
Introduction DOP Calculus Type System Related Work Future Work

Compositional Type-Checking for
Delta-Oriented Programming

Ina Schaefer(a), Lorenzo Bettini(b) and Ferruccio Damiani(b)

(a): TU Braunschweig, Germany

(b): University of Torino, Italy

AOSD 2011

23 March 2011

Introduction DOP Calculus Type System Related Work Future Work

Motivation

Pure Delta-oriented Programming

Family Engineering

Application Engineering

Product Line
Artifacts Base

Feature
Model

Feature
Configuration

Product

Product Line Development

Introduction DOP Calculus Type System Related Work Future Work

Motivation (2)

Pure Delta-oriented Programming

Family Engineering

Product Line
Artifacts Base

Feature
Model

Feature
Configuration

ProductAutomated Product Derivation

Product Line Development

Introduction DOP Calculus Type System Related Work Future Work

Outline

Delta-oriented Programming (Concepts and Application)

Compositional Type Checking for DOP

Formalization of DOP Type Checking

Related Work on FOP Type Checking

Introduction DOP Calculus Type System Related Work Future Work

Delta-oriented Programming (DOP)

[...]Delta

Module1

Delta

Modulen

Code
Base

Product Line
Declaration

Connection between
Delta Modules and
Product Features

Order of Delta
Module Application

[Schaefer et al., SPLC 2010; Schaefer and Damiani, FOSD 2010]

Introduction DOP Calculus Type System Related Work Future Work

Product Generation in Delta-oriented Product Lines

Given a given feature configuration:

1 determine delta modules with valid application condition

2 apply the changes specified by delta modules

to the empty program

according to the delta module application ordering

Introduction DOP Calculus Type System Related Work Future Work

Example: Expression Product Line (EPL)

Feature Model of EPL:

Lit Eval

Data

Add Neg Print

Expression Product Line

Operations

Introduction DOP Calculus Type System Related Work Future Work

Some Delta Modules for EPL
delta DLit{

adds interface Exp {

}

adds class Lit implements Exp {

int value;

Lit(int n) { value = n; }

}

}

delta DLitPrint{

modifies interface Exp { adds String toString();

}

modifies class Lit {

adds String toString() { return value; }

}

}

delta DLitEval{

modifies interface Exp { adds int eval();

}

modifies class Lit {

adds int eval() { return value; }

}

}

Introduction DOP Calculus Type System Related Work Future Work

Product Line Declaration for EPL

features Lit, Add, Neg, Print, Eval

configurations Lit & Print

deltas

[DLit,

DAdd when Add,

DNeg when Neg]

[DLitPrint,

DLitEval when Eval,

DAddPrint when Add,

DAddEval when (Add & Eval),

DNegPrint when Neg,

DNegEval when (Neg & Eval)]

[DAddNegPrint when (Add & Neg)]

Introduction DOP Calculus Type System Related Work Future Work

Product for Features Lit, Add, Neg, Print

interface Exp { adds String toString();

}

class Lit implements Exp {

int value;

Lit(int n) { value = n; }

String toString() { return value; }

}

class Add implements Exp {

Exp expr1;

Exp expr2

Add(Exp a, Exp b) { expr1 = a; expr2 = b;}

String toString() { return "(" + expr1 + " + " + expr2 + ")"; } }

}

class Neg implements Exp {

Exp expr;

Neg(Exp a) { expr = a; }

String toString() { return "-" + expr; }

}

Introduction DOP Calculus Type System Related Work Future Work

Software Product Line Engineering (SPLE)

Delta-oriented Programming supports

Proactive SPLE: All products are planned in advance

Extractive SPLE: Start from existing products

Reactive SPLE: Evolve product line, when new features arise

Introduction DOP Calculus Type System Related Work Future Work

Extractive Development of EPL

features Lit, Add, Neg, Print, Eval

configurations Lit & Print

deltas

[DLitNegPrint when (!Add & Neg)] /* Existing product */

[DLitAddPrint when (Add | !Neg)] /* Existing product */

[DNeg when (Add & Neg),

DremAdd when (!Add & !Neg)] /* Feature removal */

[DNegPrint when (Add & Neg),

DLitEval when Eval,

DAddEval when (Add & Eval),

DNegEval when (Neg & Eval)]

[DAddNegPrint when (Add & Neg)]

Introduction DOP Calculus Type System Related Work Future Work

Evolution of EPL

Feature model for Evolved EPL:

Pure Delta-oriented Programming

Product Line Evolution

13

!feature ϕ {cd rcd}" =
delta ϕ { adds cd !rcd" }

!refines class C extending C { fd; md rmd }" =
modifies C extending C { adds fd adds md !rmd" }

!refines ms {s; Super(); s; return y;}" =
modifies ms {s; original(); s; return y;}

Figure 4. Translation of a feature module to a delta module

feature ϕ and a set of class definitions cd and class refinement
definitions rcd. Class definitions are given according to the syntax
of LJ. A class refinement definition can change the superclass, add
fields fd, provide new method definitions md and refine existing
method definitions rmd. A method refinement can wrap the existing
method body using the Super() construct.

A feature module table FMT is a mapping from feature names
to feature module definitions. A LFJ product line can be described
by a 3-tuple L = (FMT,Φ,<FMT) consisting of:

1. a feature module table FMT with a feature module for each
feature of the SPL,

2. the set of the valid feature configurations Φ⊆P(dom(FMT)),

3. a total order <FMT on the set of features dom(FMT).

The product associated to a feature configuration ψ is gener-
ated by composing (see Section 3.1 of [13]) the feature modules
associated to the features in ψ according to the total order <FMT.
During feature module composition, newly defined classes, fields
and methods are added and class and method refinements are car-
ried out. According to [13], a LFJ product line is type-safe if all
generated products are well-typed LJ programs.

4.2 Mapping LFJ into LP∆J
A product line in FOP can be represented as a product line in Pure
DOP. The set of features and the set of valid feature configurations
in both product lines is the same. Every feature module in a LFJ
product line is mapped to a delta module where additions are
translated to adds clauses and refinements to modifies clauses. The
application condition of the delta module denotes all configurations
in which the respective feature is contained. The ordering of delta
module application is the total ordering of the feature modules.

Formally, the mapping from LFJ product lines to LP∆J prod-
uct lines is defined as follows: for a LFJ product line L =
(FMT,Φ,<FMT), !L" denotes the corresponding LP∆J product
line (ϕ,Φ,DMT,Γ,<DMT) where

• ϕ = dom(FMT) = dom(DMT),
• The delta module table DMT is obtained by translating each

feature module in FMT to a delta module with the same name,
according to the clauses in Figure 4,

• Γ : dom(DMT)→Φ, where Γ(ϕ) = {ψ | ψ ∈Φ and ϕ ∈ ψ},
• <DMT is the total order on {{ϕ} | ϕ ∈ ϕ} defined by:

{ϕ1} <DMT {ϕ2} if and only if ϕ1 <FMT ϕ2.

The following theorem states that the LP∆J product lines gen-
erates the same products as the LFJ product line. Hence, Pure DOP
is a true generalization of FOP.

THEOREM 4.1. If L is a type safe LFJ product line, then !L" is
a type safe LP∆J product line such that, for every valid feature
configuration ψ , the product for ψ generated by L is the same as
the product for ψ generated by !L".

Although it is possible in principle to encode FOP in Core DOP,
a straightforward embedding as for Pure DOP is not possible. This

Lit Eval

Data

Add Neg Print

Expression Product Line

Operations

Sub

Figure 5. Feature model for evolved Expression Product Line

is because a feature-oriented SPL may have several base feature
modules, while Core DOP requires exactly one core module as
starting point for product generation.

5. Pure DOP for Product Line Development
Pure DOP supports proactive, extractive and reactive product line
development [22]. In the proactive approach, the scope of the prod-
uct line, i.e., the set of products to be developed, is analyzed before-
hand. All reusable artifacts are planned and developed in advance.
The example for Pure DOP presented in Section 2 can be seen as
proactive product line development, since we start from the feature
model defining the scope of the product line and develop delta mod-
ules and a Pure DOP SPL for these products. However, proactive
development requires a high upfront investment to define the scope
of the product line and to develop reusable artifacts.

Hence, in order to reduce the adoption barrier for product line
engineering, Krueger [22] proposes the usage of reactive and ex-
tractive approaches. In reactive product line engineering, only a ba-
sic set of products is developed. When new customer requirements
arise, the existing product line is evolved. The extractive approach
allows turning a set of existing legacy application into a product
line. Development starts with the existing products from which the
other products of the product line are derived.

FOP [7, 13] supports proactive product line development well.
However, since feature modules are restricted to add or refine
existing classes, FOP does not support extractive development and
only partially supports reactive development. It is not possible to
start from an existing legacy application comprising a larger set
of features and to remove features. Moreover, in order to deal with
new requirements following the reactive approach, feature modules
might have to be refactored to remove functionalities. Also, in Core
DOP, extractive product line development is not straight forward,
since one product has to be chosen as designated core product. In
contrast, Pure DOP is flexible and expressive enough to cover all
three product line engineering approaches directly.

5.1 Reactive Product Line Engineering
In reactive product line engineering, development starts with an
initial product line that is evolved in order to deal with changing
customer requirements. Consider as initial product line the example
depicted in Listing 5. Assume now that a new feature Sub should
be introduced for representing subtraction expressions. In the new
EPL, the Sub feature should be an alternative to the Neg feature.
Additionally, the Print feature should become optional and the Eval
feature mandatory. The feature diagram for the evolved product line
is given in Figure 5.

In order to realize the new Sub feature, we have to add delta
modules that introduce the corresponding data structure for sub-
traction and the associated print and the evaluation functionalities.
The respective delta modules are shown in Listing 6. The specifi-
cation for the evolved SPL is shown in Listing 7, where the op-
erator choose1(P1, . . . ,Pn) means at most one of the propositions
P1, . . . ,Pn is true (see [5]).

Introduction DOP Calculus Type System Related Work Future Work

Reactive Development of EPL

features Lit, Add, Neg, Sub, Print, Eval

configurations Lit & Eval & choose1(Neg,Sub)

deltas

[DLit,

DAdd when Add,

DNeg when Neg,

DSub when Sub /* new delta module */]

[DLitPrint when Print,

DLitEval,

DAddPrint when (Add & Print),

DAddEval when Add,

DNegPrint when (Neg & Print),

DNegEval when Neg,

DSubPrint when (Sub & Print), /* new delta module */

DSubEval when Sub /* new delta module */]

[DAddNegPrint when (Add & (Neg | Sub) & Print)]

Introduction DOP Calculus Type System Related Work Future Work

Type-checking of Delta-oriented SPLs

Type-safe SPL

A SPL is type safe if all its products are well-typed programs.

Naive approach:

Generate all the products

Type check each product separately

Problems:

Infeasible for large product lines

Difficult to trace errors to delta modules

Introduction DOP Calculus Type System Related Work Future Work

Requirements for DOP Type System

1 Check type safety without generating the products

2 Report errors in code of delta modules

3 Analyze each delta module in isolation (reusability)

Introduction DOP Calculus Type System Related Work Future Work

Compositional Type Checking for Delta-oriented SPL

Main Idea: Define abstract product generation and analyze
product abstractions for type safety.

Preliminary Step: Constraint-based type checking of programs:

Given a program (class table) CT, infer a program abstraction
〈signature(CT),C 〉 where

1 signature(CT) is the class signature table

2 C a set of class constraints

〈signature(CT),C 〉 suffices to check that CT is well typed

Introduction DOP Calculus Type System Related Work Future Work

Compositional Type Checking for Delta-oriented SPLs (2)

Step 1: Generate Abstraction of Delta Modules:

For each delta module δ infer 〈signature(δ),Dδ 〉 where

1 signature(δ) is the delta module signature

2 Dδ a set of delta clause-constraints

Step 2: Generate Product Abstractions:

For each valid feature configuration ϕ,

1 generate class signature table signature(CTϕ) from delta
module signatures

2 generate class constraints Cϕ from delta module constraints

Step 3: Check Product Abstraction 〈signature(CTϕ),Cϕ〉 to ensure
that product CTϕ is well typed.

Introduction DOP Calculus Type System Related Work Future Work

Formalization

Imperative Featherweight Delta Java (IF∆J)

An IF∆J SPL is a 5-tuple L = (ϕ,Φ,DMT,Γ,≺)

1 ϕ are the features of the SPL

2 Φ ⊆ P(ϕ) is the set of the valid feature configurations

3 DMT is the delta module table (code base)

4 Γ : dom(DMT) → Φ specifies for which feature configurations a
delta module must be applied

5 ≺ is a total order on a partition of dom(DMT)

Introduction DOP Calculus Type System Related Work Future Work

IF∆J: Syntax of Classes and Delta Modules

Imperative Featherweight Java (IFJ)

CD ::= class C extends C { FD; MD } classes

FD ::= C f fields

MD ::= C m (C̄ x̄){return e;} methods

e ::= x
∣∣ e.f

∣∣ e.m(ē)
∣∣ new C()

∣∣ (C)e
∣∣ expressions

e.f = e
∣∣ null

∣∣ original

Imperative Featherweight Delta Java (IF∆J)

DMD ::= delta δ {DC} delta modules

DC ::= adds CD
∣∣ delta clauses

modifies C [extending C] { DS }
∣∣

removes C
DS ::= adds FD

∣∣ adds MD
∣∣ delta subclauses

modifies MD
∣∣

removes a

Introduction DOP Calculus Type System Related Work Future Work

Constraint-based Type System for IFJ

Class constraints:

C with K class C has the set of method constraints K

Method constraints:

m with F method m has the set of flat constraints F

Expression constraints:

class(C) class C must be defined
subtype(τ,η) τ must be a subtype of η
cast(C,τ) type τ must be castable to C
field(η ,f,α) class η must define or inherit

field f of type α
meth(η ,m,α → β) class η must define or inherit

method m of type α → β

Introduction DOP Calculus Type System Related Work Future Work

Constraint-based Type System for IFJ - Selected Rules

Program typing:

dom(CT) = {C1, ...,Cn}(n ≥ 0) ∀i ∈ 1..n, ` CT(Ci) : Ci with Ki

` CT : {C1 with K1, ...,Cn with Kn}

Class definition typing:

∀i ∈ 1..q, this : C ` MDi : {mi with Fi}
` class C extends D { FD; MD1 · · ·MDq } : C with ∪i∈1..q {mi with Fi}

Method definition typing:

this : C, original : B, x̄ : Ā ` e : τ |F
this : C ` B m (Ā x̄){return e;} : m with ({subtype(τ,B)}∪F)

Introduction DOP Calculus Type System Related Work Future Work

Constraint-based Type System for IF∆J

Delta clause-constraints:

adds C with K add the constraint “C with K ”
removes C remove constraint “C with · · ·”
modifies C with M change the constraint “C with K ”

into “apply(modifiesC with M ,C with K)”

Delta subclause-constraints:

adds m with F add the constraint “m with F”
removes m remove constraint “m with · · ·”
replaces m with F ′ change constraint “m with F”

into “m with F ′”
wraps m with F ′ change constraint “m with F”

into “m with F ∪F ′”

Introduction DOP Calculus Type System Related Work Future Work

Constraint-based Type System for IF∆J - Selected Rules

Delta-module typing:

∀i ∈ 1..n, ` DCi : dcci

` delta δ {DC1 . . .DCn} : {dcc1, ...,dccn}

Delta-clause typing:

` CD : C with K

` adds CD : adds C with K

` removes C : removes C

∀i ∈ 1..q, this : C ` DSi : Si

` modifies C [extending D] { DS1 . . .DSq } :
modifies C with (∪i∈{1,...,q}Si)

Introduction DOP Calculus Type System Related Work Future Work

Constraint Application in IF∆J Type System

The application of a set of delta clause constraints D to a set of class
constraints C is the set of class constraints

apply(D ,C)(C) =


C (C) if C 6∈ dom(D)
C with K if C 6∈ dom(C)

and adds C with K ∈D
apply(D(C),C (C)) if modifies C · · · ∈D

where apply(D(C),C (C))(m) =

C (C)(m) if removes m · · · 6∈D(C)
and modifies m · · · 6∈D(C)

m with F if D(C)(m) = adds m with F
or D(C)(m) = replaces m with F

m with F ∪F ′ if D(C)(m) = wraps m with F ′

and C (C)(m) = m with F

Introduction DOP Calculus Type System Related Work Future Work

Correctness and Completeness of IF∆J Typing

Let ψ ∈ Φ be a valid feature configuration.

(Correctness) For all δ ∈ Γ−1(ψ), let ` delta δ · · · : Dδ

and let the class signature table CSTψ for the feature
configuration ψ satisfy the generated class
constraints CSTψ |= Cψ .

Then it holds that ` CTψ OK.

(Completeness) Let ` CTψ OK.

Then for all δ ∈ Γ−1(ψ), there exists Dδ with
` delta δ · · · : Dδ , such that CSTψ |= Cψ .

Introduction DOP Calculus Type System Related Work Future Work

Compositional Type Checking for FOP

[Delaware et al., FOAL 2009]

Preliminary Step: For each LFJ program infer a set of
constraints: Validity of constraints ensures that program is well
typed.

Step 1: For each feature module infer a set of constraints.

Step 2: For each valid feature configuration, check constraints
against feature module.

Step 3’ (instead of 3): From product line declaration and feature
module constraints, construct a propositional formula whose
satisfiability implies the type safety of the SPL.

Introduction DOP Calculus Type System Related Work Future Work

Conclusion

Summary:

Delta-oriented Programming

Compositional Type Checking for DOP Product Lines

Future Work:

Prototypical implementation and case studies [Schaefer et al., SPLC 2010]

Add step 3’ of FOP type checking [Delaware et al., FOAL 2009] to DOP
type checking

	Introduction
	DOP
	Calculus
	Type System
	Related Work
	Future Work

