
11/1/2005 Strategies 1

Traversal Strategies

Specification and Implementation

11/1/2005 Strategies 2

Idea of Traversal Strategies

• Defining high-level artifact in terms of a
low-level artifact without committing to
details of low-level artifact in definition of
high-level artifact. Low-level artifact is
parameter to definition of high-level
artifact.

• Exploit structure of low-level artifact.

11/1/2005 Strategies 3

Applications of Traversal
Strategies

• Application 1
– High-level: Adaptive program, containing

strategy.
– Low-level: Class graph

• Application 2 (see paper by Dave Mandelin
on Prospector and Jungloids PLDI 2005)
– High-level: High-level API
– Low-level: Low-level API

Also: Dynamic call graphs !

11/1/2005 Strategies 4

Similar to a function definition
accessing parameter generically

• High-level(Low-level)
– High-level does not refer to all information in

Low-level but High-level(Low-level) contains
details of Low-level.

11/1/2005 Strategies 5

Overview

• Use structure in graphs to express
subgraphs and path sets in those graphs.

• Gain: writing programs in terms of
strategies yields shorter and more flexible
programs.

• Does not work well on dense graphs and
graphs with self loops: use hierarchical
approach in this case.

11/1/2005 Strategies 6

Graphs used

• object graphs
• class graphs
• strategy graphs
• traversal graphs
• propagation graphs = folded traversal

graphs

11/1/2005 Strategies 7

Simplified form of theory

• Focus on class graphs with one kind of
nodes and one kind of edges.

11/1/2005 Strategies 8

Strategy definition:
embedded, positive strategies

• Given a graph G, a strategy graph S of G is
any subgraph of the transitive closure of G
with source s and target t.

• The transitive closure of G=(V,E) is the
graph G*=(V,E*), where E*={(v,w): there
is a path from vertex v to vertex w in G}.

A = s

E

F=t

S

A

B BC C

D
E

G

D
F

S is a strategy for G

11/1/2005 Strategies 10

Discussion

• Seems strange: define a strategy for a graph
but strategy is independent of graph.

• Many very different graphs can have the
same strategy.

• Better: A graph G is an instance of a graph
S, if S is a subgraph of the transitive closure
of G. (call G: concrete graph, S: abstract
graph).

A

C

DE E

G1

G2

Compatible: connectivity of
G2 is in G1

A

B BC

D
F F

G1 compatible G2

11/1/2005 Strategies 12

Theory of Strategy Graphs

• Palsberg/Xiao/Lieberherr: TOPLAS ‘95
• Palsberg/Patt-Shamir/Lieberherr: Science of

Computer Programming 1997
• Lieberherr/Patt-Shamir/Doug Orleans:

Strategy graphs, 1997 NU TR, TOPLAS
2004

• Lieberherr/Patt-Shamir: Dagstuhl ‘98
Workshop on Generic Programming
(LNCS)

11/1/2005 Strategies 13

Key concepts

• Strategy graph S with source s and target t of a
base graph G. Nodes(S) subset Nodes(G)
(Embedded strategy graph).

• A path p is an expansion of path p’ if p’ can
be obtained by deleting some elements from p.

• S defines path set in G as follows:
PathSetst(G,S) is the set of all s-t paths in G
that are expansions of any s-t path in S.

Strategy graph and base graph are directed graphs

A = s

E

F=t

S

A

B BC C

D
E

G

D
F

PathSet(G , S)

11/1/2005 Strategies 15

Learning map

graph
paths
labeled

object
graph

class
graph

strategy
graph

object traversal defined
by concrete path set

name map
constraint map

traversal
graph

Algorithm 1
in: strategy + class graph
out: traversal graph

Algorithm 2
in: traversal + object graph
out: object traversal

propagation
graph

FROM-TO
computation

zig-zags
short-cuts

correspondences
X:class path - concrete path
Y:object path - concrete path
traversal path - class path

generalization

other relationships

1

3 2

4

5

6

7

9

8

10

11

12

numbers: order of coverage

CSG 711

11/1/2005 Strategies 16

Learning map

graph
paths
labeled

object
graph

class
graph

strategy
graph

object traversal defined
by concrete path set

name map
constraint map

traversal
graph

Algorithm 1
in: strategy + class graph
out: traversal graph

Algorithm 2
in: traversal + object graph
out: object traversal

propagation
graph

FROM-TO
computation

zig-zags
short-cuts

correspondences
X:class path - concrete path
Y:object path - concrete path
traversal path - class path

generalization

other relationships

1

3 2

4

5

6

7

9

8

10

11

12

numbers: order of coverage

11/1/2005 Strategies 17

Remarks about traversals

• If object graph is cyclic, traversal is not well
defined.

• Traversals are opportunistic: As long as
there is a possibility for success (i.e., getting
to the target), the branch is taken.

• Traversals do not look ahead. Visitors must
delay action appropriately.

11/1/2005 Strategies 18

Strategies: traversal specification

• Strategies select class-graph paths and then
derive concrete paths by applying the
natural correspondence.

• Traversals are defined in terms of sets of
concrete paths.

• A strategy selects class graph paths by
specifying a high-level topology which
spans all selected paths.

11/1/2005 Strategies 19

Strategies

• A strategy SS is a triple SS = (S,s,t), where S
= (C,D) is a directed unlabeled graph called
the strategy graph, where C is the set of
strategy-graph nodes and D is the set of
strategy-graph edges, and s,t∈ C are the
source and target of SS, respectively.

11/1/2005 Strategies 20

Strategies, constraint map

• Need negative constraints
• Given a class graph G = (V,E,L), an element

predicate EP for G is a predicate over V∪ E.
Given a strategy SS, a function B mapping
each edge of SS to an element predicate is
called a constraint map for SS and G.

11/1/2005 Strategies 21

Strategies, constraint map

• Let S be a strategy graph, let G be a class
graph, let N be a name map and let B be a
constraint map for S and G. Given a
strategy-graph path p = <a0 a1 … an>, we
say that a class graph path p’ is a satisfying
expansion of p with respect to B under N if
there exist paths p1, … ,pn such that p’ = p1 .
p2 … pn and:

11/1/2005 Strategies 22

Strategies, constraint map

– For all 0<i<n+1, Source(pi)=N(ai-1) and
Target(pi)= N(ai).

– For all 0<i<n+1, the interior elements of pi
satisfy the element predicate B(ai-1,ai).

11/1/2005 Strategies 23

Strategies

• Many ways to decompose a path.
• Element constraints never apply to the ends

of the subpaths.
• from A bypassing {A,B} to B

11/1/2005 Strategies 24

Strategies, path sets

• Let SS = (S,s,t) be a strategy, let G =
(V,E,L) be a class graph, and let N be a
name map for SS and G and let B be a
constraint map for S and G. The set of
concrete paths PathSet[SS,G,N,B] is {X(p’)
| p’∈ PG(N(s),N(t)) and there exists p∈
PS(s,t) such that p’ is an expansion of N(p)
w.r.t. B}.

11/1/2005 Strategies 25

Strategies

• PathSet[SS,G,N] = PathSet[SS,G,N,BTRUE]
for the constraint map BTRUE which maps all
strategy graph edges to the trivial element
predicate that is always TRUE.

11/1/2005 Strategies 26

Strategies

• Are used in adaptive programs.
• Adaptive programs are expressed in terms

of class-valued and relation-valued
variables. Class graph not known when
program is written.

11/1/2005 Strategies 27

Learning map

graph
paths
labeled

object
graph

class
graph

strategy
graph

object traversal defined
by concrete path set

name map
constraint map

traversal
graph

Algorithm 1
in: strategy + class graph
out: traversal graph

Algorithm 2
in: traversal + object graph
out: object traversal

propagation
graph

FROM-TO
computation

zig-zags
short-cuts

correspondences
X:class path - concrete path
Y:object path - concrete path
traversal path - class path

generalization

other relationships

1

3 2

4

5

6

7

9

8

10

11

12

numbers: order of coverage

11/1/2005 Strategies 28

What we tried.

• Path set is represented by subgraph of class
graph, called propagation graph.
Propagation graph is translated into a set of
methods. Works in many cases. Two
important cases which do not work:
– short-cuts
– zig-zags

11/1/2005 Strategies 29

Short-cut
strategy:
{A -> B
B -> C}

A

B

C

X

0..1

x

x

b

c

A

B

C

X

0..1

x

x

b

c

propagation
graph

class graph

A B C

strategy graph with name map

c

c

11/1/2005 Strategies 30

Short-cut
strategy:
{A -> B
B -> C}

A

B

C

X

0..1

x

x

b

c

propagation
graph

A B C

strategy graph with name map

c

Incorrect traversal code:
class A {void t(){x.t();}}
class X {void t(){if (b!==null)b.t();c.t();}}
class B {void t(){x.t();}}
class C {void t(){}}

Correct traversal code:
class A {void t(){x.t();}}
class X {void t(){if (b!==null)b.t2();}

void t2(){if (b!==null)b.t2();c.t2();}
}
class B {void t2(){x.t2();}}
class C {void t2(){}}

1 1 3+ =

11/1/2005 Strategies 31

Short-cut
strategy:
{A -> B
B -> C}

A

B

C

X

0..1

x

x

b

c

class graph

c

A

B

C

X

0..1

x

x

b

c

class graph

c

source

target

b

abstract representation
of traversal code

traversal
method t

traversal
method t2

thick edges with incident nodes: traversal graph

11/1/2005 Strategies 32

Zig-zags

A

B D E

G
C D F

B D F

A

B
C

D

E F

G

strategy graph
with name map class graph

<A C D E G> is excluded

At a D-object need to remember
how we got there. Need argument for
traversal methods. Represent traversal
by tokens in traversal graph.

11/1/2005 Strategies 33

Compilation of strategies

• Two parts
– construct graph which expresses the traversal

PathSet[SS,G,N,B] in a more convenient way:
traversal graph TG(SS,G,N,B). Represents
allowed traversals as a “big” graph.

– Generate code for traversal methods by using
TG(SS,G,N,B).

11/1/2005 Strategies 34

Compilation of strategies

• Idea of traversal graph:
– Paths defined by from A to B can be

represented by a subgraph of the class graph.
Compute all edges reachable from A and from
which B can be reached. Edges in intersection
form graph which represents traversal.

– Generalize to any strategies: Need to use big
graph but above from A to B approach will
work.

11/1/2005 Strategies 35

Compilation of strategies

• Idea of traversal graph:
– traversal graph is “big brother” of propagation

graph
– is used to control traversal
– FROM-TO computation: Find subgraph

consisting of all paths from A to B in a directed
graph: Fundamental algorithm for traversals

– Traversal graph computation is FROM-TO
computation.

11/1/2005 Strategies 36

Strategy behind Strategy

• Instead of developing a specialized
algorithm to solve a specific problem,
modify the data until a standard algorithm
can do the work. May have implications on
efficiency.

• In our case: use FROM-TO computation.

11/1/2005 Strategies 37

FROM-TO computation

• Problem: Find subgraph consisting of all
paths from A to B in a directed graph.
– Forward depth-first traversal from A

• colored in red

– Backward depth-first traversal from B
• colored in blue

– Select nodes and edges which are colored in
both red and blue.

11/1/2005 Strategies 38

Traversal graph computation
Algorithm 1

• Let the strategy graph S = (C,D) and let the
strategy graph edges be D = {e1, e2, … ,ek}.

• 1. Create a graph G’=(V’,E’) by taking k
copies of G, one for each strategy graph
edge. Denote the ith copy as Gi = (Vi,Ei).

• The nodes in Vi and edges in Ei are denoted
with superscript i, as in vi, ei, etc.

11/1/2005 Strategies 39

Why k copies?

• Mimics using k distinct traversal method
names.

• Run-time traversals need enough state
information.

11/1/2005 Strategies 40

Traversal graph computation

• Each class-graph node v corresponds to k
nodes in V’, denoted v1, … , vk.

• Extend Class mapping to apply to nodes of
G’ by setting Class(vi) = v, where vi∈ V and
v∈ V.

11/1/2005 Strategies 41

Preview of step 2

• Link the copied class graphs through
temporary use of intercopy edges.

• Each strategy graph node is responsible for
additional edges in the traversal graph.

• If strategy graph node has one incoming and
one outgoing edge, one edge is added.

11/1/2005 Strategies 42

Preview of step 2

• Addition of edges from one copy to the
next:

intercopy edge

f

f

C

C

A

f may be ◊

11/1/2005 Strategies 43

Traversal graph computation

• 2.a For each strategy-graph node a∈ C: Let
I = {ei1, … ,ein} be the strategy-graph edges
incoming into a, and let O={eo1, … ,eom} be
the set of strategy graph edges outgoing
from a. Let N(a)=v∈ V. Add n times m
edges vj to vl for j=1, … ,n and l = 1, … ,m.
Call these edges intercopy edges.

11/1/2005 Strategies 44

Traversal graph computation

• 2.b For each node vi∈ G’ with an outgoing
intercopy edge: Add edges (ui,f,vj) for all ui

such that (ui,f,vi)∈ Ei, and for all vj which
are reachable from vi through intercopy
edges only.

• 2.c Remove all intercopy edges added in
step 2.a.

11/1/2005 Strategies 45

Note: there is a bug lurking here!

• It took a while to find it. Doug Orleans
found it in April 99.
– We used traversal strategies for over two years
– Paper was reviewed by reviewers of a top

journal (Journal of the ACM)
• Solution: switch steps two and three. Why?

11/1/2005 Strategies 46

Preview of step 3

• Delete edges and nodes which we do not
want to traverse.

11/1/2005 Strategies 47

Traversal graph computation

• 3. For each strategy-graph edge ei = from a
to b: Let N(a) = u and N(b) = v. Remove
from the subgraph Gi all elements which do
not satisfy the predicate B(ei), with the
exception of ui and vi.
– V i = {vi,ui} ∪ {wi | B(ei)(w)=TRUE}, and
– E i = {(wi,l,yi) | B(ei)(w,l,y)= B(ei)(w)=

B(ei)(y)=TRUE}.

11/1/2005 Strategies 48

Preview of step 4

• Get ready for the FROM-TO computation
in the traversal graph: need a single source
and target.

11/1/2005 Strategies 49

Traversal graph computation

• 4.a Add a node s* and an edge (s*,N(s)i) for
each edge ei outgoing from s in the strategy
graph, where s is the source of the strategy.

• 4.b Add a node t* and an edge (N(t)i,t*) for
each edge ei incoming into t in the strategy
graph, where t is the target of the strategy.

11/1/2005 Strategies 50

Traversal graph computation

• 4.c Mark all nodes and edges in G’ which
are both reachable from s* and from which
t* is reachable, and remove unmarked nodes
and edges from G’. Call the resulting graph
G’’=(V’’,E’’).

• The above is an application of the FROM-
TO computation.

11/1/2005 Strategies 51

Traversal graph computation

• 5. Return the following objects:
– The graph obtained from G’’ after removing s*

and t* and all their incident edges. This is the
traversal graph TG(SS,G,N,B).

– The set of all nodes v such that (s*,v) is an edge
in G’’. This is the start set, denotes Ts.

– The set of all nodes v such that (v,t*) is an edge
in G’’. This is the finish set, denoted Tf.

11/1/2005 Strategies 52

Traversal graph properties

• If p is a path in the traversal graph, then
under the extended Class mapping, p is a
path in the class graph. (Roughly: traversal
graph paths are class graph paths.)

11/1/2005 Strategies 53

Short-cut
strategy:
{A -> B
B -> C}

A

B

C

X

0..1

x

x

b

c

c

class graph

A

B

C

X

0..1

x

x

b

c

c

class graph

start set

finish set

b

traversal
method t

traversal
method t2

abstract representation
of traversal code

thick edges with incident nodes: traversal graph

11/1/2005 Strategies 54

Traversal graph properties
Can now think in terms of a graph and need no longer path sets. But graph may be
bigger.

• Let SS be a strategy, G a class graph, N a
name map, and let B be a constraint map.
Let TG=TG(SS,G,N,B) be the traversal
graph and let Ts be the start set and Tf the
finish set generated by algorithm 1. Then
X(Class(PTG(Ts ,Tf)))=PathSet[SS,G,N,B].
(Roughly: Paths from start to finish in
traversal graph are the paths selected by
strategy.)

11/1/2005 Strategies 55

Short-cut
strategy:
{A -> B
B -> C}

A

B

C

X

0..1

x

x

b

c

c

class graph

A

B

C

X

0..1

x

x

b

c

c

class graph

start set

finish set

b

traversal
method t

traversal
method t2

abstract representation
of traversal code

thick edges with incident nodes: traversal graph

11/1/2005 Strategies 56

Learning map

graph
paths
labeled

object
graph

class
graph

strategy
graph

object traversal defined
by concrete path set

name map
constraint map

traversal
graph

Algorithm 1
in: strategy + class graph
out: traversal graph

Algorithm 2
in: traversal + object graph
out: object traversal

propagation
graph

FROM-TO
computation

zig-zags
short-cuts

correspondences
X:class path - concrete path
Y:object path - concrete path
traversal path - class path

generalization

other relationships

1

3 2

4

5

6

7

9

8

10

11

12

numbers: order of coverage

11/1/2005 Strategies 57

Traversal methods algorithm
Algorithm 2

• Idea is to traverse an object graph while
using the traversal graph as a road map.

• Maintain set of “tokens” placed on the
traversal graph.

• May have several tokens: path leading to an
object may be a prefix of several distinct
paths in PathSet[SS,G,N,B].

11/1/2005 Strategies 58

Traversal method algorithm

• Traversal method Traverse(T), where T a
set of tokens, i.e., a set of nodes in the
traversal graph.

• When Traverse(T) invokes visit at an
object, that object is added to traversal
history.

11/1/2005 Strategies 59

Traversal method algorithm

• Traversal(T) is generic: same method for all
classes.

• Traversal(T) is initially called with the start
set Ts computed by algorithm 1.

11/1/2005 Strategies 60

Traversal methods algorithm

• Traverse(T), guided by traversal graph TG.
– 1. define a set of traversal graph nodes T’ by

T’={v | Class(v)=Class(this) and there exists
u∈T such that u=v or (u,◊,v) is an edge in TG}.

– 2. If T’ is empty, return.
– 3. Call this.visit().

11/1/2005 Strategies 61

Traversal methods algorithm

– 4. Let Q be the set of labels which appear both
on edges outgoing from a node in T’∈TG and
on edges outgoing from this in the object
graph. For each field name l∈Q, let

Tl = {v|(u,l,v) ∈TG for some u∈T’}.
– 5. Call this.l.Traverse(Tl) for all l∈Q, ordered

by “<“, the field ordering.

11/1/2005 Strategies 62

Short-cut
strategy:
{A -> B
B -> C}

A

X

x

B

C

X

0..1

x

b

c

start set

finish set

b

A(
<x> X(
 B(

<x> X(
<c> C()))

<c> C()))

Object graph
Traversal graph

B
b

x

11/1/2005 Strategies 63

Short-cut
strategy:
{A -> B
B -> C}

A

X

x

B

C

X

0..1

x

b

c

start set

finish set

b

A(
<x> X(
 B(

<x> X(
<c> C()))

<c> C()))

Object graph
Traversal graph

Used for token set and currently active object

B
b

x

11/1/2005 Strategies 64

Short-cut
strategy:
{A -> B
B -> C}

A

X

x

B

C

X

0..1

x

b

c

start set

finish set

b

A(
<x> X(
 B(

<x> X(
<c> C()))

<c> C()))

Object graph
Traversal graph

Used for token set and currently active object

B
b

x

11/1/2005 Strategies 65

Short-cut
strategy:
{A -> B
B -> C}

A

X

x

B

C

X

0..1

x

b

c

start set

finish set

b

A(
<x> X(
 B(

<x> X(
<c> C()))

<c> C()))

Object graph
Traversal graph

Used for token set and currently active object

B
b

x

11/1/2005 Strategies 66

Short-cut
strategy:
{A -> B
B -> C}

A

X

x

B

C

X

0..1

x

b

c

start set

finish set

b

A(
<x> X(
 B(

<x> X(
<c> C()))

<c> C()))

Object graph
Traversal graph

Used for token set and currently active object

B
b

x

11/1/2005 Strategies 67

Short-cut
strategy:
{A -> B
B -> C}

A

X

x

B

C

X

0..1

x

b

c

start set

finish set

b

A(
<x> X(
 B(

<x> X(
<c> C()))

<c> C()))

Object graph
Traversal graph

Used for token set and currently active object

B
b

x

11/1/2005 Strategies 68

Short-cut
strategy:
{A -> B
B -> C}

A

X

x

B

C

X

0..1

x

b

c

start set

finish set

b

A(
<x> X(
 B(

<x> X(
<c> C()))

<c> C()))

Object graph
Traversal graph

Used for token set and currently active object

After going back to X

B
b

x

11/1/2005 Strategies 69

Traversal algorithm property

• Let O be an object tree and let o be an
object in O. Suppose that the Traverse
methods are guided by a traversal graph TG
with finish set Tf. Let H(o,T) be the
sequence of objects which invoke visit
while o.Traverse(T) is active, where T is a
set of nodes in TG. Then traversing O from o
guided by X(PTG(T,Tf)) produces H(o,T).

11/1/2005 Strategies 70

Zig-zags

A

B D E

G
C D F

B D F

A

B
C

D

E F

G

strategy graph
with name map class graph

<A C D E G> is excluded

traversal graph = strategy graph
(essentially)

11/1/2005 Strategies 71

Zig-zags

A

B D E

G
C D F

B D F

A

B
C

D

E F

G

strategy graph
with name map class graph

<A C D E G> is excluded

traversal graph = strategy graph
(essentially)

A(
B(
D(
E(
G())

F(
G())))

C(
D(
E(
G())

F(
G()))))

object tree

shorter: {A->D D->F F->G A->B B->E E->G}

11/1/2005 Strategies 72

Zig-zags

A

B D E

G
C D F

B D F

A

B
C

D

E F

G

strategy graph
with name map class graph

<A C D E G> is excluded

traversal graph = strategy graph
(essentially)

A(
B(
D(
E(
G())

F(
G())))

C(
D(
E(
G())

F(
G()))))

object tree

11/1/2005 Strategies 73

Zig-zags

A

B D E

G
C D F

B D F

A

B
C

D

E F

G

strategy graph
with name map class graph

<A C D E G> is excluded

traversal graph = strategy graph
(essentially)

A(
B(
D(
E(
G())

F(
G())))

C(
D(
E(
G())

F(
G()))))

object tree

11/1/2005 Strategies 74

Zig-zags

A

B D E

G
C D F

B D F

A

B
C

D

E F

G

strategy graph
with name map

<A C D E G> is excluded

traversal graph = strategy graph
(essentially)

A(
B(
D(
E(
G())

F(
G())))

C(
D(
E(
G())

F(
G()))))

class graph

object tree

11/1/2005 Strategies 75

Zig-zags

A

B D E

G
C D F

B D F

A

B
C

D

E F

G

strategy graph
with name map

<A C D E G> is excluded

traversal graph = strategy graph
(essentially)

A(
B(
D(
E(
G())

F(
G())))

C(
D(
E(
G())

F(
G()))))

class graph

object tree

11/1/2005 Strategies 76

Zig-zags

A

B D E

G
C D F

B D F

A

B
C

D

E F

G

strategy graph
with name map class graph

<A C D E G> is excluded

traversal graph = strategy graph
(essentially)

A(
B(
D(
E(
G())

F(
G())))

C(
D(
E(
G())

F(
G()))))

object tree

11/1/2005 Strategies 77

Zig-zags

A

B D E

G
C D F

B D F

A

B
C

D

E F

G

strategy graph
with name map class graph

<A C D E G> is excluded

traversal graph = strategy graph
(essentially)

A(
B(
D(
E(
G())

F(
G())))

C(
D(
E(
G())

F(
G()))))

object tree

11/1/2005 Strategies 78

Zig-zags

A

B D E

G
C D F

B D F

A

B
C

D

E F

G

strategy graph
with name map class graph

<A C D E G> is excluded

traversal graph = strategy graph
(essentially)

A(
B(
D(
E(
G())

F(
G())))

C(
D(
E(
G())

F(
G()))))

object tree

11/1/2005 Strategies 79

Zig-zags

A

B D E

G
C D F

B D F

A

B
C

D

E F

G

strategy graph
with name map class graph

<A C D E G> is excluded

traversal graph = strategy graph
(essentially)

A(
B(
D(
E(
G())

F(
G())))

C(
D(
E(
G())

F(
G()))))

object tree

11/1/2005 Strategies 80

Main Theorem

• Let SS be a strategy, let G be a class graph,
let N be a name map, and let B be a
constraint map. Let TG be the traversal
graph generated by Algorithm 1, and let Ts
and Tf be the start and finish sets,
respectively.

11/1/2005 Strategies 81

Main Theorem (cont.)

• Let O be an object tree and let o be an
object in O. Let H be the sequence of nodes
visited when o.Traverse is called with
argument Ts , guided by TG. Then traversing
O from o guided by PathSet[SS,G,N,B] produces
H.

11/1/2005 Strategies 82

Complexity of algorithm

• Algorithm 1: All steps run in time linear in
the size of their input and output. Size of
traversal graph: O(|S|2 |G| d0) where d0 is
the maximal number of edges outgoing
from a node in the class graph.

• Algorithm 2: How many tokens? Size of
argument T is bounded by the number of
edges in strategy graph.

11/1/2005 Strategies 83

Simplifications of algorithm

• If no short-cuts and zig-zags, can use
propagation graph. No need for traversal
graph. Faster traversal at run-time.

• Presence of short-cuts and zig-zags can be
checked efficiently (compositional
consistency).

• See chapter 15 of AP book.

11/1/2005 Strategies 84

Extensions

• Multiple sources
• Multiple targets
• Intersection of traversals

11/1/2005 Strategies 85

Summary

• Abstract model behind strategy graphs.
• How to implement strategy graphs.
• How to apply: Precise meaning of

strategies; how to write traversals manually
(watch for short-cuts and zig-zags).

11/1/2005 Strategies 86

Where to get more information

• Paper with Boaz-Patt Shamir (strategies.ps
in my FTP directory)

• Implementation of Demeter/Java and AP
Library shows you how algorithms are
implemented in Demeter/Java (and Java).
See Demeter/Java resources page.

• Chapter 15 of AP book.

11/1/2005 Strategies 87

Feedback

• Send email to lieber@ccs.neu.edu.

	Traversal Strategies
	Applications of Traversal Strategies
	Similar to a function definition accessing parameter generically
	Overview
	Graphs used
	Simplified form of theory
	Strategy definition:�embedded, positive strategies
	Discussion
	Theory of Strategy Graphs
	Key concepts
	Learning map
	Learning map
	Remarks about traversals
	Strategies: traversal specification
	Strategies
	Strategies, constraint map
	Strategies, constraint map
	Strategies, constraint map
	Strategies
	Strategies, path sets
	Strategies
	Strategies
	Learning map
	What we tried.
	Short-cut
	Short-cut
	Short-cut
	Zig-zags
	Compilation of strategies
	Compilation of strategies
	Compilation of strategies
	Strategy behind Strategy
	FROM-TO computation
	Traversal graph computation�Algorithm 1
	Why k copies?
	Traversal graph computation
	Preview of step 2
	Preview of step 2
	Traversal graph computation
	Traversal graph computation
	Note: there is a bug lurking here!
	Preview of step 3
	Traversal graph computation
	Preview of step 4
	Traversal graph computation
	Traversal graph computation
	Traversal graph computation
	Traversal graph properties
	Short-cut
	Traversal graph properties
	Short-cut
	Learning map
	Traversal methods algorithm�Algorithm 2
	Traversal method algorithm
	Traversal method algorithm
	Traversal methods algorithm
	Traversal methods algorithm
	Short-cut
	Short-cut
	Short-cut
	Short-cut
	Short-cut
	Short-cut
	Short-cut
	Traversal algorithm property
	Zig-zags
	Zig-zags
	Zig-zags
	Zig-zags
	Zig-zags
	Zig-zags
	Zig-zags
	Zig-zags
	Zig-zags
	Zig-zags
	Main Theorem
	Main Theorem (cont.)
	Complexity of algorithm
	Simplifications of algorithm
	Extensions
	Summary
	Where to get more information
	Feedback

