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Abstract— In a landmark paper [32], Papadimitriou introduced
a number of syntactic subclasses of TFNP based on proof styles
that (unlike TFNP) admit complete problems. A recent series
of results [11], [16], [5], [6], [7], [8] has shown that finding
Nash equilibria is complete for PPAD, a particularly notable
subclass of TFNP. A major goal of this work is to expand
the universe of known PPAD-complete problems. We resolve
the computational complexity of a number of outstanding open
problems with practical applications.

Here is the list of problems we show to be PPAD-complete,
along with the domains of practical significance: Fractional Stable
Paths Problem (FSPP) [18] - Internet routing; Core of Balanced
Games [34] - Economics and Game theory; Scarf’s Lemma [34] -
Combinatorics; Hypergraph Matching [1]- Social Choice and Pref-
erence Systems; Fractional Bounded Budget Connection Games
(FBBC) [26] - Social networks; and Strong Fractional Kernel [2]-
Graph Theory. In fact, we show that no fully polynomial-time
approximation schemes exist (unless PPAD is in FP).

This paper is entirely a series of reductions that build in non-
trivial ways on the framework established in previous work. In the
course of deriving these reductions, we created two new concepts -
preference games and personalized equilibria. The entire set of new
reductions can be presented as a lattice with the above problems
sandwiched between preference games (at the “easy” end) and
personalized equilibria (at the “hard” end). Our completeness
results extend to natural approximate versions of most of these
problems. On a technical note, we wish to highlight our novel
“continuous-to-discrete” reduction from exact personalized equilib-
ria to approximate personalized equilibria using a linear program
augmented with an exponential number of “min” constraints of a
specific form. In addition to enhancing our repertoire of PPAD-
complete problems, we expect the concepts and techniques in this
paper to find future use in algorithmic game theory.
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1. INTRODUCTION

Intuitively, the notion of stability implies the absence
of oscillations over time and encompasses the concepts
of fixed points and equilibria. Stability is important in a
variety of fields ranging from the practical – the Internet
– to the theoretical – combinatorics and game theory. For
important practical systems (e.g. Internet), the existence and
computational feasibility of stable operating modes is of
profound real-world significance. On the more abstract front,
the study of stable solutions to combinatorial problems has
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a distinguished tradition dating back to, at least, the Gale-
Shapley algorithm [14]. It is often the case, as with Nash’s
celebrated theorem [30], that fractional stable points are
guaranteed to exist even when integral points do not.

In this paper, we focus on fractional stability and introduce
two new fractional stability problems. The first, Preference
Games, is a PPAD-complete problem with a simple def-
inition that can be reduced to a number of pre-existing
problems. The other, Personalized Equilibria for matrix
games, is also PPAD-complete and generalizes several pre-
existing problems. We use these new tools to resolve the
complexity of four pre-existing problems with applications
to a variety of different domains. Below we provide elaborate
motivation for two of the pre-existing problems - Fractional
Stable Paths Problem (FSPP) and Core of Balanced
Games. The others are: Scarf’s lemma, a fundamental
result in combinatorics with several applications [34], and
Fractional Hypergraph Matching [1], useful for modeling
preferences in social-choice and economic systems. In the
full version of this paper ([23]), we use the same tools to also
resolve the complexity of FBBC, the fractional version of
the Bounded Budget Connection (BBC) game [26], which
models decentralized overlay network creation and social
networks, and Strong Fractional Kernel [2], of relevance
to structural graph theory.

Fractional Stable Paths Problem. Griffin, Shepherd and
Wilfong [17] showed how BGP (Border Gateway Protocol,
the routing mechanism of the Internet) can be viewed as a
distributed mechanism for solving the Stable Paths Problem
(SPP). They showed that there exist SPP instances with no
integral stable solutions, a phenomenon that would explain
why oscillation has been observed in Internet routes. Route
oscillation is viewed as a negative, since it imposes higher
system overheads, reorders packets, and creates difficulties
for tracing and debugging. Subsequently, Haxell and Wil-
fong [18] introduced FSPP: a natural fractional relaxation
of SPP with the property that a (fractional) stable solution
always exists. Intuitively, FSPP can be viewed as a game
played between Autonomous Systems that each assign frac-
tional capacities to the different paths leading to a destination
in such a way that they maximize their utility without
violating the capacity constraints of downstream nodes.
Understanding the computational feasibility of finding the



equilibria of this game could help to develop techniques for
stable routing in the Internet.

Core of balanced games. The notion of core in coop-
erative games is analogous to that of Nash equilibrium in
non-cooperative games. Informally, a core is the set of all
outcomes in which no coalition of players has an incentive
to secede and obtain a better payoff, either viewed as a set
(transferable utilities) or individually (non-transferable utili-
ties). Necessary and sufficient conditions for the nonempti-
ness of the core in games with transferable utilities is
given by the classic Bondareva-Shapley theorem [4], [35],
which also yields a polynomial-time algorithm for finding an
element in a nonempty core. Subsequently, in a celebrated
paper, Scarf [34] generalized their result, developed certain
sufficient balance conditions for the nonemptiness of the
core in games with non-transferable utilities, and presented
an algorithm for finding a point in the core. As noted by
Jain and Mahdian in Chapter 15 of [31], “However, the
worst case running time of this algorithm (like the Lemke-
Howson algorithm) is exponential.” Resolving the computa-
tional feasibility of finding the core in balanced games is of
considerable significance in the theory of cooperative games.

Personalized equilibria for matrix games - a gen-
eralization. Personalized equilibria is a solution concept
intended to generalize fractional stability problems. We are
given any matrix game – a set of players, a set of actions for
each player, and a definition of the utility for each player for
any combination of actions. In a personalized equilibrium,
each player may choose any distribution over his actions, and
(unlike a traditional matrix game) each player may match
his actions to those of the other players in such a way as
to maximize his individual payoff. To better illustrate the
concept, let us imagine a business manufacturing and selling
outfits consisting of a pant (solid or striped) and a shirt
(cotton or wool). The manager of the location producing
pants decides on the ratio of striped pants produced to solid
pants while the manager at the location producing shirts
decides on the ratio of cotton shirts produced to wool shirts.
Each manager is then given half the total number of shirts
and pants (in the proportions decided) and has to match them
into outfits and sell them at her own location in such a way
as to maximize her individual profits.

Preference games - a specialization. In a preference
game, the set of actions for each player is just the set of all
players. Each player also has an ordinal preference list across
the actions. Each player must choose some distribution of
weights across the action set such that (a) it does not assign
more weight to another player than that player assigns to
itself, and (b) no weight may be moved from a lower
preference action to a higher preference action. To better
illustrate this problem, consider a world of bloggers where
each blogger has a choice of actions. They can fill their blogs
with original content or they can copy from the original
content on others’ blogs. Naturally, each blogger has a

preference order over the content of the different bloggers
(as well as their own). Also, of course, more cannot be
copied from another blog than the amount that other blogger
has written. The preference game models each blogger’s
choice of what percentage of his blog is original and what
percentages are copied from which other blogs. Preference
games are reducible in polynomial-time to all the problems
considered in this paper.

1.1. Our Contributions

Hewing to the dictum that a picture is worth a thousand
words, we present a diagram (Figure 1) showing the different
reductions. The takeaway is that all of these problems are
PPAD-complete. To be precise, we show the exact versions
of these problems are in PPAD, and our reductions extend
to natural approximation versions to show that there are
no fully polynomial-time approximation schemes (unless
PPAD is in FP). Our reductions build on prior work in
intricate and involved fashion.

From a conceptual standpoint, we believe there is merit
in the definitions of preference games and personalized
equilibria. Preference games are very simple to describe and
model a number of real-world situations, such as the blogger
example mentioned earlier. However, we can show that the
set of equilibria of preference games can be nonconvex
and in fact, are hard even to approximate. Personalized
equilibria of matrix games are, we believe, a fascinating
solution concept which constitute a natural generalization
of a variety of predefined games, such as FSPP and FBBC.
Our results on the hardness of approximating personalized
equilibria for k-player games apply for k ≥ 4. We show in
the full version [23] that finding personalized equilibria of
2-player games is in FP. The k = 3 case is open.

1.2. Related Work

Nash profoundly changed game theory by demonstrating
the existence of mixed equilibria [29], [30]. Decades later, on
the computational front [31], the complexity class TFNP
was introduced by Megiddo and Papadimitriou [28]. Pa-
padimitriou’s seminal work [32] not only defined a number
of syntactic subclasses of TFNP (including PPAD), but
also proved that a variety of problems, including discrete
versions of Brouwer’s fixed point theorem and Sperner’s
lemma, are PPAD-complete. The problem of finding Nash
equilibria was left open. Recently, a series of papers com-
prising different author combinations of the two teams,
Daskalaikis-Goldberg-Papadimitriou [11], [16] and Chen-
Deng-Teng [5], [6], [7], [8] culminated in establishing that
even approximating Nash equilibria with two players, 2-
NASH, is hard. The reductions in our work build on the
framework established in these papers.

BGP has been the focus of much attention since its
inception [33], [36]. As mentioned earlier SPP was intro-
duced by Griffin, Shepherd and Wilfong [17] to explain



the nonconvergence of BGP [38]. Haxell and Wilfong [18]
defined FSPP and proved the existence of an equilibrium
using Scarf’s lemma and a compactness-type argument.
They left open the complexity of finding an equilibrium. Our
reduction from personalized equilibria to End-of-the-Line
is a different approach that generalizes the Haxell-Wilfong
existence result while preserving computational tractability.
Kintali [22] presented a distributed algorithm for finding an
ε-approximation for FSPP that is guaranteed to converge,
although no bounds are given on the time-to-convergence
(our results imply a polynomial time bound is unlikely).

Cooperative games, the study of mechanisms to sus-
tain and enforce cooperation among willing agents, has
a rich and extensive literature [9], [15], [10], [13], [25].
As mentioned earlier, Scarf [34] generalized the classical
Bondareva-Shapley theorem [4], [35] and developed an
algorithm for finding a point in the core of balanced games
with non-transferable utilities. More recently, Markakis
and Saberi [27], Immorlica, Jain and Mahdian [20] studied
certain classes of games with non-transferable utilities in
the context of the Internet; however, it is unclear that
their problems are even in TFNP. Scarf’s paper [34] also
contains Scarf’s lemma, an important result in combinatorics
which played a crucial part in the FSPP existence proof of
Haxell and Wilfong [18]. Aharoni and Fleiner [1] proved
that every hypergraphic preference system has a fractional
stable matching. This proof is based on Scarf’s lemma.
The computational complexity of these problems was left
unresolved.

2. THE CLASS PPAD

A major contribution of this paper is to expand the set of
problems known to be PPAD-complete. The class PPAD
(Polynomial Parity Argument in a Directed graph) was
introduced by Papadimitriou in [32], which defined a number
of syntactic classes in the semantic class TFNP, or the set
of all total search problems. A search problem S consists
of a set of inputs IS ⊆ Σ∗ such that for each x ∈ IS
there is an associated set of solutions Sx ⊆ Σ|x|

k

for some
integer k. For each x ∈ IS and y ∈ Σ|x|

k

, it is decidable in
polynomial time whether or not y is in Sx. A search problem
is total if Sx 6= ∅ for all x ∈ IS . TFNP is the set of all
total search problems [28]. Since every member of TFNP
is equipped with a mathematical proof that it belongs to
TFNP, a number of syntactic classes can be defined based
on their proof styles. The complexity class PPAD is the
class of all search problems whose totality is proved using
a directed parity argument.

Problems in PPAD are reducible to the END OF THE
LINE problem. In END OF THE LINE, we are given a finite
directed graph in which each node has at most one outgoing
edge and at most one incoming edge. The input to the
problem is not a complete list of the nodes and edges; such
a list may be exponentially large in the size of the input.

Instead, we are given an initial source node and a circuit.
The circuit takes a node name as input and in polynomial
time returns the next node (the other end of the outgoing
edge from the input node) and the previous node (the other
end of the incoming edge into the input node). If the input
node is a source (or sink), null is returned as the previous
(or next) node. The problem for END OF THE LINE is to
find a sink or a source other than the initial source.

Throughout this paper, we use PROBLEM A ≤P PROBLEM
B to mean “There exists a polynomial time reduction from
finding a stable point in PROBLEM A to finding a stable
point in PROBLEM B.”

3. PREFERENCE GAMES

In this section, we define a very simple game, the pref-
erence game. Each player has a preference list across the
set of players and must assign a weight to each player. No
player may put more weight on another player than that
player puts on itself. A set of weight assignments is stable
if no player can move weight from a less preferred player
to a more preferred player. We precisely define preference
games in Section 3.1. In Section 3.2, we show that finding
an equilibrium in preference games is PPAD-hard, and in
Section 3.3, we define an ε-equilibrium for the preference
game. Our PPAD-hardness result can be extended to
approximate equilibria (see the full version [23]). Our notion
of approximation is very general and carries though all of
the reductions in later sections, so we prove that there are
no fully polynomial-time approximation schemes (unless
PPAD is in FP) for computing stable points in any of the
PPAD-complete problems discussed in this paper. Finally,
in section 3.4, we define the degree of a preference game
and show that it is PPAD-hard to find an equilibrium even
in a preference game with constant degree.

3.1. Definition

In a preference game with a set S of players, each player’s
strategy set is S. Each player i ∈ S has a preference relation
�i among the strategies. For strategies j and k, j �i k
indicates that player i prefers j at least as much as k.
When it is clear from context that we are talking about the
preferences for player i, we write j � k instead of j �i k.
Each player i chooses a weight distribution, which is an
assignment wi : S → [0, 1] satisfying two conditions: (a) the
weights add up to 1:

∑
j∈S wi(j) = 1; and (b) the weight

placed by i on j is no more than the weight placed by j on
j: wi(j) ≤ wj(j) for all i, j ∈ S.

Given weight assignments wi, w′i, and w−i such that
(wi, w−i) and (w′i, w−i) are both feasible, we say wi is
lexicographically at least w′i (with respect to w−i) if for
all j ∈ S,

∑
k�ij wi(k) ≥

∑
k�ij w

′
i(k). We say that wi

is lexicographically maximal if (wi, w−i) is feasible and
wi is lexicographically at least every assignment w′i such
that (w′i, w−i) is feasible. An equilibrium in a preference



game is an assignment w = {wi : i ∈ S} such that wi is
lexicographically maximal for all i ∈ S.

Every preference game has an equilibrium, a fact which
can be shown using standard fixed-point theorems.

3.2. PPAD Hardness

In this section, we study PREFERENCE GAME, the prob-
lem of finding an equilibrium in a preference game. If the
preferences exhibit symmetry, then it is easy to find an
equilibrium in which all weights are either 0 or 1 (see [23]).
With general preferences, however, the set of equilibria may
have a more complicated structure. There exist instances for
which the set of equilibria is not convex.

We show that PREFERENCE GAME is PPAD-hard.
Based on the framework in [11], we can reduce finding
an exact equilibrium to the PPAD-complete problem 3-D
BROUWER if we can show how to create a set of gadgets
in the preference game to do simple computations and logic
operations. In our preference game gadgets, each player will
assign to itself an amount of weight ∈ [0, 1] which equals the
result of the computation or logic operation. Descriptions of
these gadgets follow. The complete reduction can be found
in the full version [23]), including correctness analysis for
each of these gadgets.

For the gadget descriptions, assume we are given player
X that plays itself with weight v1 in any equilibrium, and
player Y that plays itself with weight v2 in any equilibrium.
For the first three gadgets, v1, v2 ∈ {0, 1}. For the rest of the
gadgets, v1, v2 ∈ [0, 1]. L(X) is the preference list for node
X . Additional nodes are required for some of these gadgets,
as indicated in the description of how to create each gadget.

R = OR(X,Y ). Plays itself: max(1, v1 + v2) = v1 ∨ v2.
To create: L(R1) = (X,Y,R1), L(R) = (R1, R).

N = NOT(X). Plays itself: 1− v1 = ¬v1.
To create: L(N) = (X,N).

A = AND(X,Y ). Plays itself: v1 ∧ v2.
To create: A = NOT(OR(NOT(X),NOT(Y ))).

S = SUM(X,Y ). S = OR(X,Y ).
D = DIFF(X,Y ). Plays itself: if v1 > v2, v1 − v2. else,

0.
To create: D = NOT(SUM(NOT(X), Y ))

C = COPY(X). Plays itself: v1.
To create: C = NOT(NOT(X))

M = DOUBLE(X). Plays itself: min(1, v1 ∗ 2)
To create: M1 = COPY(X), M = SUM(X,M1).

L = LESS(X,Y ). Plays itself: (given εl, 0 < εl ≤ 1
2 )

v1 − v2 ≥ εl then 1. if v1 ≤ v2, then 0.
To create: D = DIFF(X,Y ). M1 = DOUBLE(D). For
i = 1 to − log εl, Mi+1 = DOUBLE(Mi). L = the last
DOUBLE node

H = HALF(X). Plays itself: v1/2.
To create: L(H1) = (X,H1). L(H2) = (H1, H3, H2).
L(H3) = (H1, H,H3). L(H) = (H1, H2, H).

Based on the above gadgets and the framework from [11],
we get the following.

Theorem 3.1. 3-D BROUWER ≤P PREFERENCE GAME.

3.3. Approximate equilibria

Given the hardness of finding exact equilibria in prefer-
ence games, a natural next question is whether it is easier to
find approximate equilibria. We define an ε-equilibrium of a
k-player preference game to be a set of weight distributions
w1, . . . , wk that satisfy the following conditions for every
player i: (a)

∑
j wi(j) = 1; (b) for each j, wi(j) ≤

wj(j) + ε; and (c) for each j, either
∑
`:`�j wi(`) ≥ 1 − ε

or |wi(j) − wj(j)| ≤ ε. The problem of finding an ε-
equilibrium is ε-APPROXIMATE PREFERENCE GAME.

BROUWER ≤P ε-APPROXIMATE PREFERENCE GAME.
Thus, it is PPAD-hard to find an ε-equilibrium for pref-
erence games for ε inverse polynomial in n. This can be
shown by adjusting the PPAD-hardness reduction to start
with a higher dimensional fixed point problem, BROUWER,
as in [7], [8]. The gadgets described above can be analysed
carefully to show that each only slightly amplifies errors in
the input, so that following each gadget with a LESS gadget
will reduce the errors back to at most εl. For a full proof,
refer to [23].

3.4. Constant degree preference games

For a given preference game, define in(v) (resp., out(v))
of a player v to be the set {u : v �u u} (resp., {u : v ≺v
u}). We define the in-degree (resp., out-degree) of a player
v to be |in(v)| (resp., |out(v)|). The degree of the player is
defined to be the sum of the in-degree and the out-degree of
the player. The degree of the preference game is defined to
be the maximum degree of any node. Notice that this is the
same as the degree in a directed graph in which each player
is represented by a node, and an edge from u to v means that
u prefers v over itself. DEGREE d PREFERENCE GAME is
the problem of finding an equilibrium in a preference game
with constant degree d.

The players used to show PPAD-hardness in Section
3.2 all have out-degree at most 2, and the in-degree can
be reduced using COPY gadgets to ensure in-degree at
most 1 for all players except COPY players, and in-degree
at most 2 for COPY players (which have out-degree 1).
This immediately implies that it is PPAD-hard to find an
equilibrium even in a preference game with degree 3. We
will use this fact in later sections, where we show PPAD-
hardness of several other problems via reductions from
constant degree preference games (and specifically from
DEGREE 3 PREFERENCE GAME). In the full version [23],
we also give an explicit reduction to show that PREFERENCE
GAME ≤P DEGREE d PREFERENCE GAME.



4. PERSONALIZED EQUILIBRIA

In this section, we introduce a new notion of equilibrium
for matrix games, in which a player may individually match
her strategies to her opponents strategies without obeying
a product distribution. Since this equilibrium allows dif-
ferent players to simultaneously choose different matchings
across the strategies, we call this a personalized equilibrium.
Section 4.1 contains a formal definition. In Section 4.2,
we characterize the set of all personalized equilibria in
a k-player game. In Section 4.3, we show that finding a
personalized equilibrium is PPAD-complete.

4.1. Definition

Suppose we are given a k-player matrix game between
players 1, . . . , k. Each player i has strategy set Si. We
are also given a utility function for each i specified by
ui : E → R, where E =

∏
j Sj . Now, given probability

distributions pj(Sj) for each j 6= i, a best response for
player i (using traditional Nash payoffs) is defined by the
pi(Si) that satisfies the following, where w is a weight
function over e ∈ E.

max
∑
e∈E

w(e)ui(e)

w(e) =
∏

s∈e∩Sj

pj(s) for all e ∈ E

w(e) ≥ 0 for all e ∈ E

The correlator in a correlated equilibrium [3] relaxes the
requirement that w be a product distribution; however, w
does satisfy, among other conditions, the projection con-
straint

∑
e:s∈e w(e) = pj(s) for all s ∈ Sj , 1 ≤ j ≤ k. For

a personalized equilibrium, we further relax this by allowing
each player to define her own weight function, wi, so that
in the best response of player i, pi(s) and wi(e) satisfy the
following.

max
∑
e∈E

wi(e)ui(e)∑
e:s∈e

wi(e) = pj(s) s ∈ Sj , 1 ≤ j ≤ k

wi(e) ≥ 0 e ∈ E

We can view a matrix game as a hypergraph with nodes
V = ∪jSj and edges E =

∏
j Sj . Then, if we interpret the

pj(s) values as capacities on the nodes and the utility func-
tion for player i as weights on the edges from the perspective
of player i, a personalized equilibrium is simultaneously a
maximum-weight fractional hypergraph matching for each
player.

The description of the game above is exponential in the
number of players, since we require that every edge connects
one strategy of each player. To allow for more succinct
descriptions, we generalize the game as follows. For each

player i, we introduce a hypergraph with nodes V = ∪jSj
and edges Ei. The set Ei is required to satisfy two conditions
(that are satisfied by E): (i) for each e in Ei and player
j, e contains at most one element of Sj ; (ii) there do not
exist distinct e and e′ in Ei such that e ⊂ e′. In the game,
player i places a weight wi(e) on each edge in Ei. A player
must still place a total of weight 1 on all her edges, and all
weights must be non-negative. Since the edges of Ei may
not connect all players, however, we relax the projection
constraint to

∑
e:s∈e wi(e) ≤ pj(s). Thus, the collection of

weights wi(e), e ∈ Ei, and probability distributions pi(s),
s ∈ Si, over all players i, form a personalized equilibrium
if for each i, wi(e) and pi(s) maximize

∑
e∈Ei wi(e)ui(e)

subject to the following constraints.

∑
e:s∈e

wi(e) ≤ pj(s), ∀s ∈ Sj ,∀j 6= i∑
e:s∈e

wi(e) = pi(s), ∀s ∈ Si

wi(e) ≥ 0, ∀e ∈ Ei
Just as mixed Nash equilibria exist for every matrix game,

we show that every game thus defined has a personalized
equilibrium. We defer the proof of the following theorem to
the full version [23].

Theorem 4.1. For every multi-player matrix game, a per-
sonalized equilibrium always exists.

We define PERSONALIZED EQUILIBRIUM as the problem
of finding a personalized equilibrium in a given matrix game.
k-PERSONALIZED EQUILIBRIUM is the same problem in a
game with k players for constant k. Note that the traditional
definition of a graphical game [21] may be used in this
setting with smaller edges. In d-GRAPHICAL PERSONAL-
IZED EQUILIBRIUM, each player i has a neighborhood Ni
of at most d other players, and all edges defined for player
i are in

∏
j∈Ni Sj . Finally, we define ε-APPROXIMATE

PERSONALIZED EQUILIBRIUM as the problem of finding a
set of weight assignments (wi(e) ≥ 0 is the weight assigned
by player i to edge e) such that (a) for every player i,
1 − ε ≤

∑
e wi(e) ≤ 1, (b) for each player pair i and j,

and for each strategy s,
∣∣∑

e:s∈e wi(e)−
∑
e:s∈e wj(e)

∣∣ ≤ ε,
and (c) for any best response weight assignment w∗i for any
player i,

∑
e w
∗
i (e)ui(e)−

∑
e wi(e)ui(e) ≤ ε.

4.2. Characterizing personalized equilibria in k-player
games

The set of all personalized equilibria for a two-player
game is just the set of all linear combinations of cycles
in an appropriately defined graph (see [23]), which is easy
to compute in polynomial time. However, for k player
games (k > 3), we will give a reduction from finding an
equilibrium in a preference game to finding a personalized
equilibrium in a k player game, thereby showing that finding



personalized equilibria is PPAD-hard. Nevertheless, we
are able to give a concise characterization of the set of
all personalized equilibria for arbitrary multi-player games.
This characterization will be useful for showing PPAD
membership of PERSONALIZED EQUILIBRIUM.

Theorem 4.2 (Personalized Equilibrium Characterization).
The following program represents the set of all exact per-
sonalized equilibria. The variables are wi(e), the weight
placed by player i on edge e, ∀e ∈ Ei.

∑
e∈Ei:s∈e

wi(e) ≤
∑

e∈Ej :s∈e
wj(e), s ∈ Sj , 1 ≤ j, i ≤ k∑

e∈Ei

wi(e) = 1, 1 ≤ i ≤ k (1)

wi(e) ≥ 0, 1 ≤ i ≤ k, e ∈ Ei
min
e∈F

wi(e) = 0, for all players i and subsets
F ⊆ Ei such that LP (2) is
feasible

.

The following linear program is defined for each player
i and F ⊆ Ei (referred to as an improvement set). The
variables are δ(e) for each edge e ∈ Ei.∑

e∈Ei

δ(e)ui(e) > 0 (2)∑
e∈Ei:s∈e

δ(e) = 0 s ∈ Sj , 1 ≤ j ≤ k, j 6= i

δ(e) < 0, (e ∈ F ) δ(e) ≥ 0, (e /∈ F )

A formal proof of the above theorem can be found in the
full version ([23]), but here we provide some intuition. The
first two constraints of program 1 specify a feasible weight
assignment, and the first two constraints of LP 2 specify
feasible “weight changes” that would increase the payoff for
player i. How do we know that checking this for all subsets
of edges is enough to find any possible improvement, and
how does the last constraint of program 1 ensure that no
improvement is possible? We can think of the δ values found
in any solution to LP 2 as an “improvement direction.” This
is a vector that is orthogonal to the vector of all 1’s and
has a positive dot product with the utilities of i. In other
words, if player i were to move weight in this direction, her
payoff would improve. Of course, there may be a continuum
of such improvement directions. However, there are most an
exponential number of negative supports, or “improvement
sets”. These are exactly the F values for which LP 2 is
feasible. Given an improvement set, the associated player
can get a higher payoff by removing weight from all of those
edges and adding the weight instead to edges with positive δ
value. This improvement will be possible unless the player
has zero weight on some edge in this entire improvement
set; that is, unless mine∈F wi(e) = 0. Theorem 4.2 leads
to the following corollary, since the above linear program

with additional min constraints can be re-written as a union
of linear programs, one with each subset of one edge from
each improvement set explicitly set to 0. See [23] for more
details.

Corollary 4.3. For any matrix game with all rational
payoffs, there exists a personalized equilibrium in which the
probability assigned by each player to each strategy is a
rational number.

4.3. Finding personalized equilibria is PPAD-complete
In order to show that PERSONALIZED EQUILIBRIUM is

PPAD-complete, we will use two chains of reductions.
First, to show PPAD-hardness (with≥ 4 players): DEGREE
3 PREFERENCE GAME ≤P 3-GRAPHICAL PERSONALIZED
EQUILIBRIUM ≤P 4-PERSONALIZED EQUILIBRIUM. It is
easy to verify that the reductions in this first chain can also
be used to show ε-APPROXIMATE PREFERENCE GAME ≤P
ε-APPROXIMATE PERSONALIZED EQUILIBRIUM. Then, to
show PPAD-membership: PERSONALIZED EQUILIBRIUM
≤P ε-APPROXIMATE PERSONALIZED EQUILIBRIUM ≤P
END OF THE LINE (as long as ε is sufficiently small).

Theorem 4.4. DEGREE d PREFERENCE GAME ≤P d-
GRAPHICAL PERSONALIZED EQUILIBRIUM

Proof: Given a preference game over player set [n],
with the preference lists specified as a set of values Qij for
all i, j ∈ [n]: Qij = the number of players k such that j �i
k �i i. Define a game as follows, in which we will find a
personalized equilibrium. The set of players = {p1, . . . , pn}.
Si (the set of strategies for player pi) = {sij : Qij > 0}. Ei
= the set of edges for player pi = {{sij , sjj}∀sij ∈ Si, j 6=
i}∪{sii}. ui({sij , sjj}) (the payoff to player i for this edge)
= Qij . ui({sii}) = Qii ≥ 1. Notice that the degree of the
game is preserved, and the number of edges defined is at
most n times the degree. Suppose we are given weights xij
for each player i and edge {sij , sjj}, and xii for player i and
edge {sii}. These weights form a personalized equilibrium
if and only if weights wij = xij are an equilibrium in the
preference game. We defer the correctness proof to the full
version [23].

Two of the remaining reductions follow patterns in-
troduced in previous work. Our reduction showing
3-GRAPHICAL PERSONALIZED EQUILIBRIUM ≤P 4-
PERSONALIZED EQUILIBRIUM follows the pattern estab-
lished in [16] for mixed Nash equilibria, and our reduc-
tion showing ε-APPROXIMATE PERSONALIZED EQUILIB-
RIUM ≤P END OF THE LINE follows the pattern from
[12][Section 3.2] demonstrating PPAD-membership of ap-
proximate mixed Nash equilibria. Both of these reductions
can be found in the full version of this paper [23].

Finally, we have PERSONALIZED EQUILIBRIUM ≤P ε-
APPROXIMATE PERSONALIZED EQUILIBRIUM for suffi-
ciently small ε. Our reduction is based on an LP Compact-
ness Lemma, Lemma 4.5. The basic idea for this reduction



follows. First, we assume that we can find an approximate
personalized equilibrium for our matrix game. We use
Corollary 4.6 of Lemma 4.5 to show that this approximate
equilibrium almost obeys every constraint in LP 1. We can
adjust the solution by forcing any variable that is very close
to 0 down to 0 and get a solution that completely obeys
all of the min constraints from LP 1 and still almost obeys
each of the other constraints. Now, we again use Lemma
4.5, which says that if there is a point that comes very close
to obeying each constraint of a linear program, then the
linear program must be feasible. We apply this to LP 1 with
the min constraints replaced by “= 0” constraints for those
values we’ve already set to 0. Our adjusted approximate
solution comes close to obeying each constraint, so the LP
has a feasible solution. Since the min constraints have been
removed, this is now a polynomially sized LP, so we can
solve it in polynomial time to find an exact personalized
equilibrium. A full proof as well as the exact bound on
ε can be found in the full version [23], but the key LP
Compactness Lemma and its Corollary are included here.

Lemma 4.5 (LP Compactness). If an LP with n variables
and rational coefficients, each represented by at most β bits,
is such that there is a point obeying each constraint to within
ε = 1

23nβ , then the LP is feasible.

Proof: If t, b, ti, bi, yi, zi, (for 1 ≤ i ≤ n), are β-bit
integers, then either

∑n
i=1

tiyi
bizi
≥ t

b or
∑n
i=1

tiyi
bizi

< t
b −

1
23nβ . To show this, suppose we have

∑n
i=1

tiyi
bizi

< t
b . Then

the difference t
b −

∑n
i=1

tiyi
bizi

is at least 1/(b ·
∏
i bi
∏
i zi),

which is at least 1/2β+2nβ < 2−3nβ since each integer in
the product is at most 2β .

This gives us the following. If x satisfies
∑n
i=1 aixi ≥

b − 1
23nβ , where each ai and b are rational numbers whose

numerators and denominators are representable as β-bit
integers, then x satisfies

∑n
i=1 aixi ≥ b. This immediately

implies the Lemma.

Corollary 4.6. Given a linear program with ≤ n variables
and coefficients of the form a

b for integers a and b, each
represented by at most β bits, each coordinate of a vertex
must be representable by c

d for integers c and d, each
represented by less than 3nβ bits.

5. SCARF’S LEMMA AND FRACTIONAL STABILITY
PROBLEMS

This section discusses the complexity of a number of well-
known combinatorial problems that can be categorized as
fractional stability problems. We begin with Scarf’s Lemma,
a fundamental result in combinatorics, originally introduced
to prove that every balanced cooperative game with non-
transferable utilities has a nonempty core (see Section
5.3) [34]. The core (no pun intended) of his argument is an
elegant and constructive combinatorial argument which has
been applied to diverse combinatorial problems, including

fractional stable matchings in hypergraphic preference sys-
tems, strong kernels in digraphs, and the fractional stable
paths problem [2], [1], [24], [18]. We first show that
the computational version of Scarf’s lemma is PPAD-
complete (Section 5.1). We then establish the PPAD-
completeness of stable matchings in hypergraphic preference
systems (Section 5.2), core of balanced games with non-
transferable utility (Section 5.3), and the fractional stable
paths problem (Section 5.4). We mention two additional
problems in Section 5.5 which are also shown to be PPAD-
complete in the full version of this paper [23].

5.1. Scarf’s Lemma

In the computational version of Scarf’s lemma (SCARF)
we are given matrices B, C and a vector b satisfying the
conditions in Theorem 5.1. The goal is to find α ∈ Rn+
satisfying the desired properties.

Theorem 5.1. (Scarf’s lemma [34]) Let I = [δij ] be an
m×m identity matrix. Let [n] = {1, 2, . . . , n}. Let m < n
and let B be an m × n real matrix such that bij = δij for
1 6 i, j 6 m. Let b be a non-negative vector in Rm, such
that the set {α ∈ Rn+ : Bα = b} is bounded. Let C be an
m× n matrix such that cii 6 cik 6 cij whenever i, j 6 m,
i 6= j and k > m. Then there exists a subset J ⊂ [n] of
size m such that (P1) Bα = b for some α ∈ Rn+ such that
αj = 0 whenever j /∈ J , and (P2) For every k ∈ [n] there
exists i ∈ [m] such that cik 6 cij for all j ∈ J .

A subset J ⊂ [n] of size m is called a feasible basis
of (B, b) if it satisfies (P1), and subordinating if it satisfies
(P2). To compute α of SCARF, it suffices to have a J ⊆ [n]
that is simultaneously subordinating and a feasible basis.
Once such J is computed, α can be computed by solving
a system of linear equations. Also, given a solution α, J is
easy to compute, since J is α’s support. Hence finding α
and J are computationally equivalent to within polynomial
time. Scarf’s original proof [34], together with Todd’s
orientation technique [37], gives an end of the line argument
for the existence of a subordinating and feasible basis, thus
showing that SCARF ≤P END OF THE LINE, so SCARF is
in PPAD. We refer to [23] for details.

In Section 5.2, we establish the PPAD-hardness of
FRACTIONAL HYPERGRAPH MATCHING, which reduces to
SCARF in polynomial time [1], thus completing the proof
that SCARF is PPAD-complete.

5.2. Hypergraphic Preference Systems

A hypergraphic preference system is a pair (H,O), where
H = (V,E) is a hypergraph, and O = {�v : v ∈ V } is
a family of linear orders, �v being an order on the set of
edges containing the vertex v. A set M of edges is called
a stable matching with respect to the preference system if
(a) it is a matching and (b) for every edge e there exists a
vertex v ∈ e and an edge m ∈ M containing v such that



e �v m. A nonnegative function w on the edges in H is
called a fractional matching if

∑
v∈h w(h) ≤ 1 for every

vertex v. A fractional matching w is called stable if every
edge e contains a vertex v such that

∑
v∈h,e�vh w(h) = 1.

Aharoni and Fleiner [1] used Scarf’s lemma to prove
that every hypergraphic preference system has a fractional
stable matching. This naturally leads to a computational
problem – FRACTIONAL HYPERGRAPH MATCHING : given
a hypergraphic preference system (H,O), find a fractional
stable matching. We first observe that the proof of [1] is
a polynomial time reduction from FRACTIONAL HYPER-
GRAPH MATCHING to SCARF, thus placing it in PPAD.
We now show that FRACTIONAL HYPERGRAPH MATCHING
is PPAD-hard via a reduction from preference games.

Theorem 5.2. DEGREE d PREFERENCE GAME ≤P FRAC-
TIONAL HYPERGRAPH MATCHING.

Proof: We are given a preference game over players
[n] = {1, . . . , n}. We construct a hypergraph matching
instance (H,O), H = (V,E). The set V of vertices is
[n] ∪ {i∗ : i ∈ [n]}; that is, we have two vertices i
and i∗ for each player i. The set of edges is given by
{{i∗} : i ∈ [n]}

⋃
{{i, i∗} ∪ Ji : i ∈ [n], Ji ⊆ in(i)}}. (Note

that Ji is a subset of players that prefer i over themselves.)
We next describe the linear order for a given vertex i. Let

e1 and e2 be two edges containing i. By our construction
of E, there exists a unique i1 such that {i1, i∗1} is a subset
of e1. Similarly, there is a unique i2 such that {i2, i∗2} is a
subset of e2. If i1 6= i2, then we require that e1 �i e2 if
and only if i1 �i i2. If i1 = i2, then we require e1 �i e2
whenever e1 ⊇ e2. Finally, for any vertex i∗, we select any
linear order in which e1 �i∗ e2 whenever {i, i∗} is a subset
of e1 and e �i∗ {i∗} for all e.

Since we are given a preference game of constant degree,
the above construction is polynomial time.

Suppose f is a stable fractional matching for the hyper-
graph preference system. We set wij (an assignment for the
preference game) to be the sum of the weights of edges
containing the subset {j, j∗, i}. This is an equilibrium for
the preference game.

Similarly, given any equilibrium for the preference game,
we can construct a correponding equilibrium in this hyper-
graph preference system. For a proof of correctness of this
reduction, see [23].

5.3. Cooperative Games with Non-Transferable Utilities

Definition 5.3. A game with non-transferable utilities over
n players is specified by a function V that for each subset S
of N = {1, 2, . . . , n} returns a set V (S) of outcomes – each
outcome being a vector of utility values, one component for
each player in S. A collection T of coalitions is balanced
if there exists an assignment of reals δS for each coalition
S in T such that for all v,

∑
S:v∈S δS = 1. We say that u

is attainable by S if u ∈ V (S). A game is balanced if and

only if for any balanced collection T and any u, if uS is
attainable by all S in T , then u is attainable by N .

As mentioned earlier, Scarf [34] proved that every bal-
anced game has a nonempty core. We define CORE-
BALANCED-NTU below, a natural computational version of
this claim. Scarf’s proof [34], which is a reduction to SCARF,
and Theorem 5.4 establish its PPAD-completeness.
CORE-BALANCED-NTU: The game is specified by a set
N of players, a collection S of proper subsets of N (the
coalitions), and for each S ∈ S, vectors u1, . . . , ukS in R|S|
such that V (S) = {u ∈ R|S| : ∃j u ≤ uj}. For a coalition
S /∈ S, V (S) = {0}|S| and V (N) is defined as the set of
all u for which there exists a balanced collection T such
that uS is attainable by all S in T . The goal is to find an
element in the core.

Theorem 5.4. FRACTIONAL HYPERGRAPH MATCHING
≤P CORE-BALANCED-NTU.

Proof: Suppose we are given a hypergraph H and
for each vertex i, a preference ranking among all edges
containing i. We first add, for each vertex i in H , a new
vertex i∗ and edge {i, i∗}. We set the preference of i for the
edge {i, i∗} to be the least among all the edges containing
i. Let N denote the new set of nodes and E the new set of
edges. For S ∈ E and i ∈ N , let ri(S) denote the rank of S
in i’s preference list, with 0 assigned to the least preferred
edge (thus for every i, ri({i, i∗}) = 0). We now define a
balanced cooperative game with non-transferable utilities.
For each node in N , we have a player in the game. For any
coalition S, we consider two cases. If S ∈ E, then we have
a single vector rS = (ri1(S), ri2(S), . . . , ri|S|(S), where
S = {i1, i2, . . . , i|S|). Note that by definition, if S /∈ E and
S 6= N , then V (S) equals 0|S|.

For N , note that V (N) is precisely the set of all u such
that uS is attainable by all S in some balanced collection
T . We first observe that we can determine in polynomial
time whether a given u is in V (N). For each S, if u ≤ rS ,
then we have a variable xS for S. Now we simply solve the
linear program:

∑
S:i∈S xS = 1. It is easy to see that the

linear program is feasible if and only if u is in V (N).
Proof of correctness for this reduction can be found in

[23].

5.4. Fractional Stable Paths Problem

The Fractional Stable Paths problem, introduced in [18],
is defined as follows. Let G be a graph with a distinguished
destination node d. Each node v 6= d has a list π(v) of simple
paths from v to d and a preference relation �v among the
paths in π(v). For a path S, we also define π(v, S) to be
the set of paths in π(v) that have S as a suffix. A proper
suffix S of P is a suffix of P such that S 6= P and S 6= ∅.

A feasible fractional paths solution is a set w = {wv :
v 6= d} of assignments wv : π(v) → [0, 1] satisfying: (1)



Unity condition: for each node v,
∑
P∈π(v) wv(P ) ≤ 1,

and (2) Tree condition: for each node v, and each path
S with start node u,

∑
P∈π(v,S) wv(P ) ≤ wu(S). In other

words, a feasible solution is one in which each node chooses
at most 1 unit of flow to d such that no suffix is filled
by more than the amount of flow placed on that suffix by
its starting node. A feasible solution w is stable if for any
node v and path Q starting at v, one of the following holds:
(S1)

∑
P∈π(v) wv(P ) = 1, and for each P in π(v) with

wv(P ) > 0, P �v Q; or (S2) There exists a proper suffix S
of Q such that

∑
P∈π(v,S) wv(P ) = wu(S), where u is the

start node of S, and for each P ∈ π(v, S) with wv(P ) > 0,
P �v Q. In other words, in a stable solution: if node v has
not fully chosen paths that it prefers at least as much as Q,
then it has completely filled path Q by filling some suffix
with paths it prefers at least as much as Q.

We define a computational version, FRACTIONAL SPP:
given an instance of the fractional stable paths problem, find
a fractional stable solution.

Theorem 5.5. PREFERENCE GAME ≤P FRACTIONAL SPP
≤P PERSONALIZED EQUILIBRIUM.

Proof: We list the reductions below, but defer proofs of
correctness to the full version ([23]).

PREFERENCE GAME ≤P FRACTIONAL SPP. Given a
preference game over player set [n], including preference
relation �i for all i ∈ 1 . . . n. We will convert this into a
fractional stable paths problem. Create a node vi for each i.
Also create a universal destination node d. For all i, define
Pii = the path (vi, d). For all i, j, define Pij = the path
(vi, vj , d). Let π(vi) (the set of preferred paths for vi) =
{Pij : j �i i}. If k �i j, then Pik �i Pij . Let wi(j)
refer to the amount of weight placed by node vi on path Pij
in a fractional SPP solution, and let wi(i) be the amount
of weight placed by i on path Pii. w is a fractional stable
paths solution if and only if w defines an equilibrium of the
preference game.

FRACTIONAL SPP ≤P PERSONALIZED EQUILIBRIUM.
Suppose we are given an instance of FRACTIONAL SPP,
consisting of a set of nodes V , a set of preferred paths π(v)
for all v ∈ V , and a preference relation �v for each set
π(v). We can also find π(v, S), the set of all P ∈ π(v) such
that S is a subpath of P . Let qv(P ) = the number of paths
Q such that P �v Q. We will create the following instance
of PERSONALIZED EQUILIBRIUM. The set of players is V .
The set of strategies Sv for a node V is π(v) ∪ {N} (N
stands for “No path”). For node v, there is exactly one edge
defined for each strategy. Edge P ′ for strategy P = {S :
P ∈ π(v, S)}. The edge for strategy N (N ′) is a singleton
edge, containing only that strategy. The payoffs to player
v are: uv(P ′) = qv(P ) + 1, uv(N) = 1. Suppose w is a
set of weights in a personalized equilibrium of the game
defined above. wv(P ′) represents the weight assigned by v
to edge P ′. w is a personalized equilibrium if and only if

w′ : w′v(P ) = wv(P ′) is a fractionally stable solution to the
FRACTIONAL SPP instance.

In the full version ([23]), we extend the proof of PPAD-
completeness to cases where path preferences are based on
shortest path lengths as well as to approximate FRACTIONAL
SPP.

5.5. Additional Problems

In the full version ([23]), we also show two addi-
tional problems are PPAD-complete using reductions from
PREFERENCE GAME and reductions to PERSONALIZED
EQUILIBRIUM. The first of these, STRONG KERNEL, is the
problem of finding a strong fractional kernel in a clique-
acyclic digraph with largest clique of constant size. A kernel
of a directed graph is a subset of vertices that is both
independent and dominating. Fractional kernels [2] relax this
concept to allow nodes to fractionally belong to a kernel.
The second additional problem, FRACTIONAL BBC, is the
problem of finding an equilibrium in a fractional Bounded
Budget Connection game – a network connection game in
which nodes in a graph may spend up to a fixed budget to
fractionally purchase edges to other nodes with the goal of
achieving a small minimum-cost flow to a destination node.
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[24] T. Király and J. Pap, “Kernels, stable matchings, and Scarf’s
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