
Organizing Computational Problem Solving

Communities via Semantic Games

A dissertation presented

by

Ahmed Abdelmeged

to the Faculty of the Graduate School

of the College of Computer and Information Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Northeastern University

Boston, Massachusetts

February, 2014

ABSTRACT

Competitions have been used to build and organize communities aiming to

solve complex computational problems. A recent successful computational biology

contest, hosted on TopCoder with a prize pool of only $6000, has attracted 122

contestants that eventually produced an algorithm that is both more accurate and is

1,000 times faster than the best corresponding algorithm developed by the National

Institute of Health.

Our take on state of the art computational problem solving competitions is

that they follow the contest pattern where participants submit their algorithms to

be evaluated by a trusted administrator. The administrator is completely responsi-

ble for conducting a correct and thorough evaluation of all submitted algorithms.

Depending on the computational problem of interest, it can be a massive undertak-

ing for the administrator to conduct such an evaluation. For example, consider the

effort involved in collecting benchmarks for the SAT competitions.

By resorting to a peer evaluation approach, the administrator is no longer re-

quired to undertake the task of evaluating all submitted algorithms. However, there

is no guarantee that all submitted algorithms are correctly and thoroughly evalu-

ated. On one hand, thoroughness of evaluation can be expected to improve as more

participants get involved in peer evaluation. Also, thoroughness of evaluation can

be assessed with generic code coverage tools. On the other hand, it becomes harder

to ensure the correctness of evaluation as more participants are involved in peer

evaluation.

It more critical for administrators to ensure correct evaluation. Thoroughness

code coverage / larger community / admin involvement.

For example, some participants may evaluate algorithms provided by their

peers using test cases with the wrong output.

A competition is essentially an evaluation process that reveals information

i

about the knowledge of their participants about the underlying problem domain.

This information can be rewarding for some participants. Also, participants can

also use this information to figure out which other participants they may learn from.

A competition sponsor can also use this information to figure out the amount of

reward to give to participants.

Fairness is a highly desirable quality for competitions. A fair competition

reveals accurate information about the knowledge of its participants. Fairness is

an attractive property for participants who are willing to invest their effort to be

rewarded based on the competition results. Fairness is also important for a com-

petition sponsor that is interested in having the best solution known among the

community of participants. Therefore,

State of the art

State of the art computational problem competitions follow the contest pattern

where a trusted administrator fairly evaluates all submitted solutions to determine

the best among them. The main disadvantage of this pattern is that the administrator

is completely responsible for implementing a correct and convincingly thorough

evaluation process. Depending on the computational problem of interest, it can

be a massive undertaking for the administrator to implement such an evaluation

process. For example, consider the effort involved in collecting benchmarks for the

SAT competitions.

On one hand, delegating the responsibility of evaluating participants to their

competitors can reduce the evaluation overhead on the administrator. On the other

hand, certain participants may be more thoroughly evaluated than others. Further-

more, some participants can be unfairly evaluated. For example, their submitted

algorithms may be evaluated using a test case with the wrong output.

A Semantic Game (SG) is a constructive debate of the truth of some logical

ii

claim between two distinguished parties: the verifier which asserts that the claim

holds, and the falsifier which asserts that the claim does not hold. An SG can be

used to fairly evaluate computational problem solutions with minimal administrator

overhead, yet under quite limiting conditions.

Although it is a property of SGs that one of its participants must have a win-

ning strategy, it remains fair to demerit the loser if it voluntarily chose their side.

The rationale is that the loser either did not select the correct side (i.e. the side

with the winning strategy) or selected the correct side but did not play according

to the winning strategy. An SG can serve as a simple, generic and fair algorithm

evaluation process in a competition with two participants provided that one partic-

ipant voluntarily takes the verifier side and the other participant voluntarily takes

the falsifier site. Essentially, an SG is used to debate the existence of an algorithm

that satisfies some logical specification. As a part of playing the SG, the verifier is

required to submit an algorithm satisfying that logical specification. The benefits of

this simple SG-based algorithm evaluation process is that it involves participants,

reduces the evaluation overhead on the administrator yet remains fair.

Semantic Games (SGs) of interpreted predicate logic statements can serve as

a fair evaluation process for computational problem solutions with minimal

this creates a conflict of interest situation where participants are incentivised

to disqualify their competitor’s solutions. For example, participants may evaluate

algorithms submitted by their competitors using test cases with the wrong output.

participants may submit test cases with the wrong output to evaluate algorithms

submitted by their competitors.

Increasing participants’ involvement in the evaluation process of algorithms

can make the evaluation process more convincing and reduce the evaluation over-

head on the administrator. Unfortunately, this creates a conflict of interest situation

iii

where participants are incentivised to disqualify algorithms submitted by others.

For example, participants may submit test cases with the wrong output to evaluate

algorithms submitted by other participants. Therefore, it is critical to have enough

checks and balances to ensure that submitted algorithms are fairly evaluated by

peer participants.

iv

TABLE OF CONTENTS

Page

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . viii

1 Introduction . 1

1.1 Thesis Statement and Rationale 4

1.2 Key Challenge and Contributions 6

1.3 Organization . 7

2 Background: Semantic Games . 8

3 Organizing Computational Problem Solving Communities 9

4 Collusion Resilient Ranking of Semantic Game Tournaments 10

4.1 Approach at a Glance . 10

4.2 Formalizing Beating and Ranking Functions 14

4.2.1 Notation . 14

4.2.2 Beating Functions . 15

4.2.3 Ranking Functions . 15

4.2.4 The Algebraic Structure of Beating Functions 15

4.3 Collustion Resilient Ranking Functions 18

4.3.1 Limited Collusion Effect 18

4.3.2 Regard for Wins and Losses 18

4.3.3 A Practical Characterization of Collusion Resilient Rank-

ing Functions . 19

4.3.4 Neutrality . 28

4.4 Characterization of the Fault Counting Ranking Function 28

4.4.1 Neutrality . 29

4.4.2 Most Refined . 29

v

Chapter Page

4.5 Discussion . 32

4.6 RelatedWork . 32

5 Conclusion and Future Work . 33

REFERENCES . 34

vi

LIST OF FIGURES

Figure Page

4.1 Beating Functions Representing Partitions of the Semantic Games Rep-

resented by . 20

4.2 Partitioning faults made by either px, py or both 31

vii

LIST OF TABLES

Table Page

4.1 Outcome of a Semantic Game Tournament with Two Perfectly Acting

Participants . 11

4.2 Evaluating a Semantic Game Tournament with Two Perfectly Acting

Participants . 12

4.3 Outcome of a Semantic Game Tournament with Two Colluding Partic-

ipants . 12

4.4 Evaluating a Semantic Game Tournament with Two Colluding Partici-

pants . 13

viii

Chapter 1

Introduction

Competitions have been successfully used to build and organize communities aim-

ing to solve complex computational problems. A recent success of this paradigm is

demonstrated by the following quote from a recent Nature publication [3]: “Histor-

ically, prize-based contests have had striking success in attracting unconventional

individuals who can overcome difficult challenges. To determine whether this ap-

proach could solve a real big-data biologic algorithm problem, we used a complex

immunogenomics problem as the basis for a two-week online contest broadcast to

participants outside academia and biomedical disciplines. Participants in our con-

test produced over 600 submissions containing 89 novel computational approaches

to the problem. Thirty submissions exceeded the benchmark performance of the

US National Institutes of Health’s MegaBLAST. The best achieved both greater

accuracy and speed (1,000 times greater).”

There are numerous other examples of competitions organized to encourage

the research and development on computational problem solving. Examples in-

clude the SAT competition [2] organized to encourage the development of high

performance SAT solvers. Examples also include software development competi-

tions held on platforms such as TopCoder [5]. There are also numerous other ex-

amples of software development competitions organized for educational purposes

such as competitions held on platforms such as Project Euler [1] and Jutge [4].

The result of a computational problem solving competition is either a rating

or a ranking of the problem solving skills of the competition’s participants. A com-

munity aiming to solve a computational problem can benefit from the result of a

competition held between its members in a number of ways. First, to motivate

community members to develop skills related to solving the underlying compu-

tational problem; the competition result is often used to objectively distribute a

prize. Even with no prize to distribute, the announcement of competition results

can be rewarding to some participants. Second, to effectively diffuse problem solv-

ing knowledge. The knowledge of top ranked participants can be shared with other

community members to learn from before the next competition starts. This is called

“leveling-the-boats” and is quite common. Finally, sponsors may be interested in

the competition results in order to hire top ranked participants or to use the solu-

tions they provide during competitions. Sponsors may offer a prize to attract more

high quality members to the community.

It is crucial that the competition result accurately reflects the skill level of

participants in solving the underlying computational problem. Otherwise, the com-

petition can fail to attract a community and sponsors.

State of the art computational problem solving competitions follow the con-

test pattern where a trusted administrator is responsible for preparing an objective,

correct and thorough process to evaluate the skills of individual participants. De-

pending on the computational problem of interest, it can be a massive undertaking

for the administrator to prepare such evaluation process. For example, consider the

effort involved in collecting 2.86 Gigabytes worth of compressed benchmarks for

the SAT 2013 competition [2].

Luckily, a sports-like approach may be used to organize computational prob-

2

lem solving competitions with minimal overhead on the administrator. In sports,

participants peer-evaluate their opponents. The administrator’s role, typically called

a referee in sports contexts, is to ensure that participants follow a set of easily check-

able rules. This sports-like approach was used in the historic competition held, in

1535, between Tartaglia and Fior to figure out who knows how to solve cubic equa-

tions more efficiently. The rules were that each provides the other with 30 cubic

equations to solve and the faster wins. One imagines it was a relatively easy task to

ensure that equations supplied by both Tartaglia and Fior were indeed cubic equa-

tions and solutions produced by both Tartaglia and Fior were indeed correct.

Unfortunately, direct adoption of this approach to more complex problems

may defeat the purpose of reducing the overhead on the administrator. For exam-

ple, consider the following two-party hypothetical competition to develop a correct

SAT solver. Each party provides 30 CNF formulas to be solved by the SAT solver

developed by their opponent. In this competition, the administrator would be re-

quired to check the correctness of solutions produced by both SAT solvers. When

one of the solvers claims a particular CNF formula to be unsatisfiable, the admin-

istrator has to check that the CNF formula is indeed unsatisfiable. It is however a

much harder task than it is to check the correctness of some claimed solution to

some cubic equation.

In this dissertation, we develop a sports-like approach to organize computa-

tional problem solving competitions with a minimal overhead on the administrator.

In the rest of this chapter, we present thesis summarizing our approach. Then we

summarize of our contributions. Finally we describe the organization of this dis-

sertation.

3

1.1 Thesis Statement and Rationale

Our thesis is: “Semantic games of interpreted logic sentences provide a useful

foundation to organize computational problem solving competitions.”. Below, we

illustrate the rationale behind this thesis.

A Semantic Game (SG) is a constructive debate of the truth of some interpreted

logic sentence between two distinguished parties: the verifier which asserts that the

claim holds, and the falsifier which asserts that the claim does not hold. The rules

of an SG are systematically derived from the syntax of the underlying claim. An

SG gives a meaning to its underlying claim in the sense that the underlying claim

is true (respectively f alse) if and only if there is a winning strategy for the verifier

(respectively falsifier).

An SG can be used to evaluate the problem solving skills related to a partic-

ular computational problem with a minimal overhead on the administrator. Fur-

thermore, this evaluation is guaranteed to never underestimate the skills of partici-

pants. In a nutshell, an SG can be used to constructively debate an interpreted logic

sentence formally specifying a particular computational problem. It is correct to

demerit the problem solving skills, related to the computational problem specified

by the underlying logical sentence, of the loser of an SG because the loser must

have either picked the wrong side or not played according to the winning strategy.

We now illustrate our approach by an example. Consider the following in-

terpreted logical sentence specifying the MAXimum SATisfiability (MAX-SAT)

problem: ∀φ ∈ CNFs ∃v ∈ assignments(φ)∀ f ∈ assignments(φ). f sat(f ,φ) ≤

f sat(v,φ). This logical sentence is interpreted in a structure that defines all non-

logical symbols; namely, CNFs, assignments, f sat and ≤. Before an SG can be

played, the two participants pick their sides in the debate. For now, we assume they

picked opposite sides. An SG played on this logical sentence proceeds as follows:

4

1. the falsifier provides a CNF formula φ .

2. given φ , the verifier provides an assignment v for the variables in φ .

3. given φ and v, the falsifier provides an assignment f for the variables in φ .

The verifier wins if the assignement v it provided satisfies at least as many clauses as

those satisfied by the assignement f provided by the falsifier f sat(f ,φ)≤ f sat(v,φ).

We now use the rules of the SG to illustrate few points mentioned earlier:

• An SG can be used to evaluate the problem solving skills related to a partic-

ular computational problem; in order to win, participants must exercise skills

related to solving the computational problem specified by the underlying log-

ical statement. by analyzing the rules we may conclude that it is in the best

interest of the verifier to provide an assignment v that satisfies the maximum

satisfiable fraction of clauses. We also may conclude that it is in the best in-

terest of the falsifier to provide an assignement f satisfying more than v does,

when possible. It is also in the best interest of the falsifier to provide a CNF

formula φ where it is hard for the verifier to find the assignment satisfying

the maximum fraction of satisfiable clauses.

• SG-based evaluation can be carried out with a minimal overhead on the ad-

ministrator; The administrator is essentially responsible for implementing

the structure in which the underlying logical statement is interpreted. It is

always possible to rewrite the underlying logical formula scraping some of

the quantifiers either in or out of the structure and consequently adding or re-

ducing overhead on the administrator. In our example, the administrator only

has to check whether a given formula φ is indeed a correct CNF formula,

check whether an assignment is indeed a correct assignment for the variables

in a given formula, compute the fraction of clauses of some CNF formula

5

satisfied by some assignment, and compare two such fractions. All of these

are relatively easy tasks for the administrator to perform. We may rewrite

the underlying formula scraping the right most quantifier into the structure

∀φ ∈CNFs ∃v ∈ assignments(φ). max− sat(φ ,v). By doing so, the admin-

istrator becomes responsible for the much harder task of checking whether an

assignment is indeed satisfying the maximum satisfiable fraction in a given

CNF formula.

• SG-based evaluation is guaranteed to never underestimate the skills of partic-

ipants; losing an SG can always be blamed on lacking skills related to solving

the computational problem specified by the underlying logical problem. In

our example, the underlying logical sentence of our example is indeed cor-

rect. Therefore, there is a winning strategy for the verifier; namely, to provide

an assignment v satisfying the maximum possible fraction of clauses in any

formula it may be given. Should the verifier lose, it can be blamed for not

providing an assignment satisfying the maximum possible fraction of satisfi-

able clauses. Should the falsifier lose, it can be blamed for picking the wrong

side in the debate.

• – [overestimation blamed on opponent.]

• – [constructive - learning.]

• – [constructive - outcome.]

1.2 Key Challenge and Contributions

In this dissertation, we develop a sports-like approach to organize computational

problem solving competitions with a minimal overhead on the administrator. As we

6

argued earlier, SGs can achieve this goal, yet only for two-party competitions. We

overcome this, rather severe, restriction by using a tournament of SGs. However,

we carefully design our tournament such that the tournament as a whole retains

those desirable properties of the two-party SG-based evaluation especially those

properties related to accurate estimation of skills of participants.

Collusion between participants is a key challenge to designing a SG tourna-

ment that guarantees that the skills of participants are never underestimated. A

colluding participant may choose to lose SGs on purpose in order to inflate the es-

timated skill of another specific participant. We managed to successfully overcome

this challenge by developing a provably collusion resilient ranking function for SG

tournaments. Furthermore, we developed formal characterization of collusion re-

silient ranking functions that provides a practical entry point to designers willing to

develop other collusion resilient ranking functions for SG tournaments.

We claim the following contributions:

1. We propose the idea of organizing computational problem solving competi-

tions using tournaments of SGs.

2. We develop a simplified version of SGs in order to make them more accessi-

ble.

3. We develop a theory of collusion resilient ranking of SG tournaments.

1.3 Organization

The rest of this dissertation is organized as follows: In Chapter 2 we present back-

ground information on SGs and how they can be utilized to organize communities

around computational problems.

7

Chapter 2

Background: Semantic Games

What are semantic games and how they are played. Different kinds of logic have

different kinds of Semantic Games. There are non-standard semantic games (with

retractable moves)?

Chapter 3

Organizing Computational Problem

Solving Communities

The purpose of this chapter is to concretely describe our approach to organizing

computational problem solving communities. We designed a kind of structured

interaction spaces for computational problem solving communities. We call it a lab.

A lab formally defines a computational problem using an interpreted predicate logic

sentence. Community members interact in a lab through a competition consisting

of several semantic games of the interpreted predicate logic sentence defining the

lab’s computational problem.

participating in semantic games of the

organize a community aiming to solve labs as an interaction spaces for com-

munities: Related concepts are Wikipedia pages and TopCoder marathon matches.

A lab has a well defined claim family. participants contribute to labs by ?submitting

avatars capable of playing simplified sgs?.

Labs:

Defining a lab: Formulation: Sec 2.2 Expression: Sample lab definitions:

Participating in a lab:

Chapter 4

Collusion Resilient Ranking of

Semantic Game Tournaments

4.1 Approach at a Glance

Suppose that we have an underlying true claim C specifying a computational prob-

lem. Therefore, there must be a winning strategy for a verifier in any SG of C.

Suppose that p1 and p2 are two perfectly acting participants. Therefore, both will

choose to take the verifier side in an SG of C. Also, both p1 and p2 will apply

the winning strategy when taking the verifier side in an SG of C. Table 4.1 shows

the outcome of a double round robin semantic game tournament between p1 and

p2. p1 and p2 play two SGs on C. In the first game, shown in the top right cell,

p2 takes the verifier side and p1 is forced to take the falsifier side. In the second

game, shown in the bottom left cell, p1 takes the verifier side and p2 is forced to

take the falsifier side. By virtue of being perfectly acting participants, p2 wins the

first game and p1 wins the second game.

We demonstrate our notion of collusion resilient ranking using the following

four score-based ranking approaches:

H
HHH

HHFal
Ver

p1 p2

p1 - p2
p2 p1 -

Table 4.1: Outcome of a Semantic Game Tournament with Two Perfectly Acting
Participants

• Number of wins (#W): For each participant, we count the number of wins

for every participant throughout the tournament. The higher the participant

scores, the better the participant’s rank is.

• Number of losses (#L): For each participant, we count the number of losses

for every participant throughout the tournament. The lower the participant

scores, the better the participant’s rank is.

• Number of wins against a non forced participant (#WNF): we only count the

number of games a participant has won against a non forced participant. A

participant is said to be forced in an SG if it takes the opposite side to the side

the participant chooses to take. The higher the participant score, the better

the participant’s rank is.

• Number of faults (#NFL): we only count the number of games a participant

loses while taking its chosen side. The lower the participant scores, the better

the participant’s rank is.

Both #WNF and #NFL ignore games in which the loser is forced as a form

of compensation for players at a disadvantage. The rational is that in such games

it could be that the loser had no chance of winning whatsoever. More specifically,

this happens when the opponent of the forced loser is a non forced perfectly act-

ing player. But, unfortunately, it is not always computationally tractable to decide

11

Participant #W #L #WNF #NFL
p1 1 1 0 0
p2 1 1 0 0

Table 4.2: Evaluating a Semantic Game Tournament with Two Perfectly Acting
Participants

HHH
HHHFal
Ver

p1 p2 p3

p1 - p2 p3
p2 p1 - p2
p3 p1 p2 -

Table 4.3: Outcome of a Semantic Game Tournament with Two Colluding
Participants

whether a player is indeed choosing the correct side or is employing the winning

strategy. Therefore, both approaches ignore all games in which the loser is forced.

Table 4.2 demonstrates the scores of p1 and p2 according to the four ranking

approaches. Each participant wins a single game. Therefore, both score a single

point using the #W approach. Each participant loses a single game. Therefore, both

score a single point using the #L approach. Each participant wins only against a

forced player. Therefore, both score zero points using the #WNF approach. Each

participant loses only while forced. Therefore, both score zero points using the

#NFL approach. Using either of the four ranking approaches, both p1 and p2 are

top ranked.

Now, suppose that a third player p3 has joined the tournament not for the

purpose of competing with p1 and p2 for the top rank, but to cut p1 short from

being top ranked. We assume p3 has access to the winning strategy of p2 and will

use it except against p2. This situation is illustrated in Table 4.3. The highlighted

cell marks the semantic game that p3 loses on purpose for the benefit of p2.

Now, we examine the four ranking approaches to determine which ones are

12

Participant #W #L #WNF #NFL
p1 2 2 0 0
p2 3 1 1 0
p3 1 3 0 1

Table 4.4: Evaluating a Semantic Game Tournament with Two Colluding
Participants

resilient to the collusion between p3 and p2. Table 4.4 shows the scores of p1, p2

and p3 using the four ranking approaches. For each ranking approach, the cells cor-

responding to the best scores are highlighted. Among the four ranking approaches

we examined, we note that fault counting is the only collusion resilient approach.

The rest of this chapter provides a formal, in depth study of collusion resilient

ranking functions. In Section 4.2, we formalize the notions of beating functions

representing tournament results as well as ranking functions. Then, in Section 4.3,

we formalize our notion of collusion resilient ranking functions. We show that it is

impossible to have a collusion resilient ranking function that also have the desirable

property of encouraging winning. The natural consequence of this impossibility is

the need to relax the requirement of encouraging wins to never discouraging losses

when combining it with the collusion resilience requirement.

We then give an alternative characterization for the space of collusion resilient

ranking functions that never discourage winning nor encourage losing. The al-

ternative characterization provides a more accessible entry point to the design of

collusion resilient ranking functions. In Section 4.4 we give two complete charac-

terizations of fault counting by adding extra axioms to the characterization of the

aforementioned space of collusion resilient ranking functions.

In Section 4.5 we informally discuss few alternative ranking functions. We

then conclude this chapter in Section 4.6 with a discussion of related work.

13

4.2 Formalizing Beating and Ranking Functions

In this section we formalize the notions of beating and ranking functions. We use

a beating function to represent a tournament result and use a ranking function to

produce an ordering of tournament participants based on a tournament result. We

also describe the algebraic structure of beating functions. In subsequent sections,

we rely on the operations in this structure to formulate properties of beating and

ranking functions and use the laws governing these operations in our proofs.

4.2.1 Notation

We modeled our notation for variables after the Hungarian notation used to name

variables in computer programs. The goal is to avoid as many quantifiers as pos-

sible when expressing logical formulas. For example, instead of writing ∀p ∈

P. Φ(p), we directly write Φ(p). Also, instead of writing ∀a,b ∈ P. Φ(a,b) we

directly write Φ(pa, pb).

Explicitly, we use a single capital Latin letter to denote a set and use the same

small Latin letter to denote an element of the set. Subscripts are used to distinguish

multiple elements of the same set, when necessary. Constants are denoted using

boldface font. Functions are denoted using small Latin letters and superscripts are

used to denote their type parameters. Free variables are assumed to be universally

quantified.

In our proofs, we put labels to the right of formulas. We use the notation

LABEL[term1/var1, . . . termn/varn] to denote a particular instantiation of the for-

mula labeled LABEL in which the freely occurring variables var1, . . .varn are re-

placed with the terms term1, . . . termn respectively.

14

4.2.2 Beating Functions

Let sv and sf be two constants denoting the verifier and falsifier sides respectively.

Let S = {sv,sf}. We use a beating function bp : P×P×S×S×S→N to represent

the results of all semantic games comprising a tournament among a finite set of

players P. bp(pw, pl,swc,slc,sw) denotes the number of semantic games won by pw

against pl where pw chooses to take the side swc and pl chooses to take the side slc

and sw is the actual side taken by the pw. We use BP to denote the set of all possible

beating functions for a given finite set P of players.

4.2.3 Ranking Functions

We define a ranking to be a reflexive, transitive and complete binary relation. We

use RP to denote the set of all possible rankings of a given set P of players. A

ranking function �: BP→ RP associates some ranking to every beating function.

We say that px is at least as good as py according to the ordering assigned by the

ranking function � to the beating relation bp if px �(bp) py.

p�(bp) p (REFL)

px �(bp) py∧ py �(bp) pz⇒ px �(bp) pz (TRAN)

px 6�(bp) py⇒ px �(bp) py (COMP)

4.2.4 The Algebraic Structure of Beating Functions

The set BP and pointwise natural addition operation (bp
x +bp

y)(pw, pl,swc,slc,sw) =

bp
x (pw, pl,swc,slc,sw)+bp

y (pw, pl,swc,slc,sw) form an algebra. The pointwise natu-

ral addition operation is associative, commutative and bp
0 is its identity element. bp

0

15

is the beating function representing the results of the empty set of semantic games.

Therefore, bp
0 (pw, pl,swc,slc,sw) = 0.

We add the following four restriction operations to the algebra:

• Win restriction: we use bp|wpx
to denote a restricted version of bp that only

contains those games that px wins. Formally,

bp|wpx
(pw, pl,swc,slc,sw) =


bp(pw, pl,swc,slc,sw) , pw = px

0 ,otherwise
(DEF.WR)

• Loss restriction: we use bp |lpx
to denote a restricted version of bp that only

contains those games that px loses. Formally,

bp|lpx
(pw, pl,swc,slc,sw) =


bp(pw, pl,swc,slc,sw) , pl = px

0 ,otherwise
(DEF.LR)

• Fault restriction: we use bp | f l
px to denote a restricted version of bp that only

contains the games in which px makes a fault. These are the games that px

had a chance to win yet it lost. Formally,

bp | f l
px

(pw, pl,swc,slc,sw) =


bp(pw, pl,swc,slc,sw) , pl = px∧ slc 6= sw

0 ,otherwise
(DEF.FR)

• Control restriction: we use bp |cpx
to denote a restricted version of bp that

only contains those games that px controls. These are the games that px

either wins or had a chance to win. Formally:

bp|cpx
= bp |wpx

+bp | f l
px

(DEF.CR)

16

We also add a complement restriction operation for each of the aforementioned

restriction operations. We use bp |!wpx
to denote a restricted version of bp that only

contains those games that px does not win. Formally:

bp |wpx
+bp|!wpx

= bp (DEF.CWR)

We use bp |!lpx
to denote a restricted version of bp that only contains those games

that px does not lose. Formally:

bp|lpx
+bp|!lpx

= bp (DEF.CLR)

We use bp |! f l
px to denote a restricted version of bp that only contains the games in

which px does not make a fault. Formally:

bp | f l
px

+bp |! f l
px

= bp (DEF.CFR)

We use bp |!cpx
to denote a restricted version of bp that only contains those games

that px does not control. Formally:

bp|cpx
+bp|!cpx

= bp (DEF.CCR)

Formally:

bp | f l
py
| f l
px

= bp
0 (DBL.R.F)

bp |wpy
|wpx

= bp
0 (DBL.R.W)

bp|! f l
px

= bp |wpx
+bp |!cpx

(PROP.I)

bp|!cpx
|cpx

= bp
0 (PROP.II)

bp| f l
px
|lpx

= bp| f l
px

(PROP.III)

17

4.3 Collusion Resilient Ranking Functions

In this section, we formalize our notion of collusion resilient ranking functions as

ranking functions satisfying the limited collusion effect property. Then we formal-

ize the other desirable property of never discouraging wins nor encouraging losses.

Finally, we provide a more practical alternative characterization of collusion re-

silient ranking functions that that never discourage winning nor encourage losing.

4.3.1 Limited Collusion Effect

A ranking function�r is said to have the Limited Collusion Effect (LCE) property

if for any two arbitrary players px and py the rank of py with respect to px cannot be

improved by manipulating games that px can not control their outcome. These are

the games that px is not involved in or the games px loses while forced. Formally,

a ranking function satisfies the LCE property if it satisfies the following axioms:

bp
2 |

c
px

= bp
0 ∧ px �(bp

1) py⇒ px �(bp
1 +bp

2) py (LCE.I)

bp
2 |

c
px

= bp
0 ∧ py 6�(bp

1) px⇒ py 6�(bp
1 +bp

2) px (LCE.II)

The first axiom asserts that if px is ranked weakly better py under the beating

function bp
1 , then px remains weakly better than py when more games that px cannot

control are added to bp
1 . The second axiom asserts that if px is ranked strictly better

py under the beating function bp
1 , then px remains strictly better than py when more

games that px cannot control are added to bp
1 .

4.3.2 Regard for Wins and Losses

It is unacceptable for a ranking function to reward losing or to penalize winning. In

other words, a ranking function must have a Non-Negative Regard for Winning

(NNRW) and a Non-Positive Regard for Losing (NPRL). That is, a player’s rank

18

cannot be worsened by an extra winning nor can it be improved by an extra loss.

Formally, a ranking function must satisfy the following axioms:

px �(bp
1) py⇒ px �(bp

1 +bp
2 |

w
px

) py (NNRW.I)

px �(bp
1 +bp

2 |
w
py

) py⇒ px �(bp
1) py (NNRW.II)

px �(bp
1) py⇒ px �(bp

1 +bp
2 |

l
py

) py (NPRL.I)

px �(bp
1 +bp

2 |
l
px

) py⇒ px �(bp
1) py (NPRL.II)

4.3.3 A Practical Characterization of Collusion Resilient

Ranking Functions

We now show that: in the context of ranking functions satisfying both NNRW and

NPRL axioms, there is an equivalent, yet a more practical, alternative characteriza-

tion of collusion resilient ranking functions. We start by formalizing the alternative

axiom. Then we formally prove a theorem formalizing the relationship between the

two characterizations.

A ranking function � is said to be Local Fault Based (LFB) if for any two

arbitrary players px and py the relative rank � assigns to px with respect to py

solely depends on the games where px or py make a fault. Formally,

px �(bp| f l
px

+bp| f l
py

) py⇔ px �(bp) py (LFB)

Theorem 4.3.1. For any ranking function having NNRW and NPRL, LCE is equiv-

alent to LFB. Formally, NNRW ∧ NPRL⇒ (LCE⇔ LFB).

Figure 4.1 presents a partitioning of the games represented by an arbitrary

beating function bp . This partitioning illustrates the intuition behind this theorem

and its proof. The intuition is that a ranking function satisfying the LFB property

19

bp

7

bp |cpx
bp|cpy

1

2

5

6

3

4

1 bp |! f l
py |wpx

= bp |!cpy
|wpx

2 bp|!wpy
| f l
px = bp |!cpy

| f l
px

3 bp| f l
py|wpx

= bp |cpy
|wpx

4 bp|wpy
| f l
px = bp |cpy

| f l
px

5 bp |!wpx
| f l
py = bp|!cpx

| f l
py

6 bp |! f l
px |wpy

= bp|!cpx
|wpy

7 bp|!cpx
|!cpy

Figure 4.1: Beating Functions Representing Partitions of the Semantic Games
Represented by bp

� must completely decide the relative rank of any two arbitrary players px and py

based on the games in the shaded partitions only. Games in the unshaded partitions

cannot influence the relative rank of px and py assigned by �.

We now give an informal proof of this theorem using the partitioning shown in

Figure 4.1. We break our theorem into the following two lemmas. The first lemma

is that NNRW and LCE imply LFB. The second lemma is that NPRL and LFB

imply LCE. Our theorem follows directly from both lemmas.

To prove the first lemma, let � be a ranking function that violates the LFB

property. By definition of the LFB property, there must be two players px and py

such that the games in the unshaded region influence the relative rank assigned by

� to px and py. The influence can either be positive (case I) or negative (case

II) for px. Suppose that games in the unshaded region positively influence the

rank assigned by � to px with respect to py. But, assuming that � satisfies the

LCE property, games in partitions 1 , 7 cannot improve px’s rank with respect

to py because it only contains games not under py’s control. Also, assuming that

� satisfies the NNRW property, games in partition 6 cannot improve py’s rank

20

with respect to px because it only contains games that py has won. Therefore, our

assumption that � satisfies both LCE and NNRW cannot be true. We have shown

the contrapositive of the first lemma for case I. We now consider case II. Suppose

that games in the unshaded region negatively influence the rank assigned by �

to px with respect to py. But assuming that � satisfies the LCE property, games

in partitions 6 , 7 cannot worsen px’s rank with respect to py because it only

contains games not under px’s control. Also, assuming that � satisfies the NNRW

property, games in partition 1 cannot worsen px’s rank with respect to py because

it only contains games that px has won. Therefore, our assumption that � satisfies

both LCE and NNRW cannot be true. We have shown the contrapositive of the first

lemma for case II and the first part of the proof is now complete.

To prove the second lemma, let� be a ranking function satisfying both NPRL

and LFB. By definition of the LFB property, only games in the shaded region in-

fluence the relative rank assigned by � to px and py. Games in the regions 2 , 3

and 4 are under the control of px. Only games in region 5 can influence the

relative rank assigned by � to px and py, yet games in region 5 are not under the

control of px. However, games in region 5 are all faults made by py and by NPRL

they cannot improve the rank of py with respect to px. Therefore, only games under

the control of px may worsen px’s rank with respect to py. An identical argument

applies to the rank of py. This completes the prove of the second lemma and hence

the theorem.

Now we present our formal proof. We start with few lemmas. The first lemma

formalizes the partitioning shown in Figure 4.1. Essentially, our first lemma asserts

that if we add the games in the shaded region, represented by the beating function

bp | f l
px +bp | f l

py , to the games in partitions 1 , 6 and 7 represented by the beating

functions bp|! f l
py |wpx

, bp |! f l
px |wpy

and bp|!cpx
|!cpy

respectively, we get bp .

21

Lemma 4.3.2. bp | f l
px +bp | f l

py +bp |! f l
py |wpx

+bp|! f l
px |wpy

+bp|!cpx
|!cpy

= bp

Proof.

bp | f l
px

+bp | f l
py

+bp |! f l
py
|wpx

+bp|! f l
px
|wpy

+bp |!cpy
|!cpx

By DEF.CCR[bp| f l
py

/bp] :

=bp | f l
px

+bp | f l
py
|cpx

+bp| f l
py
|!cpx

+bp |! f l
py
|wpx

+bp|! f l
px
|wpy

+bp|!cpy
|!cpx

By DEF.CR[bp| f l
py

/bp] :

=bp | f l
px

+bp | f l
py
|wpx

+bp| f l
py
| f l
px

+bp | f l
py
|!cpx

+bp|! f l
py
|wpx

+bp|! f l
px
|wpy

+bp |!cpy
|!cpx

By DBL.R.F and identity of + :

=bp | f l
px

+bp | f l
py
|wpx

+bp| f l
py
|!cpx

+bp |! f l
py
|wpx

+bp|! f l
px
|wpy

+bp|!cpy
|!cpx

By commutativity of + and distributivity of + on restrictions :

=bp | f l
px

+(bp| f l
py

+bp|! f l
py

)|wpx
+bp| f l

py
|!cpx

+bp |! f l
px
|wpy

+bp |!cpy
|!cpx

By DEF.CFR :

=bp | f l
px

+bp |wpx
+bp| f l

py
|!cpx

+bp|! f l
px
|wpy

+bp |!cpy
|!cpx

By commutativity of + and DEF.CR :

=bp |cpx
+bp | f l

py
|!cpx

+bp|! f l
px
|wpy

+bp |!cpy
|!cpx

By PROP.I :

=bp |cpx
+bp | f l

py
|!cpx

+(bp |wpx
+bp |!cpx

)|wpy
+bp |!cpy

|!cpx

By distributivity of + on restriction operations:

=bp |cpx
+bp| f l

py
|!cpx

+bp|wpx
|wpy

+bp |!cpx
|wpy

+bp|!cpy
|!cpx

By DBL.R.W and identity of + :

=bp |cpx
+bp| f l

py
|!cpx

+bp|!cpx
|wpy

+bp |!cpy
|!cpx

By commutativity of + and restrictions and distributivity of + on restrictions :

=bp |cpx
+(bp |wpy

+bp| f l
py

)|!cpx
+bp|!cpy

|!cpx

22

By DEF.CR[py/px] :

=bp |cpx
+bp |cpy

|!cpx
+bp|!cpy

|!cpx

By distributivity of + on restrictions :

=bp |cpx
+(bp|cpy

+bp|!cpy
)|!cpx

By DEF.CCR[py/px] and commutativity of + :

=bp |cpx
+bp|!cpx

By DEF.CCR and commutativity of + :

=bp

Our second lemma asserts that partitions 1 and 7 , represented by the beat-

ing functions bp |! f l
py |wpx

and bp|!cpx
|!cpy

respectively, are not under py’s control.

Lemma 4.3.3.

(bp|! f l
py
|wpx

+bp |!cpx
|!cpy

)|cpy
= bp

0

Proof.

(bp|! f l
py
|wpx

+bp |!cpx
|!cpy

)|cpy

By PROP.I[py/px] :

=(bp|wpy
|wpx

+bp |!cpy
|wpx

+bp|!cpx
|!cpy

)|cpy

By DBL.R.W and identity of + :

=(bp|!cpy
|wpx

+bp |!cpx
|!cpy

)|cpy

By commutativity of + and restrictions and distributivity of + on restrictions :

=((bp |wpx
+bp|!cpx

)|!cpy
)|cpy

By PROP.II[py/px,(bp|wpx
+bp|!cpx

)/bp] :

=bp
0

23

Our third lemma asserts that NNRW and LCE imply LFB.

Lemma 4.3.4. NNRW ∧ LCE⇒ LFB.

Proof. We show the contrapositive of the lemma; Let � be a ranking function

violating LFB. Formally, px�(bp| f l
px +bp | f l

py) py 6⇔ px�(bp) py. We show that (px�

(bp| f l
px + bp | f l

py) py 6⇔ px �(bp) py)⇒ false under the assumption that � satisfies

both LCE and NNRW properties.

px �(bp| f l
px

+bp | f l
py

) py 6⇔ px �(bp) py

⇒px 6�(bp| f l
px

+bp| f l
py

) py∧ px �(bp) py∨ px �(bp| f l
px

+bp| f l
py

) py∧ px 6�(bp) py (I)

Consider the left disjunct only :

px 6�(bp| f l
px

+bp | f l
py

) py∧ px �(bp) py

Using Lemma 4.3.3 :

⇒((bp |! f l
py
|wpx

+bp|!cpx
|!cpy

)|cpy
= bp

0)∧ px 6�(bp | f l
px

+bp | f l
py

) py∧ px �(bp) py

By LCE.II[py/px, px/py,(bp| f l
px

+bp| f l
py

)/bp
1 ,(bp|! f l

py
|wpx

+bp |!cpx
|!cpy

)/bp
2] :

⇒px 6�(bp| f l
px

+bp| f l
py

+bp|! f l
py
|wpx

+bp |!cpx
|!cpy

) py∧ px �(bp) py

By the contrapositive of NNRW.II[(bp| f l
px

+bp| f l
py

+bp|! f l
py
|wpx

+bp|!cpx
|!cpy

)/bp
1 ,bp|! f l

px
/bp

2] :

⇒px 6�(bp| f l
px

+bp | f l
py

+bp|! f l
py
|wpx

+bp |!cpx
|!cpy

+bp|! f l
px
|wpy

) py∧ px �(bp) py

By Lemma 4.3.2 and commutativity of + and restrictions :

⇒px 6�(bp) py∧ px �(bp) py

⇒false (II)

Consider the right disjunct only :

px �(bp| f l
px

+bp | f l
py

) py∧ px 6�(bp) py

24

Using Lemma 4.3.3[py/px, px/py] :

⇒((bp |! f l
px
|wpy

+bp |!cpy
|!cpx

)|cpx
= bp

0)∧ px �(bp | f l
px

+bp | f l
py

) py∧ px 6�(bp) py

By LCE.I[(bp| f l
px

+bp| f l
py

)/bp
1 ,(bp|! f l

px
|wpy

+bp|!cpy
|!cpx

)/bp
2] :

⇒px �(bp| f l
px

+bp| f l
py

+bp|! f l
px
|wpy

+bp |!cpy
|!cpx

) py∧ px 6�(bp) py

By NNRW.I[(bp | f l
px

+bp | f l
py

+bp |! f l
px
|wpy

+bp|!cpy
|!cpx

)/bp
1 ,bp|! f l

py
/bp

2] :

⇒px �(bp| f l
px

+bp| f l
py

+bp|! f l
px
|wpy

+bp |!cpy
|!cpx

+bp|! f l
py
|wpx

) py∧ px 6�(bp) py

By Lemma 4.3.2 and commutativity of + and restrictions :

⇒px �(bp) py∧ px 6�(bp) py

⇒false (III)

From I , II and II :

px �(bp| f l
px

+bp| f l
py

) py 6⇔ px �(bp) py)⇒ false

Our forth lemma asserts that NPRL and LFB imply LCE.

Lemma 4.3.5. NPRL ∧ LFB⇒ LCE.

Proof. We separately derive the R.H.S. of each of the LCE axioms from its corre-

sponding L.H.S. under the assumptions of NPRL and LFB.

Consider the L.H.S. of LCE.I:

bp
2 |

c
px

= bp
0 ∧ px �(bp

1) py

Using LFB:

⇒bp
2 |

c
px

= bp
0 ∧ px �(bp

1 |
f l
px

+bp
1 |

f l
py

) py

By DEF.CR:

⇒bp
2 |

f l
px

+bp
2 |

w
px

= bp
0 ∧ px �(bp

1 |
f l
px

+bp
1 |

f l
py

) py

25

By definition of a beating function, it must return a natural number :

⇒bp
2 |

f l
px

= bp
0 ∧ px �(bp

1 |
f l
px

+bp
1 |

f l
py

) py

Since bp
0 is the identity element for + :

⇒px �(bp
1 |

f l
px

+bp
2 |

f l
px

+bp
1 |

f l
py

) py

By NPRL.I[bp
2 |

f l
py

/bp
2]:

⇒px �(bp
1 |

f l
px

+bp
2 |

f l
px

+bp
1 |

f l
py

+bp
2 |

f l
py
|lpy

) py

By PROP.III[py/px,b
p
2 /bp]:

⇒px �(bp
1 |

f l
px

+bp
2 |

f l
px

+bp
1 |

f l
py

+bp
2 |

f l
py

) py

By distributivity:

⇒px �(bp
1 +bp

2 |
f l
px

+bp
1 +bp

2 |
f l
py

) py

By LFB:

⇒px �(bp
1 +bp

2) py = R.H.S. (I)

Consider the L.H.S. of LCE.II:

bp
2 |

c
px

= bp
0 ∧ py 6�(bp

1) px

Using LFB:

⇒bp
2 |

c
px

= bp
0 ∧ py 6�(bp

1 |
f l
px

+bp
1 |

f l
py

) px

By DEF.CR:

⇒bp
2 |

f l
px

+bp
2 |

w
px

= bp
0 ∧ py 6�(bp

1 |
f l
px

+bp
1 |

f l
py

) px

By definition of a beating function, it must return a natural number :

⇒bp
2 |

f l
px

= bp
0 ∧ py 6�(bp

1 |
f l
px

+bp
1 |

f l
py

) px

Since bp
0 is the identity element for + :

⇒py 6�(bp
1 |

f l
px

+bp
2 |

f l
px

+bp
1 |

f l
py

) px

By the contrapositive of NPRL.II[py/px,b
p
2 |

f l
py

/bp
2]:

26

⇒py 6�(bp
1 |

f l
px

+bp
2 |

f l
px

+bp
1 |

f l
py

+bp
2 |

f l
py
|lpy

) px

By PROP.III[py/px,b
p
2 /bp]:

⇒py 6�(bp
1 |

f l
px

+bp
2 |

f l
px

+bp
1 |

f l
py

+bp
2 |

f l
py

) px

By distributivity:

⇒py 6�(bp
1 +bp

2 |
f l
px

+bp
1 +bp

2 |
f l
py

) px

By LFB:

⇒py 6�(bp
1 +bp

2) px = R.H.S. (II)

From I, II:

NPRL ∧ LFB⇒ LCE

We now proceed to prove Theorem 4.3.1.

Proof.

By 4.3.4:

NNRW∧LCE⇒ LFB

Therefore:

NNRW∧NPRL∧LCE⇒ LFB (I)

By 4.3.5

NPRL∧LFB⇒ LCE

Therefore:

NNRW∧NPRL∧LFB⇒ LCE (II)

Combining I ∧ II :

(NNRW∧NPRL∧LCE⇒ LFB)∧ (NNRW∧NPRL∧LFB⇒ LCE)

27

Simplifying:

NNRW∧NPRL⇒ (LCE⇔ LFB)

4.3.4 Neutrality

It is unacceptable that a ranking function to rank players based on their iden-

tity. Instead, a ranking function must solely depend on the structure of the in-

put beating function. We call this property NEUtrality (NEU). A ranking func-

tion � is said to be neutral if the order �(bp) it assigns to some beating func-

tion bp is preserved under any permutation on P preserving bp . We use abp
to

denote a permutation on P that preserves bp . Formally, bp(pw, pl,swc,slc,sw) =

bp(abp
(pw),abp

(pl),swc,slc,sw). We formally define Neutrality as:

px �(bp) py⇔ abp
(px)�(bp)abp

(py) (NEU)

4.4 Characterization of the Fault Counting Ranking

Function

Definition 4.4.1. Let f aultsbp
(p) be the number of faults that player p makes in

bp . Formally:

f aultsbp
(p) = ∑

pw,pl∈P∧swc,slc,sw∈S
bp | f l

p (pw, pl,swc,slc,sw) (DEF.FLTS)

Fault counting is a ranking function in which players are ranked according to

the number of faults they incur; The fewer the number of faults the better the rank.

Formally:

px � f(bp) py = f aultsbp
(px)≤ f aultsbp

(py) (DEF.FC)

28

4.4.1 Neutrality

A ranking function � is said to be neutral if the order �(bp) it assigns to some

beating function bp is preserved under any permutation on P preserving bp . We use

abp
to denote a permutation on P that preserves bp . Formally, bp(pw, pl,swc,slc,sw)=

bp(abp
(pw),abp

(pl),swc,slc,sw). We formally define Neutrality as:

px �(bp) py⇔ abp
(px)�(bp)abp

(py) (NEU)

[Why is neutrality important?]

4.4.2 Most Refined

Let �r, �s be two ranking functions. We say that �r refines �s if px �r(bp) py⇒

px �s(bp) py. Intuitively, the equivalence classes of ∼r can be produced via parti-

tioning some of the equivalence classes of ∼s.

[Why is refinement a desirable property?]

The following theorem provides a complete characterization of the loss count-

ing ranking function.

Theorem 4.4.2. � f is the most refined, neutral ranking function that satisfies the

limited collusion effect property and has a positive regard for wins.

Lemma 4.4.3. � f satisfies the LCE property. Formally:

(bp
2 |

c
px

= bp
0 ∧ px � f(b

p
1) py⇒ px � f(b

p
1 +bp

2) py)∧

(bp
2 |

c
px

= bp
0 ∧ py 6� f(b

p
1) px⇒ py 6� f(b

p
1 +bp

2) px)

Proof.

Consider the left conjunct of both clauses :

29

bp
2 |

c
px

= bp
0

Since f aults() is a function :

⇒ f aultsbp
2 |

c
px (px) = f aultsbp

0 (px)

By DEF.FLTS :

⇒ ∑
pw,pl∈P∧swc,slc,sw∈S

bp
2 |

c
px
| f l
px

(pw, pl,swc,slc,sw) = 0

By def of control restrict and distributivity :

⇒ ∑
pw,pl∈P∧swc,slc,sw∈S

(bp
2 |

w
px
| f l
px

+bp
2 |

f l
px
| f l
px

)(pw, pl,swc,slc,sw) = 0

By bp|wpx
| f l
px

= bp
0 and identity :

⇒ ∑
pw,pl∈P∧swc,slc,sw∈S

bp
2 |

f l
px
| f l
px

(pw, pl,swc,slc,sw) = 0

By idempotence of bp | f l
px

:

⇒ ∑
pw,pl∈P∧swc,slc,sw∈S

bp
2 |

f l
px

(pw, pl,swc,slc,sw) = 0

By DEF.FLTS :

⇒ f aultsbp
2 (px) = 0 (I)

Now consider the right conjunct of the first clause :

L.H.S. = px � f(b
p
1) py

⇒ f aultsbp
1 (px)≤ f aultsbp

1 (py)

⇒ f aultsbp
1 (px)≤ f aultsbp

1 (py)+ f aultsbp
2 (py)

⇒ f aultsbp
1 (px)+ f aultsbp

2 (px)≤ f aultsbp
1 (py)+ f aultsbp

2 (py)

⇒ f aultsbp
1 +bp

2 (px)≤ f aultsbp
1 +bp

2 (py)

⇒ px � f(b
p
1 +bp

2) py = R.H.S. (II)

Now consider the right conjunct of the second clause :

L.H.S. = py 6� f(b
p
1) px

30

p1

...

pk

px

f a
ul

ts
(b

p |
f l p x
+

b
p |

f l p y
)|

w p 1 (
p x)

f a
ul

ts
(b

p |
f l p x
+

b
p |

f l p y
)|

w p k (p
x)

py

f aults(bp | f l
px+bp | f l

py)|wpx (py)

f aults(bp | f l
px+bp | f l

py)|wpy (px)

f aults (b p| f lpx +
b p| f lpy)| wp1(p

y)

f aults (b p| f lpx +
b p| f lpy)| wp

k(p
y)

Figure 4.2: Partitioning faults made by either px, py or both

⇒ f aultsbp
1 (py) 6≤ f aultsbp

1 (px)

⇒ f aultsbp
1 (py)+ f aultsbp

2 (py) 6≤ f aultsbp
1 (px)+ f aultsbp

2 (px)

⇒ f aultsbp
1 +bp

2 (py) 6≤ f aultsbp
1 +bp

2 (px)

⇒ py 6� f(b
p
1 +bp

2) px = R.H.S. (III)

Lemma 4.4.4. � f satisfies the NNRW property. Formally:

Lemma 4.4.5. � f satisfies the NEU property. Formally:

Lemma 4.4.6. � f refines any ranking function� satisfying LCE, NNRW, and NEU

properties.

31

Proof.

By definition of refinement, we need to show :

px � f(py) ⇒ px �(py)

L.H.S. = px � f(py)

Using Theorem 1 on both sides. Theorem 1 is applicable because both � and � f satisfy LCE and NNRW:

⇔ px � f(bp| f l
px

+bp | f l
py

) py

First, we show that we � f is neutral, satisfy the limited collusion effect prop-

erty and has a positive regard for wins. Then, we show that� f is more refined than

any other ranking function �r that is neutral, satisfy the limited collusion effect

property and has a positive regard for wins.

4.5 Discussion

4.6 RelatedWork

32

Chapter 5

Conclusion and Future Work

REFERENCES

[1] Project Euler. Website. http://projecteuler.net/.

[2] The international SAT Competitions. Website. http://www.satcompetition.org/.

[3] Karim R Lakhani, Kevin J Boudreau, Po-Ru Loh, Lars Backstrom, Carliss Bald-
win, Eric Lonstein, Mike Lydon, Alan MacCormack, Ramy A Arnaout, and
Eva C Guinan. Prize-based contests can provide solutions to computational
biology problems. Nature Biotechnology, 31(2):pp. 108–111, 2013.

[4] Jordi Petit, Omer Giménez, and Salvador Roura. Jutge.org: an educational pro-
gramming judge. In Proceedings of the 43rd ACM technical symposium on
Computer Science Education, SIGCSE ’12, pages 445–450, New York, NY,
USA, 2012. ACM.

[5] TopCoder. The TopCoder Community. Website, 2009. http://www.topcoder.
com/.

 http://projecteuler.net/
 http://www.satcompetition.org/
 http://www.topcoder.com/
 http://www.topcoder.com/

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Thesis Statement and Rationale
	Key Challenge and Contributions
	Organization

	Background: Semantic Games
	Organizing Computational Problem Solving Communities
	Collusion Resilient Ranking of Semantic Game Tournaments
	Approach at a Glance
	Formalizing Beating and Ranking Functions
	Notation
	Beating Functions
	Ranking Functions
	The Algebraic Structure of Beating Functions

	Collustion Resilient Ranking Functions
	Limited Collusion Effect
	Regard for Wins and Losses
	A Practical Characterization of Collusion Resilient Ranking Functions
	Neutrality

	Characterization of the Fault Counting Ranking Function
	Neutrality
	Most Refined

	Discussion
	RelatedWork

	Conclusion and Future Work
	REFERENCES

