
CSG 711 1

Structure and Interpretation of an
Aspect Language

for Datatype
Karl Lieberherr

CSG 711 2

• fix 27
• semantics: go everywhere and collect ogs.
• then apply visitors
• general strats: exponentially many paths

CSG 711 3

2 Lectures

• The motivation and theory behind “Aspect
Language for Datatype”.
– datatypes and class graphs
– Semantics (// A B) (navig-object graphs.*)
– Visitors and type checking

• Interpreter implementation

CSG 711 4

Motivation
• Build on foundations that Matthias presented.
• Connections to templates: stressing the

importance of structural recursion.
• Not only an interpreter but also a compiler

(works, because traversals are sufficiently
simple).

• Very useful application of foundations that is in
itself a foundation.

• Demonstration that simple languages can be full
of surprises.

CSG 711 5

Homework

• Simple aspect-oriented language.
• Leads to a radically different way of

programming: programming without
knowing details of data structures. Write
programs for a family of related data
structures.

• Northeastern SAIC project ca. 1990.

CSG 711 6

Homework evolution

• Initial motivation: make EOPL datatype
style programming easier by adding a
traverse function.

• Visitors written in full Scheme:
AdaptiveScheme = Scheme + EOPL
datatype + traversal strategies + visitors.

• You get a simplified form (thanks
Matthias).

CSG 711 7

Interpretation

• Interpret a traversal on an object tree.
• (join (//A B) (//B C)): starting at an A-node,

traverse entire object tree, return C-nodes
that are contained in B-nodes that are in
turn contained in A-nodes.

• Not interesting enough. Can meta
information about object trees make it
more interesting?

CSG 711 8

Interpretation with meta information

• Use a graph to express meta information.
• Many applications:

– data type / data trees
– class graph / object trees
– schema / documents (XML)
– programs / execution trees

CSG 711 9

Class graphs
(simplified UML class diagrams)

• nodes and edges
• nodes: concrete and abstract
• edges: has-a (triples) and is-a (pairs)
• concrete nodes: no incoming is-a
• supports inheritance
• flat: a class graph is flat if no abstract node

has an outgoing has-a edge

CSG 711 10

Example B2

A

R

BX

S

D

0..1

0..1

0..1

C

T0..1

A//T//D

a1:A

r1:R

s1:S
c1:C

d1:D

class
graph

strategy

t1:T

r2:R

c2:C

d2:D

s2:S

object graph

CSG 711 11

Plan

• (M s cg og) = ?
– (M1(M2 s cg) og) = ?
– og satisfies cg!

• Not only traverse!
• (Mv s cg og V)

– (Mv1 (M1 (M2 s cg) og) V)
– visitor V: before / after applications to node /

edge. Local storage. Visitor functions are
activated by traversal.

CSG 711 12

Sample visitor

(visitor PersonCountVisitor
0 // initial value
PersonCountVisitor // return
before (host Person)
(+ PersonCountVisitor 1)

)

CSG 711 13

Example
count all persons waiting at any bus stop on a bus route

• (Mv s cg og PersonCountVisitor)
• cg : class graph for bus routes
• og: object graph for bus routes
• s = (join (// BusRoute BusStop)

(// BusStop Person))

CSG 711 14

Class Graph

BusRoute BusStopList

BusStopBusList

Bus PersonList

Person

passengers

buses

busStops

waiting

0..*

0..*

0..*

count all persons waiting at any bus stop on a bus route

CSG 711 15

Object Graph

Route1:BusRoute

:BusStopListbusStops

CentralSquare:BusStop

:PersonList
waiting

Daniel:Person Viera:Person

BusList
buses

Bus15:Bus

:PersonList

passengers

Christine:Person

Bryan:Persons = (join (// BusRoute BusStop)
(// BusStop Person))

(Mv s cg og PersonCountVisitor) = ??

c=0

c++ c++

CSG 711 16

Robustness

BusRoute BusStopList

BusStopBusList

Bus PersonList

Person

passengers

busses
busStops

waiting

0..*

0..*

0..*

s = BusRoute // BusStop // Person

VillageList

Village

villages

0..*

count all persons waiting at any bus stop on a bus route

c=0

c++

CSG 711 17

Aspects

• Aspects as program enhancers
• Here we enhance traversal programs with

before and after advice defined in aspects
called visitors

• General AOP enhances any kind of
program

• This is a special case with good software
engineering properties

CSG 711 18

Develop a sequence of semantics

• (M s cg og) = ?
– og satisfies cg!

• s, cg, og: are graphs. Graphs are
relations. Use terminology of relations.

• Restrict to s = (// A B).

CSG 711 19

Object level semantics

• (M s cg og), where s = (// A B).
• The key is to find a set FIRST(A,B) of

edges such that e in FIRST(A, B) iff it is
possible for an object of class A to reach
an object of type B by a path beginning
with an edge e.

• (M s cg og) is the FIRST(A,B) sets.

CSG 711 20

Homework class graphs

A CG is: (DD+)

A DD is:
(datatype TypeName Alternative+)

An Alternative is:
(AlternativeName (FieldName
TypeName)+)

HW class graph to class graph transformation:
TypeName -- abstract class
AlternativeName – concrete class
(AlternativeName, FieldName, TypeName) – has-a
(AlternativeName, TypeName) – is-a

CSG 711 21

Homework class graphs
CD = PL(DD).
DD = "(datatype" TypeName L(Alternative) ")".
Alternative = "(" AlternativeName L(TypedField)

")".
TypedField = "(" FieldName TypeName ")".
FieldName = Ident.
TypeName = Ident.
AlternativeName = Ident.
L(S) ~ {S}.
PL(S) ~ "(" {S} ")".

CSG 711 22

Class graph example
(datatype Container
(a_Container (contents ItemList)

(capacity Number)
(total_weight Number)))

(datatype Item
(Cont (c Container))
(Simple (name String) (weight Weight)))

(datatype Weight
(a_Weight (v Number)))

(datatype ItemList
(Empty)
(NonEmpty (first Item) (rest ItemList))))

HW class graph to class graph transformation:
TypeName -- abstract class
AlternativeName – concrete class
(AlternativeName, FieldName, TypeName) – has-a
(AlternativeName, TypeName) – is-a

traversal strategy:
(// a_Container a_Weight)

CSG 711 23

As traditional class graph

Container

aContainer

ItemList Number

contents
capacity

total_weight

Empty NonEmpty

Item

Cont Simple

c

String Weight

name weight

v

first

rest

CSG 711 24

Another class graph example

(datatype P (CP (q Q)))
(datatype Q (CQ (p P)))

Because we only allow trees for object
graphs, we should disallow such class
graphs? P and Q are useless.

CSG 711 25

F

CBA

D

G

E

H
F

CBA

G

E

H
Class graphs

object-equivalent

inheritance

CSG 711 26

object-equivalent

inheritance

Class graphs

F

CBA

G

E

H

F

CBA

G

E

H

CSG 711 27

inheritance

Class graphs

F

CBA

G

E

H
H

F

A1

aH

E

G

aE

B1 C1

aG

Preview:
(// aH aE)
(// aH aG)
(// aH Hid_A)

CSG 711 28

inheritance

Evolution

F

CBA

G

E

H
H

F

Hid_A

aH

E

G

aE

Hid_B Hid_C

aG

B

aB

not evolution-friendly

CSG 711 29

inheritance

Class graphs

F

CBA

G

E

H
H

F

A1

aH

E

G

aE

B1 C1

aG

Preview:
(// aH aE)
(// aH aG)
(// aH Hid_A)

CBA

aA aB aC

now evolution-friendly

CSG 711 30

inheritance

Class graphs

F

CBA

G

E

H
H

F

A1

aH

E

G

aE

B1 C1

aG

Preview:
(// aH aE)
(// aH aG)
(// aH Hid_A)

CBA

aA aB aC

CSG 711 31

inheritance

Class graphs

F

CBA

G

E

H
H

F

A1

aH

E

G

aE

B1 C1

aG

Preview:
(// aH aE)
(// aH aG)
(// aH Hid_A)

CBA

aA aB aC

E1

CSG 711 32

inheritance

Class graphs

F

CBA

G

E

H

(datatype H (aH (f F) (b B)))
(datatype G (aG))
(datatype A (aA (e E) (g G)))
(datatype B (aB (e E) (g G)))
(datatype C (aC (g G)))
(datatype E (aE))
(datatype F
(A1 (a A))
(B1 (b B))
(C1 (c C))
(E1 (e E)))

H = F B.
G = .
A = E G.
B = E G.
C = G.
E = .
F : A | B | C | E .

CSG 711 33

Separate Viewgraphs

• Difference between homework class
graphs and class graphs.

• No inheritance in homework class graphs.
• Flat class graphs can easily be modeled

by home work class graph. A class graph
is flat if abstract classes have no outgoing
has-a edges. Quadratic growth in size.

CSG 711 34

Apply class graph knowledge to
homework class graphs

• Only consider flat class graph (flattening is
an object preserving transformation).

• In flat class graph the rules are simpler.

HW class graph to class graph transformation:
TypeName -- abstract class
AlternativeName – concrete class
(AlternativeName, FieldName, TypeName) – has-a
(AlternativeName, enclosing TypeName) – is-a

CSG 711 35

Meaning of strategies and visitors

• (// A B) (only this in hw)
– A:AlternativeName B:AlternativeName
– starts at A-object and ends at B-object

• (// A B)
– A:TypeName B:TypeName
– starts at an AlternativeName-object of A
– ends at an AlternativeName-object of B

CSG 711 36

From Semantics to Interpreter

• From object-level semantics to class-level
semantics

• (M1(M2 s cg) og)
– M2: FIRST sets at class level

SWITCH to navig-object-graphs

CSG 711 37

From Interpreter to Compiler

• Connect to Structural Recursion
• Consider the strategy (// A *) (everything

reachable from A)
• (M1(M2 s cg) og): we want M1 to be apply
• M2 must return a function that we apply to

og
• Primitives: functions with one argument:

the data traversed, no other arguments.

CSG 711 38

Code generation: should produce
something useful

(define-datatype BusRoute BusRoute?
(a-BusRoute
(name symbol?)
(buses (list-of Bus?))
(towns (list-of Town?))))

CSG 711 39

Style 1: display

(define (trav br)
(cases BusRoute br
(a-BusRoute (name buses towns)
(list name (trav-buses buses)

(trav-towns towns)))))
(define (trav-buses lob)
(map trav-bus lob))

CSG 711 40

Style 2: copy

• (define (cp br)
• (cases BusRoute br
• (a-BusRoute (name buses towns)

(apply a-BusRoute (list name (cp-buses
buses) (cp-towns towns))))))

• (define (cp-buses lob)
• (map cp-bus lob))

CSG 711 41

Summary phase 1

• Language: strategies: A // B, class graphs,
object graphs

• Semantics: FIRST: there exists object
• Interpreter: FIRST: there exists path in

class graph
• Compiler: generated code is equivalent to

a subgraph of class graph

CSG 711 42

Visitors

CSG 711 43

Visitors

• Several kinds:
– Think of strategy as making a list out of an og. Fold

on that list.
• (cg og s) -> list of target objects of s. (gather cg og s). (//

CContainer CWeight)
• (+ (+ … (+ w2 (+ w1 0)) …)

– Think of visitor as having a suit case of variables in
which they store data from their trip. Available as
argument.

– functions for nodes and edges.
– multiple visitors.

CSG 711 44

Type checking of hw programs

• check: Program =(Strategy x Visitor).
(Program x ClassGraph) -> Bool

• Fundamental question: Given a program,
with respect to which class graphs is it
type correct.
– Type checking: Given a class graph, is the

program type correct?
– Typability: Does there exist a class graph

such that the program is type correct?

CSG 711 45

Reference

• Class-graph Inference for Adaptive
Programs, Jdens Palsberg, TAPOS 3 (2),
75-85, 1997.

	Structure and Interpretation of an Aspect Language �for Datatype
	2 Lectures
	Motivation
	Homework
	Homework evolution
	Interpretation
	Interpretation with meta information�
	Class graphs�(simplified UML class diagrams)
	Example B2
	Plan
	Sample visitor
	Example
	Class Graph
	Object Graph
	Robustness
	Aspects
	Develop a sequence of semantics
	Object level semantics
	Homework class graphs
	Homework class graphs
	Class graph example
	As traditional class graph
	Another class graph example
	Separate Viewgraphs
	Apply class graph knowledge to homework class graphs
	Meaning of strategies and visitors
	From Semantics to Interpreter
	From Interpreter to Compiler
	Code generation: should produce something useful
	Style 1: display
	Style 2: copy
	Summary phase 1
	Visitors
	Visitors
	Type checking of hw programs
	Reference

