
Security Design Patterns
– Overview

–Software Development Lifecycle

–Enterprise Software Design
Process and Artifacts

–Pattern Format

–Aspect Oriented Programming

Security Design Patterns
– Focus of this presentation

– Architecture-centric (AOP)

– Enterprise Focus

– Technology Agnostic

– Collaboration between Security,
Business, and Development

Development Lifecycle

• Software Development Lifecycle
– Analysis: focuses on requirements gathering
and high level definitions

– Design: drills down on technical issues,
distributions, and refines requirements

– Construction: building and testing the
system

– Transition: "going live!"

SW Security Architect Role

• Provides Leadership

• Facilitate Collaboration between
disparate stakeholders

• Focus on Design Process

Architect

Busines
s

Security Dev Data Ops

Analysis Phase

• "A problem, properly stated, is a problem on its way to
being solved," Buckminster Fuller

• Concerned with the “what” not the “how”

• What is the business value of security?

• Artifacts
– Functional & non-functional requirements

• Security requirements are often “negative”

– Use Cases

Use Case

• A specific way to capture requirements
using actors and actions to show
structure and relationships

• Defines both text document and diagram
formats

• Use Cases drive the development
process

Use Case

• Use Case Example: user transferring
money on bank website system

Use Case

• Use Case Attributes
– Goal/Context

– Boundaries

– Preconditions

– End Condition: Success/Fail

– Actor/Roles

– Actions

Mis-Use Cases

• Look at the system from an attacker point
of view

• Useful to glean security requirements

• Discussed in paper by Guttorm Sindre
and Andreas Opdahl.
– More information at:
www.ifi.uib.no/conf/refsq2001/papers/p25.pdf

Mis-Use Case Example

• Attacker View of Bank Website

Mis-Use Case Benefit

• Defending Against Login Subversion

Design Phase

• Goals of this phase include
– System, object, component design

– Prototyping

• Design Artifacts
– CRC Cards: Class, Responsibility,
Collaboration

– Class & Sequence Diagrams

– Common
Services:Logging/Security/Exception

Threat Modeling

• Elaborates on threats in MisUse case
analysis

• Focus on distilling:
– Threat impact level

– Threat likelihood

–Mitigation, management, and containment

Design Patterns

• Christopher Alexander
– “Timeless Way of Building”& “Pattern
Language”

• Pattern definition
– "Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that problem, in
such a way that you can use this solution a million
times over, without ever doing it the same way
twice," Alexander

Design Patterns

• Gang of Four “Design Patterns”
– Defined three pattern types

• Creational

• Structural

• Behavioral

• Basic Pattern Template
– Problem, Context, Solution

Security Design Patterns

• Derived from Solutions to Mis-Use Cases
and Threat models

• Encompass “prevention, detection, and
response” (Schneier, “Secrets and Lies”)

• Context and pattern relationships equally
important as individual problems and
solutions

Input Validator Pattern

• Context: distributed applications are
typically built to be client independent.

• Problem: a minimum of assumptions and
control of client interface creates
possibility of malicious input. Malicious
input can be used to gain unauthorized
access to system processes and
resources

Input Validator Pattern

• Solution: Do not trust input. Validate
input against acceptable value criteria.

Improving The Solution with
AOP

• Aspect Oriented Programming Basics
– AOP and OOP collaborate

– Ability to address cross cutting concerns
(like security!) in a modular way

– Component Relationships

– Tool Support: AspectJ, HyperJ (IBM),
AspectWerks, Nanning (see www.aosd.net)

– Not Just Java

AOP Concepts

• AspectJ Basics
– Aspect

– Join Point
• Location

– Pointcut
• Context gathering/assembling

– Advice

– Introduction

Refactoring with AspectJ

• Login Use Case

Refactoring with AspectJ

• Additional Use Cases

Refactoring with AspectJ

• Classes with Getters

Refactoring with AspectJ

• AspectJ modularizes common behavior
before(): call(void Facade+.get*(..))

 || call(void Facade+.update*(..))
{
 InputValidator.validate();
}

Exception Manager Pattern

• “If I wanted you to understand I would have explained
it better,” Johan Cruyff

• Context: differentiate between exception
handling and exception management

–Java exception handling paradigm

• Problem: exceptions can write sensitive
data, i.e. Database connection info, to
logs or to user screen.

Exception Manager Pattern

• Solution: Use structured exception handling, wrap
exceptions, and sanitize exception information for
display

Secure Logger Pattern

• Context:balance between performance
and analytical purposes

• Problem:
– Distributed Systems

– Centralize vs. decentralize

– Time

–Management

Secure Logger Pattern

• Solution: remote logging host

Secure Logger Pattern

• Solution: deployment diagram

Secure Logger Pattern

• Logging in Java

Secure Logger Pattern

• SloggerAspect.java
before(): call(void Facade+.get*(..))

 || call(void Facade+.update*(..))
{ //assemble context init logger methods;
}

after(): call(void Facade+.get*(..))
 || call(void Facade+.update*(..))
{
 //final logger methods;
}

Patterns

• Modular Behavior

Construction Phase

• Concerned with building, integrating, and
testing code

• Iterate

• Use unit tests like Junit (www.junit.org)
and Nunit to validate your design
assumptions

Build and Unit Test Process

• Separation of privileges
– Developer Level

• Compile

• Unit test

– Integration Level
• Build

• Configure

• Deploy

• Promote

Transition Phase

• "There's nothing like bringing in a herd," City Slickers

• Moving to operational mode

• Where security usually begins

• Operational plans, monitoring processes
& Incident response

Questions?

• More information and free, monthly
architecture newsletter at:
www.arctecgroup.net/articles.htm

