CSU 670

September 8, 2004

Software Development — Syllabus Fall 2004
Professor Karl. J. Lieberherr

The syllabus is subject to change based on class reaction.
http://www.ccs.neu.edu/research/demeter/course/topics-covered/topics-covered

contains a good overview of computer science topics covered in this course. Six of nine impor-
tant areas are touched. Three fundamental computer science processes are touched: theory,
abstraction and design. And 5 of 12 recurring computer science concepts are touched.

This course provides state-of-the-art techniques and concepts for software development with a
focus on proper separation of concerns. We will review the history of software development
and encounter different techniques for separation of concerns like functions and objects. We
will identify limitations in current software development practice that lead to bad separation
of concerns. We will touch on general-purpose aspect-oriented techniques (AspectJ) that lead
to better separation of concerns. Then we will identify limitations in those general-purpose
techniques and point to special purpose aspect-oriented techniques. We will use the Demeter
Method as an example of a special purpose aspect-oriented technique.

The goal of proper separation of concerns in software development is to make programs look
like designs.

The course will also cover the people skills needed in agile software development. How do you
write requirements so that customers can understand them; how to do small iterations in the
development cycle to give customers feedback; how to do design reviews with your peer software
developers; etc.

The course will also teach you strong pattern matching skills that are needed for working with
abstractions and proper separation of concerns. You will match design patterns and idioms
with Java programs, object graphs with class graphs and traversal specifications with class
graphs and object descriptions with class dictionaries, an extended form of class graphs. Those
pattern matching skills are useful in many other contexts than software development.



The course has also a mathematical component where we will work with undecidable problems
and suitable approximations. We will work finite non-deterministic automata and their efficient
implementation. That is why the course has Theory of Computation as a prerequisite.

You learn the Demeter Method for object-oriented software development which will hopefully
make you at least 4 times as productive as a Java software developer compared to software
development without the method. In the first few weeks you learn the method which you apply
in the remaining weeks to your project. The project will be done in groups.

Assume that you could do your project in 200 hours of Java programming without using a
good method. Instead of working hard, we will work smart. We will spend 50 hours on
learning the Demeter Method and then you spend 50 hours on doing your project in Java using
the Demeter Method. Since you will be at least 4 times as productive, you will still finish
your 200 hour project in 50 hours only. Instead of spending 200 hours on the course, which
would be excessive, you can accomplish the same in a total of 100 hours AND learn very useful
object-oriented technology.

Designing and programming will be done in a structure-shy, grammar-based, object-oriented
style. All assignments and the project will be written directly or indirectly in Java.

This course does not have Java as a prerequisite, however you are expected to learn a small
subset of Java from the recommended text book or from another good Java book of your choice.

The lectures gradually introduce you to programming adaptively. First we program adaptively
in pure Java using the DJ library. Hw 1 and hw 2 exercise this knowledge. In later homeworks
and the project we use a small extension to Java to write our adaptive programs as behavior
files. Structure will be defined by class dictionaries similar to XML schemas. Behavior files
allow us in many cases to keep information about one concern in one file. The code will be
spread automatically into multiple Java classes.

1. Week: History of software development techniques. Introduction to agile software de-
velopment. Separation of concerns example: bus system simulation. Understanding a
program without documentation.

e Pattern: Structure-shy Traversal.
http://www.ccs.neu.edu/research /demeter /adaptive-patterns/pattern-lang-conv file:
Structure-Shy-Traversal.html

e Pattern: Selective Visitor.
http://www.ccs.neu.edu/research /demeter /adaptive-patterns/pattern-lang-conv file:
Selective-Visitor.html

e Pattern: Class Graph (Class dictionaries and Unified Modeling Notation.)

http://www.ccs.neu.edu/research /demeter /adaptive-patterns/pattern-lang-conv file:
Class-Graph.html



o Overview of pattern language, see: http://www.ccs.neu.edu/research/demeter/adaptive-
patterns/pattern-lang-conv file: pattern-language-for-AP.html

AP book chapters: selections from 1-4. TPP: The Law of Demeter section 26: Decoupling
and the Law of Demeter.

2. Week: Requirements Engineering

e Pattern: Structure-Shy Object

http://www.ccs.neu.edu/research /demeter /adaptive-patterns/pattern-lang-conv file:
Structure-Shy-Object.html

e Pattern: Growth Plan

http://www.ccs.neu.edu/research /demeter /adaptive-patterns/pattern-lang-conv file:
Growth-Plan.html

Writing simple adaptive programs using traversals and visitors. Introduction to DJ. Class
dictionary design.

AP book chapters: selections from 5-8. TPP Chapter 2: A Pragmatic Approach (The
Evils of Duplication (DRY), Orthogonality (Separation of Concerns, AOP), Reversibility
(can you change your design decisions), Tracer Bullets (incremental software development
using a growth plan), Prototype (leraning), Domain Languages (an application of class
dictionaries), Estimate (iterate the schedule with the code) ).

3. Week: Importance of testing and robust test cases. Strategy graphs. Decoupling classes:
Law of Demeter. Relationship to adaptive software. DJ continued. The class dictio-
nary notation (graphical and textual). Design rule checking of class dictionaries. Class
dictionaries as customizers for adaptive programs.

AP book chapters: selections from 8-11. TPP Section 27: Metaprogramming (put ab-
stractions in code, details in metadata)

4. Week:

Visitor pattern. Adaptive Programming. Improving the reusability of software designs.
Parameterized class definitions.

AP book chapters: selections from 10-12. TPP: Section 21: Design by Contract.

5. Week: Traversal strategies in detail. The Demeter Method: Talk only to your friends
that share the same concerns. Design notations for behavior. Growth Plan pattern.
Developing a growth plan for implementation and testing. Design with maintenance in
mind.

AP book chapters: 13. TPP: Section 29: It is just a view (separate views from models:
how is this used in Eclipse?)



10.
11.
12.
13.
14.

15.

. Week: Midterm. Testing of adaptive, object-oriented software. Eclipse.

TPP: section 42 Ubiquitous Automation and section 43: Ruthless Testing.

. Week: Class dictionary design and class dictionary transformations. The 11 kinds of class

dictionaries. Project program design and implementation. Eclipse (continued).

. Week: Project program design and implementation. Eclipse (continued).

. Week: Project program design and implementation. Eclipse (continued). Further design

patterns for aspect-oriented software development.

Week: A comparison of object-oriented software development methodologies.
Week: Design Reviews.

Week: Design Reviews.

Week: Design Reviews.

Week: Design Reviews.

Exam week: Final.



