)
and HC(κi) respectively, with the addition of the move cost
to the right side. It will be sufficient to show that:

TC(κi) ≤ HC(κi) + δ′g(κi)

We will show this by induction on the value of g(κi). For the
base case, if this value is zero then the hit cost summation
telescopes and the two sides of the inequality will be equal.
Otherwise, we let τ be the minimum such that κi[τ] 6= κi[τ+
1]. We define κ′

i by κ′

i[x] = κi[x] for x > τ and κ′

i[x] =
κi[τ +1] for x ≤ τ . We observe that g(κ′

i) = g(κi)−|κi[τ]−
κi[τ + 1]|, and that the inductive hypothesis can thus be
applied to κ′

i. Because most terms in the hit cost summation
are identical, we have:

HC(κi)−HC(κ′

i) =

c(Ti, dT , C[0], ρτ , κi[τ]) − c(Ti, dT , C[0], ρτ , κ′

i[τ])

There is some set of configurations which comprise the cheap-
est solution for κ′

i; let these configurations be C′[0], C′[1], ...
where their pairwise matching costs sum to TC(κ′

i). We
will construct a set of configurations for κi, then argue that
TC(κi) is at most the sum of pairwise matching costs for
these configurations. For x > τ we let C[x] = C′[x]. We
set C[τ] according to corollary 2, guaranteeing that C[τ]
overlaps C′[τ] as much as possible and the cost to end in
configuration C[τ] is at most:

c(Ti, dT , C[0], ρτ , κi[τ], C[τ]) ≤

c(Ti, dT , C[0], ρτ , κ′

i[τ], C′[τ]) + HC(κi) − HC(κ′

i)

The cost represented by TC(κi) is at most the sum of the
matching costs of the C[x]. For x up to τ we have cost
c(Ti, dT , C0, ρ

τ , κi[τ], C[τ]). The matching cost between C[τ]
and C[τ + 1] will be very similar to the cost of matching
C′[τ] and C′[τ + 1], except that we have g(κi)− g(κ′

i) fewer
servers to match. For each server we don’t have to match
(representing a difference in total number of servers between
configurations), we must pay δ′. For matching costs C[τ +1]
onward, we pay the same as we paid for κ′

i, so we have:

TC(κi) ≤ TC(κ′

i) + HC(κi) − HC(κ′

i) + δ′(g(κi) − g(κ′

i))

Substituting from the various equations, summing this over
all i, and recalling that δ′ ≤ 1

α
δ gives the desired inequal-

ity.

Theorem 7. We can solve k-server on a binary tree with
the properties described in theorem 2 with an expected com-
petitive ratio Θ(log ∆) provided α = Ω(log ∆).

Proof. We solve the problem hierarchically as described.
The actual cost paid to move servers will be bounded by the
total move cost. For level j, let zj represent the sum over
subtrees rooted at level j of c(T, dT , C[0]∩T, ρ∩T, κT). Let
L ≤ log ∆ be the number of levels. At the top level, we
have zL = OPT . By theorem 4 there exists a set of solu-
tions at level j with total hit cost plus move cost bounded
by α+2

α−1
zj . We then find solutions with expected hit cost

and move cost both bounded by this value according to the-
orem 5. It follows by theorem 6 that the next level has

E[zj−1] ≤ (α+2)(α+1)
α(α−1)

zj . The expected move cost is also

bounded by zj , so summing this up we have a total move
cost of at most: Σjzj and using martingales to bound the ex-

pected cost we get a geometric sum. If we let A = (α+2)(α+1)
α(α−1)

then the summation will look like AL
−1

A−1
. If we set A ≤ 1+ 1

L

then this will give us an O(L) bound as desired. Making
use of the definition of A and solving for α shows that for
α = Ω(L) we can satisfy this inequality.

6. ONLINE ALGORITHM
It remains to describe our local algorithm for determining
how to partition servers between subtrees, and to prove the-
orem 5. This is essentially an instance of metrical task sys-
tems, where the possible states are equally spaced points

along a line and refer to partitions of servers between the left
and right subtrees. Each state is 2δ away from its neighbors,
representing the cost to move a server between subtrees.

We first observe that the costs applied to the various states
at each time t look like the change in hit cost. If the request
ρ[t] ∈ T1 then we have:

cx[t] =

c(T1, dT , C[0] ∩ T1, ρ
t ∩ T1, x)

−c(T1, dT , C[0] ∩ T1, ρ
t−1 ∩ T1, x)

Otherwise if request ρ[t] ∈ T2 then we have:

cx[t] =

c(T2, dT , C[0] ∩ T2, ρ
t ∩ T2, κ[t] − x)

−c(T2, dT , C[0] ∩ T2, ρ
t−1 ∩ T2, κ[t] − x)

By applying corollary 1, we see that this will be either
non-decreasing or non-increasing as we traverse the possi-
ble states.

We consider these cost vectors to arrive one at a time on-
line, as does the current number of servers κ[t]. Our goal is
to minimize the total cost (essentially to solve this metrical
task system instance). We define the work function value for
a state to be the minimum cost way to end in that state; thus
for state x we have wx[t] = min{wx[t − 1] + cx[t], wx−1[t] +
2δ, wx+1[t] + 2δ}. We will essentially try to stay in the state
with minimum wx[t] at each time, but we must add some
randomization to the process to prevent the adversary from
causing us to move between states (thus move servers be-
tween subtrees) with too much frequency. The algorithm is
described below.

Algorithm 1 SUBPROBLEM(distance 2δ, initial state si):
outputs a sequence of states as a solution to the above prob-
lem
1: generate a random number r between -1 and 1.
2: output initial state x[0] corresponding to C[0]
3: for each timestep t do

4: current number of servers, κt arrives
5: cost vector cx[t]=(c0[t], c1[t], ..., cκt

[t]) arrives
6: calculate the work function value for each state wx[t]
7: find the state x[t] that minimizes Xx[t] = wx[t] −

xr(2δ).
8: output the current state x[t]

Theorem 8. Algorithm 1 pays expected hit cost ≤ the to-
tal cost of the optimum offline solution to the metrical task
system instance.

Proof. We claim that over time 0 through t our algo-
rithm pays hit cost at most Xx[t][t]−Xx[0][0] where Xx[t] =
wx[t] − 2rxδ. We will prove this by induction.

For the base case, t=0, there is no hit cost yet, and Xx[t][t]−
Xx[0][0] = 0. Inductively, we will consider two cases. If
x[t] = x[t − 1] then the hit cost paid at time t will be ex-
actly cx[t][t]. We observe that if wx[t] = wx+1[t] + 2δ or
wx[t] = wx−1[t] + 2δ, then because r is between positive
and negative one, the probability of selecting x[t] = x will
be zero. It follows that for whatever state x we return, we
must have wx[t] = wx[t − 1] + cx[t]. From here we con-
clude that Xx[t][t] = Xx[t−1][t − 1] + cx[t][t] and that our
algorithm pays hit cost cx[t][t], completing the induction.
The second case has x[t] 6= x[t − 1]. However, we can con-
sider cost to arrive in ǫ sized increments without changing
the behavior of the algorithm, and observe that at the mo-
ment we transition from one state to another, the values of
wx[t−1][t]−2rx[t−1]δ = wx[t][t]−2rx[t]δ. So at this moment
we pay no hit cost (although we do pay to move servers) and
the value of Xx[t] remains unchanged.

The overall hit cost paid by our algorithm is therefore bounded
by Xx[t][t] − Xx[0][0]. Since the initial work function value
at x[0] is zero, this is at most:

wx[t][t] − 2rδx[t] + 2rδx[0]

Since we select x[t] to minimize the value of wx[t][t]−2rδx[t],
we can conclude that if the optimum algorithm would have
final partition p, then wx[t][t] − r2δx[t] ≤ wp[t] − 2rδp. Of
course, the value of wp[t] is just the total cost of the optimum
offline solution, so we have our total hit cost bounded by:

OPT + 2rδ(x[0] − x[p])

Obviously this depends upon r, but in expectation r = 0 so
the expected hit cost paid by our algorithm looks like the
optimum total cost for the offline solution.

Theorem 9. Algorithm 1 pays expected move cost ≤ the
total cost of the optimum offline solution to the metrical task
system instance.

Proof. Let M [t] be the total move cost paid by our al-
gorithm up until time t. Define a potential function:

φ[t] = 2kδ −

k−1
X

x=0

|wx+1[t] − wx[t]|

We will show that at any timestep t, E[M [t]] + 1
2
φ[t] ≤

OPT [t], where OPT [t] is the total cost paid by the optimum
solution so far.

By application of corollary 1, we will assume that, c0[t] ≤
c1[t] ≤ . . . ≤ ck[t] (the other case where there is a request on
the opposite child subtree will be symmetrc). We can view
timestep t as a series of smaller timesteps: c0

ǫ
steps in which

ǫ cost is put on all states, followed by c1−c0
ǫ

steps in which ǫ
work is put on all states except c0, etc. Notice that the cost
of the optimum offline solution cannot get worse because of
this change, while no online algorithm can achieve a lower
cost.

We will show that E[M [t]] + 1
2
φ[t] ≤ OPT [t] by induction

on t. The base case is t = 0. Here, E[M [t]] = OPT [t] = 0,
since no requests have arrived yet. Since we are given an
initial state, wx[0] = 0 for exactly one state. For all other
states, wx[0] = 2δ|x−x[0]| (the cost to move from our initial
state to state x). So

φ[0] = 2kδ −

k−1
X

x=0

|wx+1[0] − wx[0]| = 2kδ −

k−1
X

i=0

2δ = 0

Now, assume for timestep t − 1, E[M [t − 1] + 1
2
φ[t − 1] ≤

OPT [t−1]. Consider how each term will change at timestep
t.

By definition of the work function, OPT [t] = minx(wx[t]).

Our expected move cost is just the probability that we move
times the distance that we would move. Suppose we are
in state x. By definition of the algorithm, there is only
one state, y, to which we might move (this is the cheapest
state to which no cost was added). Additionally, since we
are considering ǫ size cost, there is only one state x from
which we might move; also note that x > y because of our
assumption about the costs. If there are two valid states
to move from, we will just shrink the timesteps until there
is only one valid state to move from. Now, the probability
that we move in this step is exactly the probability that our
random number r is high enough that we would move during
this timestep but low enough that we would not have moved
given the previous work function values. This requires both
Xx[t−1] ≤ Xy[t−1] and Xy[t] ≤ Xx[t]. The first inequality
implies that wx[t−1]−wy[t−1] ≤ 2r(x−y)δ and the second
implies that wx[t] − wy[t] ≥ 2r(x − y)δ. Since no cost was
added to y and ǫ cost was added to x, we have:

wx[t− 1]−wy[t− 1] ≤ 2r(x− y)δ ≤ wx[t− 1]−wy[t− 1] + ǫ

This means that r must fall within a range of ǫ
2(x−y)δ

and

since r is chosen uniformly between plus and minus one we
have:

Pr[move x to y] ≤
ǫ

4(x − y)δ

If we do move from x to y, we pay exactly 2δ(x − y). This
gives us an expected move cost = ǫ

2
.

Finally, we examine φ[t]. For most pairs of states wx+1[t] −
wx[t] = wx+1[t−1]−wx[t−1], with the exception of one pair
of states where they differ by ǫ. Depending on which was
larger, we will have φ[t] = φ[t − 1] − ǫ or φ[t] = φ[t − 1] + ǫ.
The first case occurs when the minimum work value did
not actually increase, and thus when OPT [t] = OPT [t− 1],
whereas the second occurs when OPT [t] = OPT [t − 1] + ǫ.

This shows that, at each timestep t, E[M [t]] + 1
2
φ[t] ≤

OPT [t]. Notice that φ[t] ≥ 0 for all t, since |wx+1[t] −

wx[t]| ≤ 2δ by definition of the work function (we could
handle request t and end in state x + 1 by ending in state x
and then paying 2δ to move to x + 1). Therefore, after the
last request has arrived, we can say that E[M] ≤ OPT .

7. REFERENCES
[1] Y. Bartal. Probabilistic approximation of metric

spaces and its algorithmic applications. 37th IEEE
Symposium on Foundations of Computer Science,
1996.

[2] Y. Bartal. On approximating arbitrary metrics by tree
metrics. 30th ACM Symposium on Theory of
Computing, 1998.

[3] Y. Bartal, B. Bollobás, and M. Mendel. A
Ramsey-type Theorem for Metric Spaces and its
Applications for Metrical Task Systems and Related
Problems. 42nd IEEE Symposium on Foundations of
Computer Science, 2001.

[4] Y. Bartal, A. Blum, C. Burch, and A. Tomkins. A
polylog(n)-competitive algorithm for metrical task
systems. ACM Symposium on Theory of Computing,
1997.

[5] A. Blum, H. Karloff, Y. Rabani, M. Saks. A
Decomposition Theorem for Task Systems and Bounds
for Randomized Server Algorithms. 33rd IEEE
Symposium on Foundations of Computer Science,
1992.

[6] Y. Bartal, E. Koutsoupias. On the competitive ratio of
the work function algorithm for the k-server problem.
17th Symposium on Theoretical Aspects of Computer
Science, 2000.

[7] Y. Bartal, M. Mendel. Randomized k-Server
Algorithms for Growth-Rate Bounded Graphs.
Symposium on Discrete Algorithms, 2004.

[8] M. Chrobak, H. Karloff, T. Payne, S. Vishwanathan.
New Results on Server Problems. Symposium on
Discrete Algorithms, 1990.

[9] M. Chrobak and L. Larmore. The server problem and
on-line games. On-line algorithms: proceedings of a
DIMACS workshop. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science,
7:11-64, 1992.

[10] M. Chrobak and L. Larmore. HARMONIC is
three-Competitive for two servers. Theoretical
Computer Science, 98:339-346, 1992.

[11] M. Chrobak and L. Larmore. An Optimal On-line
Algorithm for k-Server on Trees. SIAM Journal on
Computing, 20(1), 1991.

[12] M. Chrobak and J. Sgall. A simple analysis of the
harmonic algorithm for two servers. Information
Processing Letters, 75:75-77, 2000.

[13] B. Csaba and S. Lodha. A randomized on-line
algorithm for the k-server problem on a line. Technical
Report 2001-34, DIMACS, 2001.

[14] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight
bound on approximating arbitrary metrics by tree
metrics. ACM Symposium on Theory of Computing,
2003.

[15] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator,
and N. Young. Competitive Paging Algorithms.
Journal of Algorithms, 12:685-699, 1991.

[16] A. Fiat and M. Mendel. Better Algorithms for Unfair
Metrical Task Systems and Applications. SIAM
Journal on Computing, 32:1403-1422, 2003.

[17] A. Fiat, Y. Rabani, Y. Ravid. Competitve k-Server
Algorithms. 31st IEEE Symposium on Foundations of
Computer Science, 1990.

[18] E. Koutsoupias. Weak adverseries for the k-server
problem. 40th IEEE Symposium on Foundations of
Computer Science, 1999.

[19] E. Koutsoupias and C. Papadimitriou. On the k-server
conjecture. Journal of the ACM 42(5), 1995.

[20] M. Manasse, L. McGeoch, and D. Sleator.
Competitive Algorithms for Server Problems. Journal
of Algorithms (11, 208-230), 1990.

[21] S. Seiden. Unfair Problems and Randomized
Algorithms for Metrical Task Systems. Information
and Computation, 148:219-240, 1999.

[22] S. Seiden. A General Decomposition Theorem for the
k-Server Problem. European Symposium on
Algorithms, 2001.

