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Abstract. A network of reactions is a commonly used paradigm for rep-
resenting knowledge about a biological process. How does one understand
such generic networks and answer queries using them? In this paper, we
present a novel approach based on translation of generic reaction net-
works to Boolean weighted MaxSAT. The Boolean weighted MaxSAT
instance is generated by encoding the equilibrium configurations of a re-
action network by weighted boolean clauses. The important feature of
this translation is that it uses reactions, rather than the species, as the
boolean variables. Existing weighted MaxSAT solvers are used to solve
the generated instances and find equilibrium configurations. This method
of analyzing reaction networks is generic, flexible and scales to large mod-
els of reaction networks. We present a few case studies to validate our
claims.

1 Introduction

A network of reactions is a convenient way to represent knowledge about a
biological process. Each reaction converts some reactants into products in the
presence of certain other molecules. There is no single universal meaning, or a
single formal semantics, that can be ascribed to the various reaction networks
and pathways in the literature. Consequently, it is unclear how to build compu-
tational support for understanding and reasoning about large reaction networks.

A reaction network can be interpreted in various ways. They are often mapped
onto a continuous dynamical system, where the dynamics are given by ordinary
differential equations. These differential equations can be generated using dif-
ferent kinetic laws, such as Mass Action and Michaelis-Menten. However, it is
not easy to experimentally determine, especially for biochemical reactions, the
rate constants required to build the continuous dynamical system. As a result,
fully specified and experimentally validated continuous dynamical system mod-
els are rarely available. Moreover, it has also been argued that the assumptions
used to arrive at the differential equations may not be valid inside a biological
compartment, where certain molecules may be few.
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A reaction network can also be interpreted as a dynamical system over a
discrete state space. In this case, the state space consists of mappings from the
set of species to the natural numbers that specifies the number of molecules
of each species. The dynamics over this state space can be defined either in
continuous time (using a stochastic model) as a Chemical Master Equation, or
in discrete time as a (standard or stochastic) Petri net. While such models are
considered to be more accurate, they are difficult to analyze because of the
horrendously huge state space. For example, when analyzing systems containing
just 100 total molecules of 4 different species, the state space size is 4100,

All continuous time models require reaction rates in some form. To overcome
this requirement, discrete time models are considered that abstract time to a
before-after relationship. When considered over the discrete state space men-
tioned above, a reaction network simply maps to a Petri net. Analyzing Petri
nets is not easy. For instance, while Petri net reachability is decidable, there is
no known upper-bound.

To overcome the state space problem, the discrete-time discrete-space models
are further simplified. For instance, boolean models abstract species to being
either present or absent. Other qualitative abstractions, such as absent, present
in low quantities, and present in large quantities are also possible. In the absence
of accurate detailed models, these abstract models have been found to be highly
useful for representing and understanding biological knowledge.

In this paper, we present a new scalable approach for analyzing large reaction
networks interpreted in the discrete-time and abstract discrete-space domain.
There are three main features in our approach. First, it is based on qualitatively
abstracting the reactions into two states—on and off. This is dual to the more
conventional approach where the presence or absence of molecular species, and
not reactions, is used to define the state of the system [4,8,9]. Second, it uses
a boolean MaxSat as its backend engine. There is a generic translation from
reaction networks to boolean MaxSat instances. Third, it is flexible. Clauses and
their weights can be adjusted for reaction networks encoding specific aspects,
such as signaling pathways, or transcriptional regulation.

Consider, for example, the very sim-

ple network shown here (not necessarily

L biologically accurate). This network con-

[ o] sists of 4 reactionz:
1-
ri: Tsc2 kt—>aCt Tsc2-deact

eb-act A k_ t
.Rh bract - \w @ To: Tsc2 mpxac Tsc2-act
RN Tsc2-act
—

\- r3:  Rheb-act Rheb-deact
l Mtor-act

l T4 Mtor

We will use this network as a running ex-

ample in the paper.

\E*A
-
|+
I
H

Rheb-act
—

It is not immediately obvious how to understand even this simple network.
Using the approach described in this paper, all possible “steady-state” behaviors
of the above network can be computed. For this example, the tool computes two



possible behaviors. Either Akt1-act is present, deactivating Tsc2, while Mtor gets
activated by Rheb-act (Reactions 1 and 4 are “on”); or, Ampk-act is present,
activating Tsc2, which in turn deactivates Rheb-act (Reactions 2 and 3 are
“on”). The important point here is that the steady-state behavior is thought
of a subset of reactions that can be consistently “on”, as opposed to the tradi-
tional viewpoint where steady-state refers to species reaching some equilibrium
concentrations.

As mentioned earlier, our approach is flexible and additional constraints can
be added to specialize the search for certain steady-state configurations. We can
specify an initial dish consisting of some of the species and search for most likely
steady-state configurations resulting from the given initial dish. In the above
example, if the initial dish only contains Tsc2, Ampk-act, Rheb-act and Mtor,
then our tool identifies that the second and third reactions can be “on”, and that
the other option, where reactions 1 and 4 are “on” is less likely. Similarly, target
species can be specified, and the tool will generate paths (scenarios) that produce
the target species. Each such scenario will be assigned a weight indicating its
relative likelihood.

1.1 Motivation

The definition of “steady-state” behavior we use in this paper is nonstandard.
Traditionally, a steady-state refers to all species in the network being at their
equilibrium concentrations. In this paper, a steady-state refers to a subset of
reactions that can be consistently “on”. This new definition is motivated by the
observation that signaling pathways are best understood this way. More than the
individual species concentrations, it is the chain of reactions that captures how
information flows from the cell membrane to effect downstream activities in a
cell. This chain of reactions corresponds directly to the notion of a steady-state
in our approach.

The different reactions in the steady-state chain of reactions will, in reality,
be temporally separated. While certain phosphorylation activity may occur in
a few minutes after a cell is hit by ligands, other downstream activities may
occur much later. In our approach, we identify the whole chain as one possible
steady-state behavior of the reaction network. The complete chain of reactions
may never simultaneously be “on” in reality. However, they are still useful in
understanding the function of a given complex reaction network.

The approach based on translation to MaxSat is motivated by the need for
flexibility. Reaction networks have slightly different meaning in different con-
texts. Metabolic pathways, signaling pathways, and transcriptional regulation
networks work on different notions of species and reactions. Our basic semantics
attempts to capture the minimal common meaning that can be ascribed to any
such network. The weights on the MaxSat instance give flexibility in making
certain constraints harder than others in different contexts.

Finally, it should be mentioned that the technology for solving SAT and
MaxSAT problems has made significant advances in recent years and problems
with thousands of boolean variables and even more clauses are routinely solved



in a few seconds. We have used our tool on the HumanCyc database of metabolic
pathways (containing over a thousand reactions) and we can answer queries in
a few seconds.

2 Reaction Networks

In this section, we formalize our terminology. A species is a generic name used
to denote any entity, such as a molecule, ion, protein, enzyme, ligand, receptor,
complex, or a postranscriptionally modified form of a protein. We do not differ-
entiate between these different roles and just formally identify a species with a
unique name. The set of all species will be denoted by S. A reaction consists of
a set of reactants, a set of modifiers, and a set of products. Thus, a reaction r is
a 3-tuple (R, M, P), where R, M, P are pairwise disjoint subsets of S. Given a
reaction r, we denote its set of reactants, modifiers, and products by R(r), M (r),
and P(r) respectively. Given a species s, the set of reactions in which s occurs
as a reactant (modifier, product) is denoted by R™!(s) (respectively, M ~1(s),
P7(s)).

A network N is a collection of reactions. A network instance is a network
together with an optional set of input species, a set of forbidden species, and a
set of target species.

A pathway is a special kind of network. Informally, a pathway contains a
related set of reactions that can be consistently switched “on”. The following
sections will formally define the constraints we impose to identify pathways.

2.1 Semantics of Reaction Networks

As mentioned in the introduction, motivated by the need to handle unknown
model parameters while maintaining computational feasibility of analysis, we
use a discrete-time abstract discrete-state semantics of reaction networks. The
key aspect of our semantics is that we introduce a boolean variable for each
reaction (and not for each species). Thus, the semantics of a biochemical network
N ={ry,rq,...,r,} with n reactions is given as a state transition system defined
over n boolean variables b1, ..., b,, where the i-th boolean variable b; represents
whether the i-th reaction r; is “on” or “off”.

Let present4i(s,4) denote the formula vr{,eP—l(s) bj A /\TjeR_l(s),j# —b;,
which means some reaction that produces s is “on” and every reaction other than
r; that consumes s is “off”. Intuitively, present/i(s,) represents the availability
of species s for reaction r;. The transitions of the state transition system are given
by nondeterministically applying one of the following 2n guarded commands:

—b; A /\ presenti(s,i) — bl := true
SER(ri)UM (r;)
b; A \/ —presenti(s,i) — b, := false
SER(r;)UM (r;)



The first guarded command says that if a reaction r; is “off”, but each of its
reactants and modifiers is “present” (for r;), then it can be turned “on”. The sec-
ond guarded command says that if a reaction r; is “on”, but one of its reactants
or modifiers is not present (for r;), then it can be turned “off”.

3 Biochemical Networks to Boolean SAT

In this section, we describe the procedure that generates a set of boolean con-
straints from a network. The boolean constraints represent the equilibrium con-
figurations of the network in the semantics given above. Later in this section, we
describe the additional constraints that are generated from a network instance.

An equilibrium state is defined as a state in which none of the 2n guarded
transitions are enabled. Hence, if a state (b,...,b,) is an equilibrium state of
the above state transition system, then it should be the case that, for all 7,

=(=b; A /\ presentdi(s,i)) A —(b; A \/ —presenti(s,i))
SER(r;)UM (r;) SER(r;)UM (r;)
This is equivalent to saying that for all 4,
b & /\ present4i(s,1) (1)
SER(ri)UM (r;)

Any boolean assignment that satisfies these constraints is an equilibrium
state of the given reaction network. In the implementation (Section 5), we
break up the constraint in Formula 1 into the following constraints to enable
the MaxSat solver to partially satisfy these constraints.

b; = /\ \/ b, o)
SER(r))UM(r;) r;€P—1(s)
SER(ri) r;ER1(s),j#i
SEM(ri) 1 €R7(s) g
—b; = - /\ present4i(s, 1) 5)

SER(r;)UM(r;)

Formula 2 captures the rule that if a reaction is “on”, then each of its reac-
tants and modifiers is produced by some “on” reaction. Formula 3 encodes the
inhibitory effect that a reaction may have on another that shares a reactant with
it by saying that if a reaction is “on”, then none of its reactants is consumed
(used as a reactant) by any other reaction. Formula 4 encodes the competitive
inhibition between reactions through a species that is a reactant in one reaction
and a modifier in another. Note that if two reactions share a modifier, then they
do not inhibit each other. Finally, Formula 5 encodes that if all reactants and
modifiers of a reaction are present, then it should be “on”.



3.1 Completing the Network

Biological databases of biochemical networks are often incomplete. They often
use species that are not created by any reaction in the network. In the running
example, Tsc2, Aktl-act, Ampk-act, Rheb-act, and Mtor are all species with no
producers. The presence of such species is a problem for our encoding since, to
be “on”, a reaction requires all of its reactants (and modifiers) to be produced by
some other reaction. If there are no producers of certain species, then reactions
using that species can never be turned on.

We solve this problem by adding dummy reactions that create species that
have no producers. Specifically, for each species s such that P~!(s) = (), we add
a new reaction r = (R, M, P), where R =0, M = ), and P = {s}. We perform
this step as a preprocessing step. As a result, these additional dummy reactions
are taken into account when the constraints given in Formula 1 are generated.

We also encode the fact that these dummy reactions are different from other
reactions by adding boolean constraints that force these dummy reactions to be
“off”. For each dummy reaction r, if b is the corresponding boolean variable,
then we add the following clause

—b (6)

This constraint says that the dummy reaction, and hence the corresponding
species, should preferably not be used. In Section 4, we will discuss how this
preference is effected by means of weights.

In the running example, for each of the 5 species that have no producers, we
add one new dummy reaction. Thus, we have new dummy reactions 75, ..., 79
that respectively produce Tsc2, Aktl-act, Ampk-act, Rheb-act, and Mtor. Thus
the complete network has 9 reactions, and hence, the boolean encoding will be
over 9 boolean variables by, ..., bg. The constraints given by Formula 1 will be:

bl = (b5 A —\bg) A (b@) b3 = (bg) A (bg)
bg = (b5 A —\bl) A (b7) b4 = (bg) A (bg A —\b3)

Additionally, we will also get boolean constraints —bs, —bg, . . ., 7bg coming from
Formula 6. Note that Reaction r3 requires the modifier Tsc2-act, which is pro-
duced by Reaction ry. This gets reflected as b3 = by above. As an example of
competitive inhibition, note that Reaction r; and Reaction ro share a common
reactant, namely Tsc2. This shows up as by = —by and by = —by. Similarly,
Reaction r3 and Reaction r; compete for Rheb-act—Reaction r3 uses it as a
reactant, whereas Reaction r4 requires it as a modifier. This generates the con-
straint by = —bs.

3.2 Optional Clauses

In case of analyzing a network instance, we may optionally have additional infor-
mation about the input species, forbidden species, and target species. We now
show how these are incorporated into the constraints.



Initial Species The set of species specified as initial are assumed to be present.
If a set of initial species is specified, then the preprocessor adds a dummy reaction
that produces all the initial species. Specifically, if S;,;; is the set of initial species,
then the preprocessor will add a dummy reaction r = (R, M, P), where R =
M = () and P = S;,,;;. Furthermore, the boolean variable b corresponding to this
reaction is forced to be “on” by simply adding a clause b in the generated set of
boolean constraints. If some initial species are specified, then the initial dummy
reaction is added to the network before the network is completed (Section 3.1).
Hence, fewer dummy reactions get added in the network completion phase if
some of the species with no producers in the network are assumed to be in the
initial soup.

Target Species The set of target species is a list of species that should be
present in the equilibrium configurations generated by the tool. If a set of target
species is specified, then the boolean constraint generator adds additional con-
straints that say that for each target species, there is at least one producer of it
turned “on”.

For each species s in the set of target species, we add the constraint,

AV (7)

r,€P~1(s)

Forbidden Species The set of forbidden species specifies the set of species that
should not be used in any equilibrium configuration generated by the system. If
this set is provided, then the following additional boolean constraint is generated
for each species s in this forbidden set,

N b (8)

r; €EP~1(s)

3.3 Mode Based Constraints

Given the above constraints, we can try to turn “on” as many reactions as
possible, or turn “on” as few reactions as possible. These two possibilities are
encoded as two different sets of constraints.
If we wish to turn “on” as many reactions as possible, then, for each reaction
r; € N, we add the clause
b; 9)

to the set of constraints. This clause simply says that reaction r; is “on”.
If we wish to turn “on” as few reactions as possible (say to find minimal
pathways), then, for each reaction r; € N, we add the clause

b (10)

to the set of constraints.



4 Biochemical Pathway to Boolean Max-SAT

The constraints outlined above are not all equally important. This is captured
by adding a weight (number) to each constraint that indicates its relative im-
portance.

In particular, constraints obtained by instantiating Formula 2, Formula 3,
and Formula 5 are each given a very large weight W. In the current implemen-
tation, W is equal to the total number of reactions in the completed network.
The constraint represented in Formula 4 is given weight equal to W/2 since
competitive inhibition between reactions via a species that is a modifier in one
reaction and a reactant in another is intuitively weaker than the inhibition via
shared reactants. The constraint saying that species with no producers should
not be used (Formula 6) is given intermediate weight (approximately W/(k+ 1),
where k is the total number of species with no producers). Whenever present,
the constraint for creation of target species (Formula 7) is given weight W. The
constraints that specify the hints (Formula 9 and Formula 10) are given weight
1.

The choice of weights for each constraint gives additional flexibility that can
be used, in the future, to encode other biologically relevant information that is
not generic to all biochemical processes.

4.1 Weighted MaxSAT

A solution is a mapping from the boolean variables to {true, false}. In our con-
text, a solution maps reactions to either “on” or “off”. Under a given solution,
constraints also evaluate to either true or false.

Each solution can be associated with a weight: the sum of the weights of all
the constraints that are made true by that solution. A weighted MazSAT solver
finds a solution that has the maximum weight.

In our running example, using the above rule for assigning weights (we do not
break Formula 1 into smaller parts and assign it a weight W = 9 for simplicity
here), we get the following weighted basic constraints:

(G b & (b5 A _|b2) AN (bﬁ) w; =9 Co bg 54 (bg) A (bg) wy =9
c3: by (b5 A ﬁbl) AN (b7) wg =9 cy: by (bg) A (bg AN ﬁbd) wy =9
Cs ﬁb5 W5 = 1 Cg - ﬁb@ We = 1
Cy . —\b7 wr = 1 Cg . —\bg wg = 1
Cg : _\bg W9 = 1 C10 - b1 w10 = 1
ci1: by wyp =1 ciz2: b3 wiz =1
ci3: by wig =1

Note that the 5 constraints, cs, ..., cg, encode the fact that the five species with

no producers can be used by paying a small penalty; and the last 4 constraints
say that each reaction should preferably be turned “on”.

For this set of constraints, the solution in which all b; are false has a weight
41 (since only cyq, ..., c13 are violated). The solution by = by = b5 = bg = bg =



bg = true (and the rest false) has weight 39; and the solution by = b3 = b5 = by =
bg = true has weight 40. These three solutions are the top three maximum weight
solutions. The latter two correspond exactly to the two scenarios described in
Section 1. The first solution captures the scenario where no reaction is “on”,
which can be eliminated by using a nonempty initial set of species that includes
(some of) the 5 species with no producers.

5 Implementation and Case Studies

We have implemented a tool based on the technique described in this paper.
As a backend MaxSAT solver, we use Yices [14, 3], which is a more general
satisfiability modulo theory solver. The input format for our tool is a network
or network instance described in a very simple intermediate language. We also
have several front-ends that convert from other formats to our intermediate
language format. For example, we have front-ends for Pathway Logic [12,11]
and BioCyc [5, 7].

In this section, we describe the results obtained using this tool on some
specific networks.

5.1 Sporulation Initiation in B.Subtilis

Bacillus subtilis is considered a model organism for Gram-positive bacteria and
has been extensively studied in the laboratory. It is an endospore-forming bac-
teria most commonly found in the soil. Endospore formation is initiated when
nutrients become limiting and is an adaptive response of the bacteria to their
environment.

Sporulation is a one-way decision and once the decision is made, the cell
undergoes changes which take 6 to 8 hours in most organisms. If conditions
improve in the meantime, then the cell will be at a disadvantage. Hence the
decision to initiate sporulation is important to the organism and is subject to a
variety of control.

The formation of spores in Bacillus subtilis is a developmental process under
genetic control. The decision to either grow vegetatively or sporulate is regulated
by the state of phosphorylation of the SpoOA transcription factor [10, 6]. SpoOA
obtains its phosphate through a phosphorylation pathway (see Figure 1), the
so-called phosphorelay, in which at least three histidine protein kinases transfer
phosphate to the relay protein, SpoOF, then to Spo0OB, and finally to SpoOA
(represented by ReactionIDs 717, r19, and r20 in Table 1). In addition, the
phosphorylation state of Spo0A is modulated by specific phosphatases, such as
Spo0E, which dephosphorylates Spo0A-P, and RapA, which dephosphorylates
SpoOF-P (ReactionIDs r18, r21).

The Sinl and SinR pair is a regulatory operon in the sporulation initiation
network. While SinR is a transcriptional regulator that represses spo0A tran-
scription, Sinl disrupts the SinR tetramer through the formation of a Sinl-SinR
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Fig. 1. Selected reactions from the sporulation initiation network of B. Subtilis. The
reactions are represented using standard Petri net notation and show the main phos-
phorelay.

heterodimer. This aspect, along with the logic regulating Sinl transcription, is
encoded in ReactionIDs r1, r2, 73, and r4.

The activity of protein RapA is modulated by quorum sensing, the process
of sensing activity in neighboring cells and reacting in a cell-density-specific
fashion. Under high population density, RapA is inhibited by PhrA pentapeptide
(not modeled in the reactions). These aspects are captured in ReactionIDs 13,
r15. The protein kinase KinA is a sensor that initiates the phosphorelay and is
modeled here by ReactionIDs r16, r17. Most of the remaining reactions encode
transcriptional regulation logic for different proteins.

On this simplified model of sporulation initiation, the tool implementing
the approach described in this paper can find possible stable behaviors of the
network. These behaviors are found as subsets of reactions in the network that
can be consistently “on”. The tool finds 3 different possibilities for the model
above.

— Sinl is produced, and it binds to SinR, thus preventing it from repressing
spo0A. RapA is converted to RapAPep5, thus preventing it from dephos-
phorylating SpoOA-P. In the presence of stress signals, Kipl is prevented
from inhibiting KinA from self-kinasing. The self-kinasing of KinA triggers
the phosphorelay, which leads to production of SpoOA-P, a precursor for
sporulation.

— In the second stable state scenario, RapA dephosphorylates SpoOF-P, thus
breaking the phosphorelay chain. Thus, there is no production of SpoOA-P.

— The third stable state scenario is similar to the first, except that SpoOE
dephosphorylates the produced SpoOA-P, thus using up the produced Spo0A-
P.

The three stable scenarios each make different assumptions about the environ-
ment. In our case, the environment consists of the species that are not created



ID |Reactants +Modifiers —Products

rl +(Spo0AP, NoSinR4) —Sinl

r2 +(Spo0AP, NoAbrB6, NoHpr)—=Sinl

r3 |Sinl, SinR4 + —SinlISinR, NoSinR4
rd |SinR + —3SinR4

r5 +(NoSinR4, sigmaH, NoSoj) ——Spo0A

6 +(NoAbrB6) —Spo0E

r7 |AbrB, AbrB6 +(Spo0AP) —NoAbrB6

r8 +(NoSpo0AP) —AbrB

r9 +(NoAbrB6) —AbrB
r10{AbrB, NoAbrB6+ —>AbrB6
r11|NoHpr +(AbrB6) —Hpr

r12|Hpr +(NoAbrB6) —NoHpr

rl3 +(ComAP) —RapA
r14|RapA +(Spo0AP, Hpr) —

r15|RapA + (HighCellDensity) —RapAPepb5
r16|KinA +(NoKipI) —KinAP
r17|KinAP, SpoOF + —Spo0FP, KinA
r18|Spo0FP, RapA + —Spo0F
r19|Spo0FP, Spo0B + —Spo0BP, SpoOF
r20|Spo0A, Spo0BP +(NoSoj) —Spo0AP, Spo0B
r21|Spo0AP, SpoOE + —Spo0A, NoSpoOAP
r22 +(sigmaH, sigmaA) —SpoOF

r23 +(sigmaA) —Spo0B

r24|Kipl +(NoFood, NoNitrogen) —>NoKipl

Table 1. The list of reactions modeling the sporulation initiation network.

by any of the reactions in the network. In the network above, HighCellDensity,
and NoFood, are two examples of input species.

The tool can also be used in the mode in which a desired target set of species
is specified (for example, Spo0A-P). In this case, the tool will generate the first
stable scenario above to show how Spo0OA-P could be produced.

5.2 MAPK Signaling Network

The Mitogen-Activated Protein kinase (MAPK) network regulates several cellu-
lar processes, including the cell cycle machinery. The MAPK cascade communi-
cates signals from growth factors that bind receptor kinases to transcription and
other cellular processes [2]. A simplified model of this network, taken from [2],
can be encoded in our notation as shown in Table 2. The tool finds two stable
sets of behavior for this network.

— The positive feedback loop is active. In this case, either Grb2, Sos1, or PKC*
turns on Ras. This causes, in steps, the phosphorylation of Raf, MEK, and
Erk. Activated Erk causes production of AA*, which stimulates PKC.



ID |Reactants+Modifiers —Products
rl |Ras +(Grb2, Sosl) —Ras*
r2 |Ras +(PKC*) —Ras*
r3 |Raf +(Ras™*) —Raf*
r4 |Raf* +(PP2A) —Raf
r5 |Mek +(Raf*) — Mek*
6 |Mek*  +(PP2A) —Mek
r7 |Erk +(Mek*) —Erk*
r8 |Erk* +(MKP) —Erk
r9 +(Erk*, MKPgene) —MKP
r10|AA +(Erk*, Ca) —AA¥*
r11|PKC +(DAG, Ca, AA*) —PKC*

Table 2. The list of reactions modeling the MAPK signaling network.

— The negative feedback loops are active. In this case, protein phosphatase 2A
(PP2A) dephosphorylates both Raf* and Mek*, and MKP dephosphorylates
Erk*. MKP is created by transcription of MKP gene, and this is promoted
by Erk*.

The two stable solutions clearly identify the positive cycle and the multiple
negative cycles that break the positive cycle. The overall system behavior is
seen to be a result of the close interaction between the positive and negative
cycles.

We also used the detailed model of the MAPK signaling network from [1].
The total running time on the full network is of the order of a few seconds.

5.3 EGF Stimulation Network

In the Pathway Logic project [12,11], a model of Egf stimulation is being devel-
oped by curating a network of biochemical reactions involved in mammalian cell
signaling from the literature. When a cell is stimulated by Egf, certain species
are experimentally observed to be present in the cell after its initial stimulation.
These observations can be used to validate the model by checking whether the
model predicts the observations. To carry out the validation, we started with a
network of about 400 reactions and created a network instance by adding ini-
tial and target species. Specifically, we started with a set of about 250 initial
species and 62 target species that are experimentally observed in response to
EGF stimulation.

When this network instance is analyzed by our tool, our tool attempts to
find a set of reactions that will create each of the target species using the initial
species and the reactions in the network. A “—no-assume” option tells the tool
to not assume any species not already specified in the initial set. (Recall that,
by default, species that have no producers can be assumed, with a moderate
penalty.)
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Fig. 2. A simple network with competing rules

The output of the tool indicated that it was not possible to find a solution
without violating one Type 3 and one Type 4 competitive inhibition constraints.
Specifically, the species (Frap1:Lst8)-CLc ! is a reactant in two different reactions
that are both required to be “on” to create the target species. This causes a
Type 3 constraint to be violated. The Type 4 constraint that is violated is
caused by the species Src-CLi, which is used as a reactant in a reaction to create
Src-act-CLi, and it is also used as a modifier in the reaction that creates Cbl-
Yphos-CLi. This violation pointed out a typing error in specifying the reaction
rules which has been corrected. Figure 2 shows the pathways competing for
(Frapl:Lst8)-CLc in the context of the larger network.

Using our tool provided two valuable forms of feedback to the model devel-
oper. One was a form of meta analysis or type-checking that detected syntactic

! a complex containing Frapl and Lst8 located in the cytoplasm,CLc



problems with the model. (The first pass detected a number of inconsistencies
that were easily repaired.) The second was the identification of the point of
competition. Using the Pathway Logic Assistant [13] one can check whether a
given set of observations is predicted, singly or jointly. However if a prediction
fails there is no feedback as to the cause of failure. Using MaxSAT, candidate
conflicting constraints can be identified to guide the modeler.

Starting with the discovered Type 3 violation and studying the subnetwork
connected to this reaction lead to two hypotheses: (1) (Frapl:Lst8)-CLc splits
into two populations one for each of the two competing reactions; (2) there is
a feedback loop that can reset the state of (Frapl:Lst8)-CLc and the system
oscillates between the two pathways. Experiments are ongoing to test these hy-
potheses.

6 Related Work

We compare here with work that is closer in spirit to our work, and do not men-
tion all the literature devoted to building various kinds of models and improving
understanding of specific biological phenomena, such as sporulation and MAPK
signaling.

Senachak et. al. [8] give a generic interpretation to a reaction network by
translating it to a graph. Strongly-connected components of the graph are related
to the pathways. The construction of the graph has some unusual steps, such
as cascading, that arise primarily because the authors use species as defining
the nodes of the graph. The main difference in our approach is that, in our
approach, the boolean variables correspond to reactions in the network. We
believe this leads to a much simpler and natural encoding of the “cascading”-
style constraints of [8].

7 Conclusion

We presented a new approach for analyzing biochemical reaction networks using
MaxSAT. The novelty here is that we make reactions central to the notion of a
steady-state behavior. A steady-state behavior is a subset of reactions that can
be mutually and consistently “on”.

The attractiveness of our approach is that it is generic and applies to net-
works coming from different kinds of biological networks. Additionally, it is also
flexible and allows encoding of knowledge specific to certain kinds of networks
via suitable manipulation of the weights on the generic constraints.

The analysis approach is promising. Even for the largest networks we have
studied, the analysis takes at most a few seconds to compute answers.

Possible future work include studying quantitative variants of the boolean
constraints. Fortunately, our backend tool, Yices, supports reasoning over linear
arithmetic constraints. We can replace the use of boolean MaxSAT with MaxSAT
over arbitrary combination of boolean and linear arithmetic constraints.

Acknowledgments: We thank the referees for helpful suggestions.



References

1.

2.

o

10.

11.

12.

13.

14.

U. S. Bhalla and R. Iyengar. Robustness of the bistable behavior of a biological
signalling feedback loop. Chaos, 11(1), 2001.

U. S. Bhalla, P. T. Ram, and R. Iyengar. MAP kinase phosphatase as a locus of
flexibility in a Mitogen-Activated Protein kinase signaling network. Science, 297,
2002.

B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for dpll(t). In Com-
puter Aided Verification, 18th International Conference, volume 4144 of LNCS,
pages 81-94. Springer, 2006.

F. Fages, S. Soliman, and N. Chabrier-Rivier. Modelling and querying interaction
networks in the biochemical abstract machine BIOCHAM. Journal of Biological
Physics and Chemistry, 4(2):64-73, 2004.

I.M. Keseler, J. Collado-Vides, S. Gama-Castro, J. Ingraham, S. Paley, L.T.
Paulsen, M. Peralta-Gil, and P.D. Karp. EcoCyc: A comprehensive database re-
source for Escherichia coli. Nucleic Acids Research, 33:D334-7, 2005.

L. M. Prescott, D. A. Klein, and J. P. Harley. Microbiology. McGraw-Hill, 2002.
P. Romero, J. Wagg, M.L. Green, D. Kaiser, M. Krummenacker, and P.D. Karp.
Computational prediction of human metabolic pathways from the complete human
genome. Genome Biology, 6(R2):1-17, 2004.

. J. Senachak, M. Vestergaard, and R. Vestergaard. Rewriting game theory and

protein signalling in MAPK cascades. In Proc. CMSB, 2006.

Carron Shankland, Nam Tran, Chitta Baral, and Walter Kolch. Reasoning about
the ERK signal transduction pathway using BioSigNet-RR. In G. Plotkin, editor,
Proceedings of the Third International Conference on Computational Methods in
System Biology, 2005.

P. Stragier and R. Losick. Molecular genetics of sporulation in bacillus subtilis.
Annu. Rev. Genet., 30:297-341, 1996.

C. Talcott, S. Eker, M. Knapp, P. Lincoln, and K. Laderoute. Pathway logic
modeling of protein functional domains in signal transduction. In Proceedings of
the Pacific Symposium on Biocomputing, January 2004.

Carolyn Talcott. Symbolic modeling of signal transduction in pathway logic. In
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M.
Fujimoto, editors, 2006 Winter Simulation Conference, 2006.

Carolyn Talcott and David L. Dill. Multiple representations of biological processes.
Transactions on Computational Systems Biology VI, 4220:221-245, 2006.
http://yices.csl.sri.com/. Yices home page.



