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ABSTRACT

What is easy and when does it become hard to find a solu-
tion of a problem? We give a sharp answer to this question for
various generalizations of the well-known maximum satisfiability
problem. For several maximum vsze,tisﬁability problems we expli-
citly determine algebraic numbers 7, (0 < 7, < 1), which
separate NP-complete from polynomial problems. The fraction 7,
of the clauses of a ¢-formula can be satisfied in polynomial time,
while the set of 1~formulas which have an assignment satisfying
the fraction 7 (7 >7,,7 rational) of the clauses is NP-complete.
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1. Introduction

We continue our study of the (generalized) satisfiability problem
[Lieberherr/Specker (1981), Lieberherr (1982)].

One often recurring theme in computer science is the following: Given an
algorithmic problem, find an algorithm which is optimal with respect to a cer-
tain measure. The motivation for looking for such algorithms is that the algo-
rithm designer has a guarantee that his algorithm is best-possible in a certain
precise sense. Some typical measures are time, space, comparisons, A -T2 ete.
For many measures it is hard to prove that a given algorithm is optimal.

We have analyzed the algorithmic problem of finding good approximate
solutions for generalized satisfiability problems. The measure we used to com-
pare algorithms is the quality of the approximations which they find. In
[Lieberherr (1982)] we describe an efficient algorithm MAXMEAN* which is
best possible with respect to our measure for a large class of problems. In this
paper we provide a framework for the analysis of MAXMEAN* and we-apply
our method to several special cases.

We investigate combinatorial optimization problems of the following form:
Given a sequence of constraints, find an assignment which satisfies as many as
possible. This constraint satisfaction problem appears in many applications
like time table scheduling, laying out graphs in a grid, decoding of linear codes,
minimizing PLA’s ete.

Maximization problems of this type are naturally formulated as maximum
1-satisfiability problems [Schaefer (1978)]. % is a finite set of logical relations

TSupported by National Science Foundation grant MCS80-04490 and Forschungsinstitut fuer Mathema-
tik, ETH Zurich. Most of this research was done while the first author was at Princeton University.
Author's addresses: Karl Lieberherr, GTE Laboratories, 40 Sylvan Road, Waltham MA 02254. Ernst
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Ry - - ,R, which are used to express the constraints. A ¢-formula S with
n variables is a finite sequence of clauses each of the form R; (zy, - - - ,z, ). ;
is the rank of R; and z,, - - - z,, are a subset of the variables of S. The max-

imum 1)-satisfiability problem consists of finding, for any ¥-formula S, an
assignment to the n variables satisfying the maximum number of the clauses.

Let 1, be the fraction of the clauses which can be satisfied efficiently in
any t-formula S. It is shown in [Lieberherr (1982)] that the following algo-
rithm MAXMEAN* guarantees to satisfy the fraction 7, In time
O(|S | |clauses (S)| ), where | clauses (S )| is the number of clauses in S.

Algorithm MAXMEAN*
Input: A 2-formula § with n variables.

Output: An assignment satisfying at least the fraction 7 of the clauses.

maz_assignment :=0;
loop
compute k£ such that

max meang: (S )=mean; (S)
gt k!l =4

{ mean; (S) is the average fraction of satisfied clauses in S among all
assignments having exactly k& ones. mean; (S ) is a polynomial in ¥ which
can be efficiently computed }

for all variables z €S do

if meany (S, —;)>mean; (S, —o)

then J [z |:=1;k 1=k -1;5 :=5;

else J [z |:=0;5 :=S, _

{ mean _,(S )=mean o(S ),mean, (S )=mean, (S )}

h :=SATISFIED (S ,J); { SATISFIED (S,J) is the number of satisfied

clauses in S under assignment J }

if A >maz_assignment then maz_assignment :=h else exit ;

rename all variables in § which are assigned 1 by J;
end ;

Already after one iteration of the outermost loop of MAXMEAN¥* the fraction
7, of the clauses is satisfied by assignment J [Lieberherr (1982)].

From the definition of 7, it follows that MAXMEAN* is a polynomial
(1-7,)-approximate algorithm for the maximum ¢-satisfiability problem, i.e.
MAXMEAN* comes within 1-7, of the optimal assignment. It is an open
problem whether there are polynomial ¢ -approximate algorithms for ¢
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<1-74. However it is shown in [Lieberherr (1982)] that it is NP-complete to
decide whether more than the fraction 7, of the clauses can be satisfied in a
given Y-formula.

In the following we outline the contents of this paper. In [Lieberherr
(1982)] we reduce the determination of 7, for a given 9 to a discrete minimax
problem. We show, that the discrete minimax problem can be reduced to a
continuous minimax problem which is considerably easier to solve (Theorem
2.1).

We determine 71, for several maximum ysatisfiability problems, each
requiring a different proof technique. In Theorem 3.1 we analyze special sys-
tems of linear inequalities, i.e. a special case of the (0,1)-integer programming
problem.

Theorem 3.1

Let R; be the relation of rank r which holds, if exactly 7 of the r variables
are assigned one. Let ¥={R, - ,R,}. Then algorithm MAXMEAN*

satisfies the fraction

of the clauses in a -formula S in time
TR

O(|S | | clauses(S)|). The set of ¢-formulas having an assignment satisfy-

ing the fraction 7 > of the clauses is NP-complete (7 rational).

r+1

The proof first uses the above reduction (Theorem 2.1) and continues with
an averaging trick which simplifies a part of the problem to the computation of
an integral. The integral is solved by partial integration: The mean value
theorem from calculus and some further minimax manipulations complete the
proof.

The following theorem analyzes subclasses of the regular satisfiability
problem.

Theorem 4.1

Let F (p,q) be the class of propositional formulas in conjunctive normal form
which contain in each clause at least p positive or at least g negative literals
(p,g >1). Let o be the solution of (1-z )’ =z ? in (0,1) and let 7, , =1-a?.
Then algorithm MAXMEAN* satisfies the fraction 7, , of the clauses in any
formula €F (p,g) in time O(|S | | clauses(S)|). The set of formulas
€F (p,q) which have an assignment satisfying the fraction 7 >r, , of the

clauses is NP-complete (7 rational).

J‘g
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The proof is involved and is decomposed into 3 simplifying reductions.

In the last part of the paper we partially solve a problem which was left
open in [Lieberherr/Specker (1981)]. We give an efficient algorithm which
guarantees to satisfy. 2/3 of the clauses in a 3-satisfiable conjunctive normal
form.

2. Reduction to a continuous min-max-problem

In the following we sketch how the computation of 7, can be simplified to a

discrete minimax problem involving polynomials (a more detailed explanation
is in [Lieberherr (1982))).

Ty is by definition the fraction of the clauses which can be satisfied in all 9~
formulas. First we consider ¢-formulas with at most n variables and let 7, ,
be the fraction of clauses which can be satisfied in all such formulas.

For computing 7, , we determine the worst-case formulas, i.e. the formulas
where the smallest fraction of the clauses can be satisfied (by the optimal
assignment) among all ¢-formulas with n variables. It is easy to prove that
these formulas are symmetric, i.e. they are invariant under permutations of the
variables, upto a permutation of the clauses.

Fortunately the worst-case formulas have a nice structure and therefore it is
easy to compute an optimal assignment for them. For computing an optimal
assignment for a symmetric formula we only have to compute the maximum of
a polynomial. This polynomial can be derived by elementary combinatorial
analysis. ;

In this section we prove a theorem which simplifies the computation of 7, to
the solution of a continuous minimax problem which does not involve a limit
operation. Let 9 = {R ,R,, ..., R, } be a finite set of relations and let S
be a symmetric ¢~formula in which the fraction tp of the clauses contains
clauses involving relation R;. In order to compute 7, , we have to find the
worst assignment to the parameters ¢ - - - g which makes the optimal frac-

tion of satisfiable clauses as small as possible.

m
It follows from the above discussion that (assuming that )} tp =1, t. > 0
i =1

1<: <m))
Ty = nli_}i%ofﬂ’w,
_ min max LA
"= tp(1i <m) 0<k <n X SATH(R)

rational integer T
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r(R) (k), (n—k ), (r)-
SATF(R) =85 0, (R ) B
where
tp is the fraction of clauses containing relation R

r(R) is the rank of R

¢ (R) is the number of satisfying rows in the truth table of R which con-
tain s ones

!
(a)ﬁ E]_‘Z-__ where «,8 are positive integers, a > f.

(a=B)t’
Let
! min max L
Ty = tp(1 <1 <m) 0< z <1 E tp, appSAT, (R; )
real T real =
m
Z tR,- =1 3 tR,-EO
i =1
r(R)
opSAT, (R) = 8% 4, (R) o (1-a )7 B}

3 =0

Theorem 2.1
T¢ = Tw’ .

Ty IS defined as the solution of a discrete minimax problem since the max-
imization is over integers. However 'r¢’ is expressed as the solution of a con-
tinuous minimax problem since both the minimization and maximization are
over reals. Furthermore the formula for 7, does not involve a limit opera-
tion. Therefore the definition of T¢’ is easier to evaluate.

We need the following definitions for the proof of theorem 2.1. Let S be
a 7-formula containing relation R;(1<¢ <m ) for the fraction tp of the

clauses. Let = (tp, ..., tp,)-
m
mean(t) = Y tp, SAT(R; ).
=1
Let
m
appmean, (1) = E tp. appSAT, (R; ).

$ =1


lieber
Note
(a)b is the binomial coefficient
(a choose b). There is a b! missing
in the denominator. The correct formula is: a!/b!(a-b)!.

Pointed out by William Guaraldi, Oct. 2006.
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Lemma 2.2

Let 1 be a finite set of m relations and let ?=(tR1, e A tR,,,) be a vector

whose components add up to 1.

{1y - limi
J —00

="

meanjj.",c”(t) = appmeani(?)

n

(2) Forallreal z(0 <z < 1)

Proof
(1)

lim mean Py, (¥) = appmean, ()
n —0oo

We have to show that

This follows

and

lim

LTl :(E}s {1__@}'"5‘
] oy

J —00 (sm ),

from

LGBk (k-s+1) _ k)
§=so0r 0 Jap =1y gn—~a4l) 5§

g =400

(2)

(4 (n—k )G (kY 1)(i (nk)r+s-1) _ {; k)7
(jn—s )(gn —s -1)--*(Jn —-r +1) 1 | n j

Follows from

and (1).

lim ]-n:c‘l —

n —00 n

Proof of Theorem 2.1

We have to show that for any ¢

A = lim <L{}Cax< a mean(t) =
n—00 . —
integer
max x
B =y« , <1 9ppmean, (&

real
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Let z,,,, be the maximal z in the definition of B. For each n, define
k(n)= [:c max |- Then by Lemma 2.2(2)
A > lim meank"(n)(?):appmeanzm(?)zB.
n—Co

Hence A > B.
To show that A <B, define the sequence k(n ),n =1,2, - - - such that

I

meang(y) () =O§E}f‘§ nmeank“(?). Let k' (n' ), n' ranging over an increas-

ing subsequence of the natural numbers, be an infinite subsequence of & (n )
such that

I I
n' —o0 n

for some real z. Then by Lemma 2.2(2)

A = lim meank"f’(nr ) (t) = lim mean Pen 1 (t) = appmean, (1) < B.
n! —oo f —00

3. Special (0,1)-Integer Programming

In this section we analyze special systems of linear equalities. The computa-
tion of the constant 7, for this case requires new methods. One reason is that
here we are dealing with sets of relations which contain r relations ( r a vari-
able) and not just two relations.

Let R; be the relation of rank r which holds if exactly 7 of the r
variables are true. o

Theorem 3.1
Let p={RuRq,:::,R;} Then

of the clauses can be satisfied.

(i) In any ®-formula the fraction
¥t

(ii) There is a polynomial algorithm MAXMEAN* which finds an assignment

satisfying at least the fraction

of the clauses in a ¥-formula.
r+1

(iii) For any rational 7 >

= the set of 9~formulas having an assignment
r

satisfying at least the fraction 7 of the clauses is NP-complete.

Proof of 3.1(i).
Since ¢, (R;) =10 if s 27 and ¢;(R;) = [;] we have

¥ 5 .
appmean, (S) = 3, ¢, [g]xj (1-z )7
ji=o0
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By Theorem 1 it is sufficient to show that

1 <m'1p = max =
r+1=tj(0__j <r) o< g <1 oppmean, (t).
real " real

i
Yot =1

j=0

% has the property that it is not necessary to choose the maximal z in the
1

above formula in order to compute 7,= et
T

Therefore we perform an

averaging process in the following lemma.

Lemma 3.2

il

G

zi(1-z) Jdz =

Oh—.s-l

Proof
Let

1
1 -1
= [ (1-z) dz = - 1-z) ! | = —
for =1 () (e ) | =
For the induction step we use partial integration
U = —1-'_1‘ I+l
14+1
w! =z
v = (1-z)"~7

~

= ~(r—j)1-=) 7
1 1
fir,=Ju"vids =u-v | ot = Juv' dz
0 0
.

J
= grrl i

Hence,
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 +1 .
fj+1,r - ‘i’—j‘ f],r(o S 7 < T)

and therefore inductively

PUURRN £5 G > S L€ o SN S
A A A R I A
J+1

Lemma 3.3
Let

and let

appmean, {ﬂ = jz;jo i [;.]xi (1-z ) 7

Then there is z (0 < zy < 1) such that

%=
appmean“kt =

Proof

Comnsider

_‘z‘appmeanr i? } dz
1

" [z7(1=2) 7 dz
AIEMCS

L i
== th

7=0

— 5

:
e ([ Ve

The claim follows from the mean value theorem of calculus.

P ez

1 1

Lemma 3.4

max appmean, { t} = min appmean, { t

1
N
I
et
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Proof
Let
b — L, L & e ;T(r +1 dimensional ).
(r+l +1 r+1
Then
appmean (—I;} oy B Zr} [r-]xf (1-z ) 7
BT =
1
¥l
Therefore
min max appmean (_t)} < 1
—y b
';‘ 0<z <1 g L ) r+1
since for ¢t = b only the fraction Tl be satisfied (independent of z ).
r

Also

X . ﬁ"*] 1

_, min eppmean, |1 . =

M L) r+

since for ¢t = b the minimal z satisfies the fraction L T On the other

b

hand for any ¢ thereisan z, such that

5 1
(7]
appmeanIol ] ~E)
Therefore
I?_lf max appmean, { t} = !
, 0<z <1 L) r+l
and
FoR min a (_tb} < 2
- ppmean, <

0<z <1 U ) r ¢l
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Proof of 3.1(ii) and 3.1(iii).

Algorithm MAXMEAN* guarantees to satisfy the fraction in polyno-

mial time. It follows from a general result in [Schaefer (1978)] that the -
satisfiability problem is NP-complete (for the % under discussion). Then (iii)
follows from Theorem 1.2 in [Lieberherr (1982)].

4. Satisfiability

Let F(p,q) be the following class of propositional formulas in conjunctive
normal form: Each clause in a formula in F (p,g) contains at least p posi-
tive or ¢ mnegative literals (p,¢ > 1).

Let « be the solution of (1-z)? =27 in (0,1) andletr, , =1-a?.

Theorem 4.1

(i) In any formula in F (p,q) the fraction 7, , of the clauses can be
satisfied.

(ii) There is a polynomial algorithm MAXMEAN* which finds an assignment
satisfying at least the fraction 7, , of the clauses in a formula in

4
F(p,q)

(iii) For any rational 7 >, , the set of formulas in F(p,q) having an
assignment satisflying at least the fraction 77 of the clauses is NP-

complete.

This theorem and its proof extend the results and methods given in
[Lieberherr/Specker (1981)]. The proof of Theorem 4.1(i) is given by a
sequence of simplifying reductions. Each reduction is presented as a Proposi-
tion 7 . The corresponding Lemma j claims that Proposition j implies
the previous proposition (in the first step: Theorem 4.1(i))

Theorem 4.1(ii) is a special case of a general result proven in [Lieberherr
(1981)]. The proof of Theorem 4.1(iii) is based on a result by [Schaefer (1978)]
and the technique given in [Lieberherr/Specker (1981)].

Simplifying Reductions
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Proposition 4.2

For all integers n > min(p ,¢ ) and for all positive integers ¢,,t, there is an
integer k (0 < k < n) such that ggxseor (n,k,t,t0) =

Lemma 4.2

Proposition 4.2 ==2> Theorem 4.1(i)

Proof

Using the techniques given in [Lieberherr/Specker (1981)] it is easy to show
that the class F (p,q) can be reduced to F' (p,q) = {formulas having only
clauses containing either exactly p positive literals or exactly ¢ negative
literals}. Furthermore, it is sufficient to consider only symmetric formulas in
F' (p,q)
Let S be a symmetric formula in F' (p,¢) which contains ¢; clauses of
the form A,;\VVA,V - VA, and to clauses of the form
not A, \/ not Ay\/---\/ not A;. Then the fraction of unsatisfied clauses
if k£ variables are set to 1 is, by elementary counting methods, given by
gpxact (n k,t,ts).

Note that ggxacr(n.k,t,to) 1is the expected fraction of unsatisfied

clauses among all assignments which set k£ variables to 1. It is denoted by
meen; (S) for a given formula S . 7

First we give an outline of the proof for Proposition 4.2.

Qutline:

Let z = L and substitute r® for any expression of the form (r), in
n

dpxact (n .k ,t1,t5). The resulting expression for the fraction of unsatisfied
clauses is

tl(l—l‘ )P + tz.'ﬂq
tl+ t2

dapprox (Tt 1,te) =

Since for all positive integers r,k,n (kK < n)
k T
i 2 1B
(n)y —(7)

the inequality
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k
gexact (n .k, tts) < gAPPROX(;athtz)

holds. Therefore it is sufficient to show that for all n and all positive
integers (,,to there is an integer £ such that

k
QAPPROX(;:%%) S1-75,.

W.l.o.g. we set t, =1, since g pppox Is homogeneous in £,%,.

Take the derivative of g¢g4pppox With respect to z, set it to zero and solve
for t;:

Substitute for ¢, In g4 pprox :
¢ z? ' (1-z) +p-zx?(l-z )P}
q R L p(l—x )p—l
gapp has the following intuitive meaning. Consider a formula S in
F' (p,g) with n variables and define £ ;, by

gapp(z) =

min mean;, (S) = meank’m (S).
0Lk <n

min

In any such a formula S at most the fraction g4pp ( ) of the clauses can

be unsatisfied. This holds since the second derivative of g,4pprox With respect
to z is positive. if p >1 or ¢ >1 and t;5£0 and t¢,540. Therefore it is
sufficient to show that for all positive integers and all real z (0 < z < 1)

gAPP(I)S lfrp,g'

Compute the extremal points of g4pp Wwith respect to x in (0,1). There is
only one which is given by the solution of (1-z ) = z 1.
Substituting z? for (1-z)? in gpyscr Yields

dpxacr = 1-1z7.

Therefore the fraction To.i
F' (p,q).

The following simple heuristic method, which was also observed by John

= 1-a? can be satisfied in any formula in

Scranton, gives the correct result.

Choose z such that the fraction of satisfied clauses is independent of ¢,,f,.
The resulting condition for z is

l1-z) =z7.
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For such an z, the fraction of satisfied clauses is independent (in the limit) of
the formula we consider and it is 7, ..

Now we continue with the proof of Proposition 4.2.

Proposition 4.3
For all integers n >min(p,g) and all positive integers ¢,,t, there is an
integer k(0 < k¥ < n) such that
t{(1-2 ) + toz?
(e +rmt
t,+ to — 2

gapprox (75t 1t ) =

Lemma 4.3

Proposition 4.3 ==> Proposition 4.2

Proof

Note that for all positive integers r ,k,n (k < n) since

(k) k)Y
(n), = i;]
1

1 2 r
(L~ I)(l = ‘E)"'(l 5

)< (- D=2y~

(n—_k)ﬂm _2Y an (k)q
ah by (1 ) d ), by =z?

we increase gpyscr. JTherefore gpyacr < Gapprox Which proves Lemma
4.3. )

r—1
n

k )

If we let z = k and replace
n

Proposition 4.4
Forallreal z (0 <z < 1)

¢-1(1_z -1 =
z? 1z )P g (l-z) + pz] -
gz +p(l-z)P!

JAPP

Lemma 4.4

Proposition 4.4 ==> Proposition 4.3

Proof

W.l.o.g. we set t, =1 since g4pprox Is homogeneous in %,t,. Take the
derivative of g4pprox With respect to z, set it to zero and solve for ¢;:
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If we substitute for ¢; in g¢g4pprox We get gypp. Note that the second
derivative of gipppox With respect to z is
typ(p-1)(1-2 )P + tyq(¢-1)z?7,

which is positive for any z(0 <z < 1),if p >1and ¢t;#0 or ¢ > 1
and ¢4 5% 0.

Proof of Proposition 4.4

We show first that the derivative of g4pp(z) is zero in (0,1) iff z satisfies
(1-z )P =z7.

Let A =z?,B = (1-z)?. Then

A' B - AB'
gAPP(I): AJ __Bf

The numerator of the derivative of g pp (z) is
(A'""B" —-A" B'"!")(A -B).
The first factor
At Bt - 34F B
=—pg(g-1)z?2(1-z )1 - g-p(p-1)z? (12 )P
— 21212 )P ¥ - (g-1)(1-z) - (p-1)2)
has no zeros in (0,1).

Since (1-z)? = z? has only one solution a in (0,1) the rational function
gapp (z) has one extremal point in (0,1) with value g, pp(a) = a?. Since
g4pp (0) = g4pp (1) = 0 the function g4pp(z) is maximal for z = a.

The proof of Proposition 4.4 uses differentiation. We give now a different
proof which does not use differentiation and which provides further insight into
the problem.

Proposition 4.5
For all real z,68 (0 < z,8 <1)

golz8) = =1 [(l—a: VY (pz—gqz +¢ ) + (1-B8) ¢ (z-1) ] -1z plpz <0

Lemma 4.5

Proposition 4.5 ==2> Proposition 4.4
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Proof

Multiply both sides of g4pp(z) < ! by the denominator of g4pp(z) and
shift all terms to the left of the inequality sign. The resulting inequality is
g 4(z,8) < 0 if we make liberal use of (1-a)’ = af (a crucial point) and if
we substitute F for a.
Proof of Proposition 4.5
So far a proof of Proposition 4.5 was obtained only for special cases.
I) p=Llq > 1

Note that

g 2(-75 aﬁ) = (.'1: —ﬂ)2 qjl 5 q—s'—l(i g ),5’ -1

=1

Hence g¢o(z,B) is non-positive for 0 < z,/ < 1.

Example: (p =1)
¢ o(z ,B) is proportional to (the deleted factor has a positive sign)
—(z —B)*for ¢ =2.
—~(z —B)* (27 +) for ¢ =3.
—(z -B)*(3z2+2z a+a?) for ¢ =3.
o) p==2.
g o(z ,4) is proportional to (the deleted factor has a positive sign)
(z -B)*(z (z —4) + 2B(z -1)) for ¢ =S3.
(z -8z ?(z-3) + 2Bz (z-1) + Bz -1)) for g =4.
(z )Xz 3(3z -8) + 68z *(z 1) + 4f°z (¢ -1) + 243(z 1)) for ¢ =5.
Unfortunately this technique does not generalize for p > 3 but it is con-
jectured that Proposition 4.5 holds in general.

The formulas obtained by the alternate proof method have interesting
applications. The following theorem allows us to predict which fraction of the
clauses can be satisfied in every formula if the index of the maximal mean; (S)
is fixed.

Theorem 4.6
Let S beaformulain F' (1,4 )(¢ >1) for which
max  mean; (S) = mean oS ).
0<k <n _

Then assignment J;; o, Which assigns false to all variables satisfies all

clauses. In general, if max meany (S) = meang, (S) then the assign-
‘ 0<k <n
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ment which assigns true to k'’ variables satisfles at least the fraction

k! g-1 . " kl e
(o 5 (i-g )i E e
1 — of i i=1

! 4
g P41
n

q(
of the clauses.

Proof
Consider g pp (z) - a? for p=1 (after multiplying with ¢ -z?7' + 1):

g-1 . .
@t Hlz) + 2% —af (g5t H) = (e-aff $ 2 ig Ja

§ =1
Let
(a:—a)g qijl Iq—:‘—l(i_q)af—l
iz — i=1
(=) g z? 41
Now,

Proof of Theorem 4.1(ii)

Algorithm MAXMEAN* guarantees to satisfy the fraction 7, , in polynomial
time. .

Proof of Theorem 4.1(iii)

The fact that the satisfiability problem for formulas in F (p,q) is NP-
complete follows from a general result of [Schaefer (1978)]. Then the proof can
be adapted from [Lieberherr/Specker (1981)].

Extensions

The technique used to prove Theorem 4.1(i) is suitable to determine 7, for
other sets 1 which contain only two relations. The fraction of satisfied
clauses in a symmetric formula which contains ¢, clauses with the first relation
and t, clauses with the second relation is given by (in approximated form)

bR (z) + toR o(z)

hi(z,tyte) = R ’
1

where R; and R, are polynomials which depend on the two relations.
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W.l.o.g. to=1. If we take the derivative of h; with respect to x and
solve for ¢, we get
y— e (o)
' R ()
Substituting in h; we get
Ry (z)Ry(z)-R,(z)R) (z)

halz) = Ry (z)-R, (z)

The numerator of the derivative of k(2 ) is given by

(Bilz) - Ro(z )Ry ' (z)RS (2)- By ()RS (2)).

If the second factor has no zeros in (0,1) then the fraction R (o) can always

be satisfied, where o is the solution of R (z) = R,(z) in (0,1) which is

the global minimum of A ,.

5. Partial Solution of the 3-Satisfiability Problem

In [Lieberherr/Specker (1981)] the following problem was left open. A formula
S of the propositional calculus in conjunctive normal form (cnf) is said to be
3-satisfiable, if any triple of clauses is satisfiable. We find a lower bound on
the fraction 75 of the clauses which can always be satisfied in a 3-satisfiable
formula by showing in the following that 73 > 2/3. Unfortunately we have
not been able to determine 73 exactly. The motivation for studying
k —satis f table formulas is the relationship to polynomial approximation
schemes for satisfiability [Lieberherr/ Specker (1981), Huang/ Lieberherr
(1981)]. :

The problem with 3-satisfiable formulas is that they are not closed under
symmetrization. If we take a 3-satisfiable formula § and symmetrize it with

the full permutation group then the symmetrized formula is in general not 3-
satisfiable.

To show that 73 > 2/3 we construct a class RED ; of formulas so that
1. RED, contains all 3-satisfiable formulas (but some are not 3-satisfiable)

2. in any formula in RED, at least the fraction 2/3 of the clauses can be
satisfied.

Consider any 3-satisfiable formula S. Without loss of generality we assume

" that clauses of length 1 only contain positive literals (this can be enforced by

renamings). Now we partition the variables into two classes. The first class
contains only variables which occur in clauses of length 1. The second class
contains all other variables. A clause is said to be type Ty% if its j wvari-
ables are in class ¢ and 1 of them are positive. A clause is said to be of
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type T ;,;, If it contains 7, variables of class ¢ and j, variables of
class r and if ¢; of the j; variables are positive and 1, of the j, vari-
ables are positive.

Definition

RED , is the following subset of cnfs: The variables are partitioned into 2
classes (A -variables and B-variables) and only the following clause types

occur:
1 1 12 12 2 2 2
Tll !TOS ’TOI 11 5T01 01 5T02 3T12 !T22 :

This definition is of interest since for proving that 73 > 2/3 it is sufficient to
minimize among the formulas in RED ;.

Theorem 5.1

(i) In any 3-satisfiable cnf at least the fraction 2/3 of the clauses can be
satisfied. (ii) There is a polynomial algorithm to find such an assignment.

Proposition 5.2
In any cnf in RED1 at least the fraction 2/3 of the clauses can be satisfied.

Lemma 5.2

Proposition 5.2 ==>> Theorem 5.1(i)

Proof

Any 3-satisfiable cnf is easily reduced to a formula in RED, by deleting
literals. Deleting literals makes a formula harder for satisfying many clauses.

Definition:

Let RED, be the subset of cnfs of RED; which do not contain clauses
with types T3 ,T 5 and T3

Proposition 5.3
In any cnf in RED2 at least the fraction 2/3 of the clauses can be satisfied.

Lemma 5.3

Proposition 5.3 ==> Proposition 5.2
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Proof

In a cnf containing clauses of exactly length 2 at least the fraction 3/4 of
the clauses can be satisfied (a random assignment satisfies 3/4). Therefore
deleting clauses of the above three types does not make it easier to satisfy
many clauses.

We prove now Proposition 5.3 by a sequence of further reductions. Let S be
a formula in RED, which contains ¢; clauses of type T{j,t, clauses of
type T %1y ,t5 clauses of type Tgs and t4 clauses of type T ¢2,. The
worst-case formulas (regarding the fraction of satisfiable clauses) in RED , are
those which are symmetric in the A -variables and B -variables. Among those
formulas the formulas with t, = ¢, are hardest. In a formula in RED,
with t, = t4 the fraction

t1 to la k
—(n-k)+ —k +

s . TEr

1 -

of the clauses are satisfied if & of the n A -variables are set to 1. There-
fore, we have to show

Proposition 5.4

For all integers n and for all positive integers ¢,t4,65 there is an integer k
(0 < k < n)such that

by Lo ta

—(n-k)+ —k + (% )a

n n (n)s <l
t,+ 2ty + tg =8

Lemma 5.4

Proposition 5.4 ==> Proposition 5.3

Proof

Given above.

Proposition 5.5

For all integers n and for all positive integers ¢,,t5,63 there is an integer
k(0 <k < n) such that

ty to ta
LY B g — LB
- (n—k) + —k +—3

n <l
b1+ 2t + 13 - 3

‘w1=



o D =

Lemma 5.5

Proposition 5.5==> Proposition 5.4

Proof

k r
Observe that (k). < k HE Sm
(n )r n'

Proposition 5.6
Forall £ (0 < z < 1) and all positive integers {3

), = G 1
2 = 9 S a9
Lemma 5.6
Proposition 5.6 ==> Proposition 5.5

Proof’

W.lo.g. let ¢; =1 and substitute z for % in w;. Take the derivative of
w, with respect to z, set it to zero and solve for ¢:

by = 1 — Blys™
By substituting 1 — 3t3:£2 for t, in w,; we get w,.

Proposition 5.6 is easily proven directly by case analysis.
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