Artificial Markets for Computer Science

Karl Lieberherr

March 11, 2009

1 Introduction

We are interested in solving the real world question of how to produce re-
liable, evolutionary software. By evolutionary software we mean software
that can be easily and safely evolved and that can be easily re-targeted.

Our thesis is: Developing design and programming tools using a generic
artificial market (1) creates better design and programming technology for
real world evolutionary software (2) creates better algorithms for the compu-
tational problem used as argument to the generic artificial market (3) makes
creating better design/programming technology and better algorithms more
fun and experiential (4) creates better teaching tools for software develop-
ment courses that makes computer science more attractive.

An artificial market ArtificialMarket(C) for a computational problem C
is driven by a feedback loop where computer science knowledge about C is
put into trading robots (software robots) that will compete in simulations.
The behavior of the robots is analyzed and new generations of robots are
produced to compete in the next simulation. This fast turn-around requires
tools to produce reliable, evolutionary software.

The robots produce and consume derivatives, both life-energy enhanc-
ing and life-energy draining. The challenge for the robots is to survive by
accumulating enough life-energy.

ArtificialMarket(C) may evolve in the following three dimensions, inde-
pendently or combined: (1) The computational problem C evolves. (2) The
market definition evolves because the market was not fair. (3) The robots
evolve because a better way to play the game was found.

ArtificialMarket(C) is interesting for several reasons:

1. It drives software development technology for evolutionary software.



2. ArtificialMarket(C) is a teaching tool to teach about computational
problem C using a hands-on approach.

An exciting aspect of this teaching approach is that the students be-
come engaged with their robot which is a simple artificial organism.

3. ArtificialMarket(C) not only supports learning about C but also cre-
ates practically useful new knowledge about C. ArtificialMarket(C) is
an excellent teaching tool to teach about computational problem C.

4. ArtificialMarket(C) has likely implications on real markets.

5. The artificial markets offer an interesting alternative to benchmark
based evaluation. Instead of measuring the quality of an algorithm
for the computational problem C on a benchmark that is static and
needs to be enhanced from year to year, we submit the algorithm to
ArtificialMarket(C) and watch its evaluation. This means, however,
that the algorithms need to be good at both finding good solutions as
well as creating instances for which its ”hard” to find a good solution.
Dealing with both issues is likely to enhance existing algorithms. Note
how the robots will automatically create more and more challenging
benchmarks based on their need to survive.

2 Evolutionary Software

ArtificialMarket(C) for a computational problem C provides indeed a con-
text for solving the real-world evolutionary software problem (RES). The
artificial market is a very important context because it drives RES in the
right direction. Software development is much more than writing the pro-
gram from a specification. It involves a lot of design, requirements analysis
and potentially adjustments to the requirements if they don’t make sense.

In the artificial market approach to RES the requirement is quite sim-
ple: Win within the rules of the market. But to turn that into evolutionary
software is a challenging task because the artificial market needs to be thor-
oughly understood to win in the game.

Once you have that understanding of the market, you come to the lower
level task of translating it into code. That is where our RES-supporting pro-
gramming tools come in: We use Functional Adaptive Programming, imple-
mented in DemeterF for Java and C#, to separate the important concerns
that the programmer has based on her market understanding. DemeterF



is the best of all implementations of Demeter I know of. DemeterF sup-
ports safe evolution of class graphs thanks to a fine-grained type checking.
DemeterF supports easy retargeting of computations to where they are run
most effectively: heap versus stack, using multi-core without or minimal
programmer intervention, etc. We need support to perfect DemeterF.

While we already have good support for RES at the programming level,
we also would like to develop tools to help at the requirements analysis level.
But this is longer range.

Our work on RES is primarily at the programming level and secondary
at the design level and it uses artificial markets as the context to have fun
in the process. The work is interdisciplinary because you can start with any
computational problem C. And as part of developing RES for C, you will
learn a lot about C.

3 Constraint Satisfaction

We have developed the artificial market loop for the computational prob-
lem called Constraint Satisfaction. ArtificialMarket(ConstraintSatisfaction)
makes a strong contribution to engaging students in a robot development
process where they evolve a baby robot (which they get at the beginning
of a software development course) through several stages of development,
using a baseball metaphor: T Ball, slow-pitch Softball, fast-pitch Softball to
Baseball. Weekly competitions between the robots give immediate feedback
on their “intelligence.”

ArtificialMarket(ConstraintSatisfaction) is useful to teach development
of reliable software using a solid base of computer science and mathematics.

In order to stay alive, the robots must reliably maximize the profit from
their derivative trades and follow the rules of the artificial market. Unreliable
behavior of the robots leads to their removal because of negative balance or
other violations of the rules of the artificial market.

4 Summary

We propose the study of artificial markets to improve the knowledge in a
computational problem C and to make teaching of this knowledge entertain-
ing. We let the artificial markets drive our software development tools for
evolutionary software.



5 Appendix: Artificial Market Definition

Given a computational problem C (optimization or decision problems), we
define ArtificialMarket(C) to be roughly a tuple (Predicate, Derivatives,
RawMaterials, FinishedProducts, Quality, Profit, Rules). The derivatives
are predicates on the instances of C and have a price. After a derivative
d = (pred,price) is bought, raw material is delivered which is an instance
of C satisfying the predicate pred. The raw material consists also of the
quality of a secret solution that the creator of the derivative has found and
tries to "hide” from the buyer. The idea is that it is "expensive” for the
buyer to recover or approximate the secret. The secret S is private to the
creator at the moment. After the raw material r = (inst, quality(S)) has
been delivered, the buyer finishes the raw material. i.e. produces a solution
S’ for r.inst. The profit is determined based on quality(S’) compared to
quality(S) (several profit formulas are possible). As the last step of the
protocol, the creator reveals the secret S to the buyer. The Rules define
the world: Every robot starts with an initial capital and must offer a new
derivative on each round and must buy at least one derivative or reoffer all
derivatives currently for sale at a lower price ...

5.1 Signatures

Sets and functions:

1. Predicate: An intentional definition of a subset of raw materials. De-
fined by a predicate language defined by a grammar. Predicate :
RawMaterial(C) — Boolean.

2. Price: real.
3. Derivative = (Predicate, Price)

4. Quality : RawMaterial FinishedProduct Resources — Real.



