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Karl Lieberherr



CSG 711 2

• fix 27
• semantics: go everywhere and collect ogs.
• then apply visitors
• general strats: exponentially many paths
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2 Lectures

• The motivation and theory behind “Aspect 
Language for Datatype”.
– datatypes and class graphs 
– Semantics (// A B) (navig-object graphs.*)
– Visitors and type checking

• Interpreter implementation
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Motivation
• Build on foundations that Matthias presented.
• Connections to templates: stressing the 

importance of structural recursion.
• Not only an interpreter but also a compiler 

(works, because traversals are sufficiently 
simple).

• Very useful application of foundations that is in 
itself a foundation.

• Demonstration that simple languages can be full 
of surprises.
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Homework 

• Simple aspect-oriented language.
• Leads to a radically different way of 

programming: programming without 
knowing details of data structures. Write 
programs for a family of related data 
structures.

• Northeastern SAIC project ca. 1990.
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Homework evolution

• Initial motivation: make EOPL datatype
style programming easier by adding a 
traverse function.

• Visitors written in full Scheme: 
AdaptiveScheme = Scheme + EOPL 
datatype + traversal strategies + visitors.

• You get a simplified form (thanks 
Matthias).
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Interpretation

• Interpret a traversal on an object tree.
• (join (//A B) (//B C)): starting at an A-node, 

traverse entire object tree, return C-nodes 
that are contained in B-nodes that are in 
turn contained in A-nodes.

• Not interesting enough. Can meta 
information about object trees make it 
more interesting?
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Interpretation with meta information

• Use a graph to express meta information.
• Many applications: 

– data type / data trees
– class graph / object trees
– schema / documents (XML)
– programs / execution trees 
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Class graphs
(simplified UML class diagrams)

• nodes and edges
• nodes: concrete and abstract
• edges: has-a (triples) and is-a (pairs)
• concrete nodes: no incoming is-a
• supports inheritance
• flat: a class graph is flat if no abstract node 

has an outgoing has-a edge



CSG 711 10

Example B2
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0..1

0..1

C

T0..1

A//T//D

a1:A

r1:R

s1:S
c1:C

d1:D

class
graph

strategy

t1:T

r2:R

c2:C

d2:D

s2:S

object graph
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Plan

• (M s cg og) = ?
– (M1(M2 s cg) og) = ?
– og satisfies cg!

• Not only traverse!
• (Mv s cg og V)

– (Mv1 (M1 (M2 s cg) og) V)
– visitor V: before / after applications to node / 

edge. Local storage. Visitor functions are 
activated by traversal.
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Sample visitor

(visitor PersonCountVisitor
0 // initial value
PersonCountVisitor // return
before (host Person)  
(+ PersonCountVisitor 1)

)
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Example
count all persons waiting at any bus stop on a bus route 

• (Mv s cg og PersonCountVisitor)
• cg : class graph for bus routes
• og: object graph for bus routes
• s = (join (// BusRoute BusStop) 

(// BusStop Person))
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Class Graph 

BusRoute BusStopList

BusStopBusList

Bus PersonList

Person

passengers

buses

busStops

waiting

0..*

0..*

0..*

count all persons waiting at any bus stop on a bus route 
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Object Graph

Route1:BusRoute

:BusStopListbusStops

CentralSquare:BusStop

:PersonList
waiting

Daniel:Person Viera:Person

BusList
buses

Bus15:Bus

:PersonList

passengers

Christine:Person

Bryan:Persons = (join (// BusRoute BusStop)
(// BusStop Person))

(Mv s cg og PersonCountVisitor) = ??

c=0

c++ c++
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Robustness

BusRoute BusStopList

BusStopBusList

Bus PersonList

Person

passengers

busses
busStops

waiting

0..*

0..*

0..*

s = BusRoute // BusStop // Person

VillageList

Village

villages

0..*

count all persons waiting at any bus stop on a bus route 

c=0

c++
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Aspects

• Aspects as program enhancers
• Here we enhance traversal programs with 

before and after advice defined in aspects 
called visitors

• General AOP enhances any kind of 
program

• This is a special case with good software 
engineering properties 
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Develop a sequence of semantics

• (M s cg og) = ?
– og satisfies cg!

• s, cg, og: are graphs. Graphs are 
relations. Use terminology of relations.

• Restrict to s = (// A  B).
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Object level semantics

• (M s cg og), where s = (// A B).
• The key is to find a set FIRST(A,B) of 

edges such that e in FIRST(A, B) iff it is 
possible for an object of class A to reach 
an object of type B by a path beginning 
with an edge e.

• (M s cg og) is the FIRST(A,B) sets.  
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Homework class graphs

A CG is: (DD+)

A DD is:
(datatype TypeName Alternative+)

An Alternative is:
(AlternativeName (FieldName
TypeName)+)

HW class graph to class graph transformation:
TypeName -- abstract class
AlternativeName – concrete class
(AlternativeName, FieldName, TypeName) – has-a
(AlternativeName, TypeName) – is-a
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Homework class graphs
CD = PL(DD).
DD = "(datatype" TypeName L(Alternative) ")".
Alternative = "(" AlternativeName L(TypedField) 

")".
TypedField = "(" FieldName TypeName ")".
FieldName = Ident.
TypeName = Ident.
AlternativeName = Ident.
L(S) ~ {S}.
PL(S) ~ "(" {S} ")".
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Class graph example
(datatype Container 
(a_Container (contents ItemList)

(capacity Number)
(total_weight Number)))

(datatype Item
(Cont (c Container))
(Simple (name String) (weight Weight)))

(datatype Weight
(a_Weight (v Number)))

(datatype ItemList
(Empty)
(NonEmpty (first Item) (rest ItemList))))

HW class graph to class graph transformation:
TypeName -- abstract class
AlternativeName – concrete class
(AlternativeName, FieldName, TypeName) – has-a
(AlternativeName, TypeName) – is-a

traversal strategy:
(// a_Container a_Weight)
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As traditional class graph

Container

aContainer

ItemList Number

contents
capacity

total_weight

Empty NonEmpty

Item

Cont Simple

c

String Weight

name weight

v

first

rest
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Another class graph example

(datatype P (CP (q Q)))
(datatype Q (CQ (p P)))

Because we only allow trees for object 
graphs, we should disallow such class 
graphs? P and Q are useless.
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F
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CBA
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H
Class graphs

object-equivalent

inheritance
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object-equivalent

inheritance

Class graphs

F

CBA

G

E

H

F

CBA

G

E

H
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inheritance

Class graphs

F

CBA

G

E

H
H

F

A1

aH

E

G

aE

B1 C1

aG

Preview:
(// aH aE)
(// aH aG)
(// aH Hid_A)
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inheritance

Evolution

F

CBA

G

E

H
H

F

Hid_A

aH

E

G

aE

Hid_B Hid_C

aG

B

aB

not evolution-friendly
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inheritance

Class graphs

F

CBA

G

E

H
H

F

A1

aH

E

G

aE

B1 C1

aG

Preview:
(// aH aE)
(// aH aG)
(// aH Hid_A)

CBA

aA aB aC

now evolution-friendly
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inheritance

Class graphs

F

CBA
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E

H
H

F

A1

aH

E
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aE

B1 C1

aG

Preview:
(// aH aE)
(// aH aG)
(// aH Hid_A)

CBA

aA aB aC
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inheritance

Class graphs

F

CBA

G

E

H
H

F

A1

aH

E
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aE

B1 C1

aG

Preview:
(// aH aE)
(// aH aG)
(// aH Hid_A)

CBA

aA aB aC

E1



CSG 711 32

inheritance

Class graphs

F

CBA

G

E

H

(datatype H (aH (f F) (b B) ))
(datatype G (aG))
(datatype A (aA (e E) (g G)))
(datatype B (aB (e E) (g G)))
(datatype C (aC (g G)))
(datatype E (aE))
(datatype F 
(A1 (a A))
(B1 (b B))
(C1 (c C))
(E1 (e E)) )

H = F B.
G = .
A = E G.
B = E G.
C = G.
E = .
F : A | B | C | E .
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Separate Viewgraphs

• Difference between homework class 
graphs and class graphs.

• No inheritance in homework class graphs.
• Flat class graphs can easily be modeled 

by home work class graph. A class graph 
is flat if abstract classes have no outgoing 
has-a edges. Quadratic growth in size.
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Apply class graph knowledge to 
homework class graphs

• Only consider flat class graph (flattening is 
an object preserving transformation).

• In flat class graph the rules are simpler.

HW class graph to class graph transformation:
TypeName -- abstract class
AlternativeName – concrete class
(AlternativeName, FieldName, TypeName) – has-a
(AlternativeName, enclosing TypeName) – is-a
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Meaning of strategies and visitors

• (// A B) (only this in hw)
– A:AlternativeName B:AlternativeName
– starts at A-object and ends at B-object

• (// A B)
– A:TypeName B:TypeName
– starts at an AlternativeName-object of A
– ends at an AlternativeName-object of B
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From Semantics to Interpreter

• From object-level semantics to class-level 
semantics

• (M1(M2 s cg) og)
– M2: FIRST sets at class level

SWITCH to navig-object-graphs
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From Interpreter to Compiler

• Connect to Structural Recursion
• Consider the strategy (// A  *) (everything 

reachable from A)
• (M1(M2 s cg) og): we want M1 to be apply
• M2 must return a function that we apply to 

og
• Primitives: functions with one argument: 

the data traversed, no other arguments.
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Code generation: should produce 
something useful

(define-datatype BusRoute BusRoute?
(a-BusRoute
(name symbol?)
(buses (list-of Bus?))
(towns (list-of Town?))))



CSG 711 39

Style 1: display

(define (trav br)
(cases BusRoute br
(a-BusRoute (name buses towns) 
(list name (trav-buses buses) 

(trav-towns towns)))))
(define (trav-buses lob)
(map trav-bus lob))
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Style 2: copy

• (define (cp br)
• (cases BusRoute br
• (a-BusRoute (name buses towns) 

(apply a-BusRoute (list name (cp-buses 
buses) (cp-towns towns))))))

• (define (cp-buses lob)
• (map cp-bus lob))
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Summary phase 1

• Language: strategies: A // B, class graphs, 
object graphs

• Semantics: FIRST: there exists object
• Interpreter: FIRST: there exists path in 

class graph
• Compiler: generated code is equivalent to 

a subgraph of class graph
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Visitors
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Visitors

• Several kinds: 
– Think of strategy as making a list out of an og. Fold 

on that list.
• (cg og s) -> list of target objects of s. (gather cg og s). (// 

CContainer CWeight)
• (+ (+      … (+ w2 (+ w1  0)) … )

– Think of visitor as having a suit case of variables in 
which they store data from their trip. Available as 
argument.

– functions for nodes and edges.
– multiple visitors.
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Type checking of hw programs

• check: Program =(Strategy x Visitor). 
(Program x ClassGraph) -> Bool

• Fundamental question: Given a program, 
with respect to which class graphs is it 
type correct.
– Type checking: Given a class graph, is the 

program type correct?
– Typability: Does there exist a class graph 

such that the program is type correct?
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Reference

• Class-graph Inference for Adaptive 
Programs, Jdens Palsberg, TAPOS 3 (2), 
75-85, 1997.
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