Traversal Strategies

Specification and Implementation

11/1/2005 Strategies

|dea of Traversal Strategies

e Defining high-level artifact in terms of a
low-level artifact without committing to
details of low-level artifact in definition of
high-level artifact. Low-level artifact is
parameter to definition of high-level
artifact.

« Exploit structure of low-level artifact.

11/1/2005 Strategies

Also: Dynamic call graphs !

Applications of Traversal
Strategies

« Application 1

— High-level: Adaptive program, containing
strategy.

— Low-level: Class graph

o Application 2 (see paper by Dave Mandelin
on Prospector and Jungloids PLDI 2005)

— High-level: High-level API
— Low-level: Low-level API

11/1/2005 Strategies

Similar to a function definition
accessing parameter generically

e High-level(Low-level)

— High-level does not refer to all information in
Low-level but High-level(Low-level) contains
details of Low-level.

11/1/2005 Strategies

Overview

o Use structure In graphs to express
subgraphs and path sets in those graphs.

« Gain: writing programs in terms of
strategies yields shorter and more flexible
programs.

* Does not work well on dense graphs and
graphs with self loops: use hierarchical
approach in this case.

11/1/2005 Strategies

Graphs used

e 0object graphs

e class graphs

e strategy graphs
o traversal graphs

» propagation graphs = folded traversal
graphs

11/1/2005 Strategies

Simplified form of theory

* Focus on class graphs with one kind of
nodes and one kind of edges.

11/1/2005 Strategies

Strategy definition:
embedded, positive strategies

e Given agraph G, a strategy graph Sof G Is
any subgraph of the transitive closure of G
with source s and target t.

e The transitive closure of G=(V,E) Is the
graph G*=(V,E*), where E*={(v,w): there
IS a path from vertex v to vertex w in G}.

11/1/2005 Strategies

S Is a strategy for G
F=t

Discussion

e Seems strange: define a strategy for a graph
but strategy Is independent of graph.

« Many very different graphs can have the
same strategy.

e Better: A graph G Is an instance of a graph
S, If SIs a subgraph of the transitive closure
of G. (call G: concrete graph, S: abstract
graph).

11/1/2005 Strategies 10

G, compatible G,

' 1
Compatible: connectivity of G
G,isin G, 2 1
A

Theory of Strategy Graphs

 Palsberg/Xiao/Lieberherr: TOPLAS 95

 Palsberg/Patt-Shamir/Lieberherr: Science of
Computer Programming 1997

 Lieberherr/Patt-Shamir/Doug Orleans:
Strategy graphs, 1997 NU TR, TOPLAS
2004

 Lieberherr/Patt-Shamir: Dagstuhl ‘98
Workshop on Generic Programming
11/1/((&3 N CS) Strategies 12

Strategy graph and base graph are directed graphs
Key concepts

o Strategy graph S with source s and target t of a
base graph G. Nodes(S) subset Nodes(G)
(Embedded strategy graph).

e A path p is an expansion of path p’ if p’ can
be obtained by deleting some elements from p.

S defines path set in G as follows:
PathSet(G,S) Is the set of all s-t paths in G
that are expansions of any s-t path in S.

11/1/2005 Strategies 13

L CSG 711
= generalization

— other relationships Learn | ng map

numbers: order of coverage

8 correspondences
1| graph X:class path - concrete path
gpaehs FROM'T_O Y:object path - concrete path
labeled computation traversal path - class path
—————
3 object 2| class > strategy ’ traversal | propagation
graph graph graph graph graph
I
object traversal defined °l hame map 111 zig-zags
by concrete path set constraint map short-cuts
Algorithm 1 12} Algorithm 2
In: strategy + class graph In: traversal + object graph
out: traversal graph out: object traversal

11/1/2005 Strategies 15

= generalization
— other relationships

numbers: order of coverage
8

Learning map

correspondences

FROM-TO
computation

X:class path - concrete path
Y:.object path - concrete path
traversal path - class path

strategy | 7| traversal

10

propagation

object traversal defined
by concrete path set

Algorithm 1
In: strategy + class graph
out: traversal graph

11/1/2005

out: object traversal

In: traversal + object graph

graph graph graph
I
° name map 111 zig-zags
constraint map short-cuts
121 Algorithm 2

Strategies

16

Remarks about traversals

 |If object graph is cyclic, traversal is not well
defined.

e Traversals are opportunistic: As long as
there Is a possibility for success (i.e., getting
to the target), the branch is taken.

e Traversals do not look ahead. Visitors must
delay action appropriately.

11/1/2005 Strategies 17

Strategies: traversal specification

o Strategies select class-graph paths and then
derive concrete paths by applying the
natural correspondence.

e Traversals are defined in terms of sets of
concrete paths.

» A strategy selects class graph paths by
specifying a high-level topology which
spans all selected paths.

11/1/2005 Strategies 18

Strategies

o A strategy SSis atriple SS = (S,s,t), where S
= (C,D) is a directed unlabeled graph called
the strategy graph, where C Is the set of
strategy-graph nodes and D Is the set of
strategy-graph edges, and s,t C are the
source and target of SS, respectively.

11/1/2005 Strategies 19

Strategles, constraint map

* Need negative constraints

e Glven aclass graph G = (V,E,L), an element
predicate EP for G Is a predicate over VU E.
Glven a strategy SS, a function B mapping
each edge of SS to an element predicate Is
called a constraint map for SS and G.

11/1/2005 Strategies 20

Strategles, constraint map

o Let S be astrategy graph, let G be a class
graph, let N be a name map and let B be a
constraint map for S and G. Given a
strategy-graph pathp = <a; a, ... a,>, we
say that a class graph path p’ is a satisfying
expansion of p with respect to B under N if

there exist paths p,, ... ,p, such that p’ =p, .

P, ... p, and:

11/1/2005 Strategies

21

Strategles, constraint map

— For all O<i<n+1, Source(p;)=N(a;_,) and
Target(p;)= N(&;).

— For all 0<i<n+1, the interior elements of p,
satisfy the element predicate B(a;_,,a;).

11/1/2005 Strategies 22

Strategies

 Many ways to decompose a path.

* Element constraints never apply to the ends
of the subpaths.

 from A bypassing {A,B} to B

11/1/2005 Strategies 23

Strategies, path sets

o Let SS = (S,s,t) be a strategy, let G =
(V,E,L) be a class graph, and let N be a
name map for SS and G and let B be a
constraint map for S and G. The set of
concrete paths PathSet[SS,G,N,B] i1s {X(p’)
| p” € P5(N(s),N(t)) and there exists pe
P.(s,t) such that p’ is an expansion of N(p)
w.r.t. B}.

11/1/2005 Strategies 24

Strategies

» PathSet[SS,G,N] = PathSet[SS,G,N,Bx el
for the constraint map B.g ¢ Which maps all
strategy graph edges to the trivial element
predicate that Is always TRUE.

11/1/2005 Strategies

25

Strategies

o Are used In adaptive programs.

« Adaptive programs are expressed In terms
of class-valued and relation-valued

variables. Class graph not known when
program Is written.

11/1/2005 Strategies

26

= generalization

— other relationships Learn | ng map

numbers: order of coverage

8 correspondences

X:class path - concrete path
FROM-TO Y:.object path - concrete path

computation traversal path - class path

10 :
traversal propagation

graph graph

4 object traversal defined 61 name map 111 zig-zags
by concrete path set constraint map short-cuts
" Algorithm 1 12} Algorithm 2
In: strategy + class graph In: traversal + object graph
out: traversal graph out: object traversal

11/1/2005 Strategies 27

What we tried.

» Path set Is represented by subgraph of class
graph, called propagation graph.
Propagation graph is translated into a set of
methods. Works in many cases. Two
Important cases which do not work:

— short-cuts

— Z1g-zags

11/1/2005 Strategies 28

strategy:

Short-cut C28

class graph strategy graph with name map
A B [

propagation A
graph

11/1/2005 Strategies 29

strategy:

1+1= 3 Short-cut 92y

strategy graph with name map
Incorrect traversal code: . >e >
class A {void t){x.t);}} A B C
class X {void t(){if (b!==null)b.t();c.t();} }

class B {void t){x.t();}} A

class C {void t(){}} g:ggﬁgation

Correct traversal code:
class A {void t){x.t();}}
class X {void t(){if (b'==null)b.t2();}
void t2(){if (b!==nulb.t2();c.t2();}
}
class B {void t2(){x.t2();}}
class C {void t2(){}}

11/1/2005 Strategies 30

abstract representation

of traversal code strategy:
A ->B
ol Short-cut ey
=N/~
class graph class graph

A

SOurce traversal

method t2

traversal
method t

target

thick edges with incident nodes: traversal graph

11/1/2005 Strategies

strategy graph -
with name map Z I g 'ZagS

B D c
A C D F G
B D F

<A CD E G>is excluded

At a D-object need to remember

how we got there. Need argument for
traversal methods. Represent traversal
by tokens in traversal graph.

11/1/2005 Strategies

class graph

32

Compilation of strategies

e Two parts

— construct graph which expresses the traversal
PathSet[SS,G,N,B] in a more convenient way:
traversal graph TG(SS,G,N,B). Represents
allowed traversals as a “big” graph.

— Generate code for traversal methods by using
TG(SS,G,N,B).

11/1/2005 Strategies 33

B\\\\M////
Compilation of strategies — —

_— S~

* |dea of traversal graph: o

— Paths defined by from A to Bcanbe

represented by a subgraph of the class graph.
Compute all edges reachable from A and from
which B can be reached. Edges In intersection
form graph which represents traversal.

— Generalize to any strategies: Need to use big
graph but above from A to B approach will

Work.

11/1/2005 Strategies 34

Compilation of strategies

* |dea of traversal graph:
— traversal graph is “big brother” of propagation
graph
— Is used to control traversal
— FROM-TO computation: Find subgraph

consisting of all paths from A to B in a directed
graph: Fundamental algorithm for traversals

— Traversal graph computation is FROM-TO
computation.

11/1/2005 Strategies 35

Strategy behind Strategy

 Instead of developing a specialized
algorithm to solve a specific problem,
modify the data until a standard algorithm
can do the work. May have implications on
efficiency.

 In our case: use FROM-TO computation.

11/1/2005 Strategies 36

FROM-TO computation

e Problem: Find subgraph consisting of all
paths from A to B In a directed graph.
— Forward depth-first traversal from A
e colored in red

— Backward depth-first traversal from B
e colored in blue

— Select nodes and edges which are colored in
both red and blue.

11/1/2005 Strategies

37

Traversal graph computation
Algorithm 1

o Let the strategy graph S = (C,D) and let the
strategy graph edges be D = {e,, e,, ... ,&,}.

» 1. Create a graph G’=(V’,E’) by taking k
copies of G, one for each strategy graph
edge. Denote the ith copy as G' = (V',E).

* The nodes in V' and edges in E' are denoted
with superscript i, as in V', ', etc.

11/1/2005 Strategies

38

Why k copies?

* Mimics using k distinct traversal method
names.

* Run-time traversals need enough state
Information.

11/1/2005 Strategies

39

Traversal graph computation

« Each class-graph node v corresponds to k
nodes in V’, denoted V4, ... , V¥

o Extend Class mapping to apply to nodes of
G’ by setting Class(v') = v, where v' e V and
ve V.

11/1/2005 Strategies 40

Preview of step 2

 Link the copied class graphs through
temporary use of intercopy edges.

o Each strategy graph node is responsible for
additional edges In the traversal graph.

o |If strategy graph node has one incoming and
one outgoing edge, one edge Is added.

11/1/2005 Strategies 41

Preview of step 2

« Addition of edges from one copy to the
next:

s Intercopy edge

f may be O

11/1/2005 Strategies

42

Traversal graph computation

o 2.a For each strategy-graph node ae C: Let
| = {el,, ... el .} be the strategy-graph edges
Incoming into a, and let O={eo,, ... ,e0,.} be
the set of strategy graph edges outgoing
from a. Let N(a)=ve V. Add n times m
edgesvito v forj=1, ... ,nand =1, ... m.
Call these edges intercopy edges.

11/1/2005 Strategies 43

Traversal graph computation

« 2.b For each node v' e G’ with an outgoing
intercopy edge: Add edges (u',f,v) for all u'
such that (u',f,v") € E', and for all vi which
are reachable from v' through intercopy
edges only.

e 2.c Remove all intercopy edges added In
step 2.a.

11/1/2005 Strategies

44

Note: there Is a bug lurking here!

* |t took a while to find it. Doug Orleans
found 1t in April 99.

— We used traversal strategies for over two years

— Paper was reviewed by reviewers of a top
journal (Journal of the ACM)

 Solution: switch steps two and three. Why?

11/1/2005 Strategies 45

Preview of step 3

* Delete edges and nodes which we do not
want to traverse.

11/1/2005 Strategies

46

Traversal graph computation

3. For each strategy-graph edge e; = from a
to b: Let N(a) = u and N(b) = v. Remove
from the subgraph G' all elements which do
not satisfy the predicate B(e;), with the

exception of u' anc

- Vi={iul o{w

Vi,
B(e;)(w)=TRUE}, and

—E'={wLy) | Be)(w.l.y)= B(e)W)=

B(e;)(y)=TRUE}.

11/1/2005

Strategies 47

Preview of step 4

e Get ready for the FROM-TO computation
In the traversal graph: need a single source
and target.

11/1/2005 Strategies

48

Traversal graph computation

* 4.a Add a node s* and an edge (s*,N(s)") for
each edge e; outgoing from s in the strategy
graph, where s Is the source of the strategy.

* 4.b Add a node t* and an edge (N(t)',t*) for
each edge e; incoming into t in the strategy
graph, where t is the target of the strategy.

11/1/2005 Strategies 49

Traversal graph computation

e 4.c Mark all nodes and edges in G’ which
are both reachable from s* and from which
t* 1s reachable, and remove unmarked nodes
and edges from G’. Call the resulting graph
G’=(V’,E”).

* The above Is an application of the FROM-

O computation.

11/1/2005 Strategies 50

Traversal graph co

e 5. Return the following obj
— The graph obtained from G’

mputation

ects:
* after removing s*

and t* and all their incident edges. This is the
traversal graph TG(SS,G,N,B).

— The set of all nodes v such that (s*,v) Is an edge
In G”’. This Is the start set, denotes T..

— The set of all nodes v such that (v,t*) Is an edge

In G’’. This 1s the finish set,

11/1/2005 Strategies

denoted T..

51

Traversal graph properties

 |f p Is a path In the traversal graph, then
under the extended Class mapping, p Is a
path in the class graph. (Roughly: traversal
graph paths are class graph paths.)

11/1/2005 Strategies 52

abstract representation
of traversal code strategy:

Short-cut C28

class graph class graph

A
start set traversal

method t2

traversal
method t

finish set

thick edges with incident nodes: traversal graph

11/1/2005 Strategies

Can now think in terms of a graph and need no longer path sets. But graph may be
bigger.

Traversal graph properties

o Let SS be a strategy, G a class graph, N a
name map, and let B be a constraint map.
Let TG=TG(SS,G,N,B) be the traversal
graph and let T, be the start set and T;the
finish set generated by algorithm 1. Then
X(Class(P+¢(T,,T;)))=PathSet[SS,G,N,B].
(Roughly: Paths from start to finish in
traversal graph are the paths selected by

strategy.)

11/1/2005 Strategies

54

abstract representation
of traversal code strategy:

Short-cut C28

class graph class graph

A
start set traversal

method t2

traversal
method t

finish set

thick edges with incident nodes: traversal graph

11/1/2005 Strategies

= generalization
— other relationships

numbers: order of coverage
correspondences
X:class path - concrete path
Y:.object path - concrete path
traversal path - class path

Y Algorithm 1 Algorithm 2
In: strategy + class graph In: traversal + object graph
out: traversal graph out: object traversal

11/1/2005 Strategies 56

Traversal methods algorithm
Algorithm 2

 |dea Is to traverse an object graph while
using the traversal graph as a road map.

* Maintain set of “tokens” placed on the
traversal graph.

* May have several tokens: path leading to an
object may be a prefix of several distinct
paths in PathSet[SS,G,N,B].

11/1/2005 Strategies 57

Traversal method algorithm

o Traversal method Traverse(T), where T a
set of tokens, 1.e., a set of nodes In the
traversal graph.

* When Traverse(T) invokes visit at an

object, that object Is added to traversal
history.

#@,

11/1/2005 Strategies 58

Traversal method algorithm

 Traversal(T) Is generic: same method for all
classes.

« Traversal(T) is initially called with the start
set T, computed by algorithm 1.

11/1/2005 Strategies 59

Traversal methods algorithm

 Traverse(T), guided by traversal graph TG.

— 1. define a set of traversal graph nodes T’ by
T’={v | Class(v)=Class(this) and there exists

ueT such that u=v or (u,2Vv) Is an edge In TG}.
— 2. If T’ 1s empty, return.
— 3. Call this.visit(). @

4

11/1/2005 Strategies 60

Traversal methods algorithm

— 4, Let Q be the set of labels which appear both

on edges outgoing fromanode in T’ TG and
on edges outgoing from this in the object

graph. For each field name | €Q, let
T, = {v|(u,l,v) TG forsomeueT’}.
— 5. Call this.l.Traverse(T,) for all | €Q, ordered
by “<*, the field ordering.

11/1/2005 Strategies 61

strategy:

Short-cut C28

Object graph
Traversal graph
A(A start set
<x> X(
 B(
<x> X(: > p
<c> C()) x
<c>C() .

finish set

11/1/2005 Strategies 62

strategy:
Short-cut C28

Traversal graph

Object graph

A(C A
<x> X(
 B(
<x> X(
<c> C())
<c>C()

finish set
@ Used for token set and currently active object

11/1/2005 Strategies 63

strategy:

Short-cut C28

Object graph
J Traversal graph
A(A start set
x> X(§
 B(
<x> X(b O-1
<c>C() x
<c> C())

finish set
@ Used for token set and currently active object

11/1/2005 Strategies 64

strategy:

Short-cut C28

Object graph

Traversal graph

A(A
<x> X(
B(€
<x> X(
<c> C())
<c>C()

¢

@ Used for token set and currently active object

finish set

11/1/2005 Strategies 65

strategy:
Short-cut C28

Traversal graph

Object graph

A(A
<x> X(
 B(
<x>X(€
<c>C()) &
<c>C() .

finish set
@ Used for token set and currently active object

11/1/2005 Strategies 66

strategy:

Short-cut C28

Object graph

Traversal graph

A(A
<x> X(
 B(
<x> X(

€ <c>C()
<c> C())

finish set
@ Used for token set and currently active object

11/1/2005 Strategies 67

strategy:

Short-cut >

Object graph B -> C}
Traversal graph

C finish set

@ Used for token set and currently active object

After going back to X
11/1/2005 Strategies 68

Traversal algorithm property

e Let O be an object tree and let 0 be an
object in O. Suppose that the Traverse
methods are guided by a traversal graph TG .

with finish set T.. Let H(0,T) be the %

sequence of objects which invoke visit
while o.Traverse(T) Is active, where T Is a
set of nodes In TG. Then traversing O from o
guided by X(P5(T,T¢)) produces H(o,T).

11/1/2005 Strategies 69

strategy graph -
with name map Z I g 'ZagS

B D c
A C D F G
B D F

<A CD E G>is excluded

traversal graph = strategy graph
(essentially)

11/1/2005 Strategies

class graph

A

70

shorter: {A->D D->F F->G A->B B->E E->G}

strate raph -
with r?;/rr?e rﬁap Z I g -ZagS class graph
A(Q) A

B D E B(object tree /-
- - B
- D(
N]

C D F
- - G()
- F(D
5 bk - GO))) £

| D(L
<A C D E G> is excluded

“ “m
traversal graph = strategy graph G()) ©

(essentially) |:(

G())))

11/1/2005 Strategies

71

strate raph -
with r?;/rr?e rﬁap Z I g -ZagS class graph

B D A(object tree ;-
B C

- B(§
€ N b
C F

D - E(
" - G()
- F(
B D .
.~ - G())) E
¢ C(
<A C D E G> is excluded D(N\
traversal graph = strategy graph G())

(essentially)

G()))))

11/1/2005 Strategies 72

strategy graph -
with name map Z I g _Zags

A(object tree

B D E B (
¢ DE
c D F\G - E(
= . G0)
- F(
c o F - GO
¢ C(
<A C D E G> is excluded D(
E(
traversal (%;igztraflggitegy graph F((; ())
G(0))))

11/1/2005 Strategies

class graph

A

,

73

strategy graph -
with name map Z I g _Zags

B D - A(object tree
- B(
6. D
C D F c . E(€
B . G0)
- F(
B D :
. - G0))
C(
<A C D E G> is excluded D(
E(
traversal graph = strategy graph
(essentially) G())
F(
G(0)))))

11/1/2005 Strategies

class graph

A

74

strate raph -
with r?;/rr?e rﬁap Z I g -ZagS class graph

A

B D c A(object tree
e B(B .
N o]

C D E E(
” ¢ | <(3()) ¢)
F
A - G) E F
C(L]
<A C D E G> is excluded D(
traversal graph = strategy graph E((; G
(essentially) F(())
G(0)))))

11/1/2005 Strategies 75

strate raph -
with r?;/rr?e rﬁap Z I g -ZagS class graph

5 5 A(object tree A
o A e
D
Ne X

cC D F - E(
- - G0)
B D F(® °
. acl))) E
€ o])
<A C D E G> is excluded D(
E(.
traversal graph = strategy graph G())
(essentially) E (
G(0))))

11/1/2005 Strategies 76

strate raph -
with r?;/rr?e rﬁap Z I g -ZagS class graph

- A
5 5 - A(object tree
: 5 : C
\ :D(
F - E(L

G
C D |
- ¢ e
- F(D
c 0 f (53(60»)9 -E : :
<A C D E G> is excluded D(
E(.
traversal graph = strategy graph G())
(essentially) E (
G(0))))

11/1/2005 Strategies 77

strate raph -
with r?;/rr?e rﬁap Z I g -ZagS class graph

- A
5 5 - A(object tree
: 5 : C

\ :D(

C D

- - G0)

¢ F(D
c ok) = .
SO
<A C D E G> is excluded D(

E(.

traversal graph = strategy graph G())

(essentially) E (
G(0))))

11/1/2005 Strategies 78

strate raph -
with r?;/rr?e rﬁap Z I g -ZagS class graph

i A
B > . A(object tree
\ D(
- G E E(-

C D
p - G()
¢ R 5
c L LM F
<A C D E G> is excluded D(@ -
(P G
traversal graph = strategy graph G())
(essentially) F(
G(0)))))

11/1/2005 Strategies 79

e Let

Main Theorem

SS be a strategy, let G be a class graph,

let N be a name map, and let B be a

con
gra
anc

straint map. Let TG be the traversal
oh generated by Algorithm 1, and let T,
T. be the start and finish sets,

respectively.

11/1/2005

Strategies 80

Main Theorem (cont.)

e Let O be an object tree and let 0 be an
object In O. Let H be the sequence of nodes
visited when o.Traverse is called with

argument T, guided by TG. Then traversing
O from o guided by PathSet|SS,G,N,B] produces
H.

11/1/2005 Strategies 81

Complexity of algorithm

o Algorithm 1: All steps run in time linear In
the size of their input and output. Size of
traversal graph: O(|S|? |G| d,) where d, is
the maximal number of edges outgoing
from a node In the class graph.

« Algorithm 2: How many tokens? Size of
argument T Is bounded by the number of
edges In strategy graph.

11/1/2005 Strategies

82

Simplifications of algorithm

* |f no short-cuts and zig-zags, can use
propagation graph. No need for traversal

graph. Faster traversal at run-time.

* Presence of short-cuts and zig-zags can be
checked efficiently (compositional
consistency).

o See chapter 15 of AP book.

11/1/2005 Strategies

83

Extensions

« Multiple sources
* Multiple targets
e |ntersection of traversals

11/1/2005 Strategies

84

Summary

» Abstract model behind strategy graphs.
 How to implement strategy graphs.

 How to apply: Precise meaning of
strategies; how to write traversals manually
(watch for short-cuts and zig-zags).

11/1/2005 Strategies 85

Where to get more information

o Paper with Boaz-Patt Shamir (strategies.ps
In my FTP directory)

e Implementation of Demeter/Java and AP
Library shows you how algorithms are
Implemented in Demeter/Java (and Java).
See Demeter/Java resources page.

e Chapter 15 of AP book.

11/1/2005 Strategies

86

Feedback

e Send email to lieber@ccs.neu.edu.

11/1/2005 Strategies

87

	Traversal Strategies
	Applications of Traversal Strategies
	Similar to a function definition accessing parameter generically
	Overview
	Graphs used
	Simplified form of theory
	Strategy definition:�embedded, positive strategies
	Discussion
	Theory of Strategy Graphs
	Key concepts
	Learning map
	Learning map
	Remarks about traversals
	Strategies: traversal specification
	Strategies
	Strategies, constraint map
	Strategies, constraint map
	Strategies, constraint map
	Strategies
	Strategies, path sets
	Strategies
	Strategies
	Learning map
	What we tried.
	Short-cut
	Short-cut
	Short-cut
	Zig-zags
	Compilation of strategies
	Compilation of strategies
	Compilation of strategies
	Strategy behind Strategy
	FROM-TO computation
	Traversal graph computation�Algorithm 1
	Why k copies?
	Traversal graph computation
	Preview of step 2
	Preview of step 2
	Traversal graph computation
	Traversal graph computation
	Note: there is a bug lurking here!
	Preview of step 3
	Traversal graph computation
	Preview of step 4
	Traversal graph computation
	Traversal graph computation
	Traversal graph computation
	Traversal graph properties
	Short-cut
	Traversal graph properties
	Short-cut
	Learning map
	Traversal methods algorithm�Algorithm 2
	Traversal method algorithm
	Traversal method algorithm
	Traversal methods algorithm
	Traversal methods algorithm
	Short-cut
	Short-cut
	Short-cut
	Short-cut
	Short-cut
	Short-cut
	Short-cut
	Traversal algorithm property
	Zig-zags
	Zig-zags
	Zig-zags
	Zig-zags
	Zig-zags
	Zig-zags
	Zig-zags
	Zig-zags
	Zig-zags
	Zig-zags
	Main Theorem
	Main Theorem (cont.)
	Complexity of algorithm
	Simplifications of algorithm
	Extensions
	Summary
	Where to get more information
	Feedback

