
Adaptive Programming - DATAKON'2004 1

Adaptive Programming
Prof. Dr.-Ing. P. Kroha

University of Technology Chemnitz
Department of Computer Science, Germany

Copyright©Kroha, 2004

Adaptive Programming - DATAKON'2004 2

Outline

1. Problem
2. Motivation
3. Example of a class hierarchy and query evolution
4. Adaptive object-oriented programming
5. The Law of Demeter
6. Class dictionary, class graph
7. Traversal strategies
8. Propagation pattern
9. Visitor

10. Conclusion

Adaptive Programming - DATAKON'2004 3

Recommended Reading
Lieberherr, K.:

Adaptive Object-Oriented Software:
The Demeter Method with Propagation Patterns.
PWS Publishing Company, 1996.

Demeter Research Group:
http://www.ccs.neu.edu/research/demeter/DemeterJava

Adaptive Programming - DATAKON'2004 4

Object-oriented technology has not met its expectations
when applied to real business applications
partly due to the fact that

there is no place where to put
higher-level operations which affect several objects.

… if built into the classes involved, it is impossible to get
an overview of the control flow.

[Lauesen, IEEE Software, April ‘98]

1. What is the Problem?

Adaptive Programming - DATAKON'2004 5

2. Motivation

l Object-oriented programs contain too much redundant
application-specific information.

l An operation (a query, a concatenation of invoked
methods) is spread in methods of various classes. Each
of such methods has to know all details about the class
hierarchy to know the destination to what it should
send a message for the query processing to be
continued.

l We need to be able to specify only essential elements,
in a way that can adapt accordingly to the changing
class hierarchy.

Adaptive Programming - DATAKON'2004 6

A Spread Operation - Classes

A

B

C

D

E

F

G H

I

J K L

M

N P

The operation is spread over the class hierarchy
without any systematic approach

Aggregation

Association

Inheritance

Adaptive Programming - DATAKON'2004 7

A Spread Operation – Sequence Diagram
A B E C I K P D

Because there was not a
systematical approach in
spreading the operation into
methods, each object
has to know exactly to whom
it should send the message.

The message propagation
cannot be generated
automatically.

Any change in class hierarchy
can cause a necessity
to modify programs.

=> Expensive maintenance

Message propagation only

Adaptive Programming - DATAKON'2004 8

Writing Operations in OO Languages

l When OO programming languages (C++, Java) are used for
querying (for describing operations) they navigate in the schema.

l Operations in OO programming languages have to contain a
hardwired navigation path.

l For the computation of an operation, the programmer has to
describe:
n the sequence of messages (event-trace) in the sense of a

sequence diagram
n a set of methods spread in classes that will accept and execute

these messages when concatenated by a message flow

Adaptive Programming - DATAKON'2004 9

Maintenance of OO Programs

l The sequence of messages of an operation depends on
the underlying class hierarchy.

l Should the class hierarchy be changed because of the
system evolution, usually also the sequence of messages
must be changed, because some navigation paths have
changed.

=> Operations have always to be checked
and usually reprogrammed

=> Expensive maintenance

Adaptive Programming - DATAKON'2004 10

Navigation in OO Programs
l Navigation in OO programs,

which is contained in an operation, can be given by:
n a simple aggregation => a simple concatenation of

method invocations:
Object . M1(Par1) . M2(Par2) . M3 . M4 . M5(Par5)

n an aggregation using containers:
For EachContainerElement do … (example follows)

l => any change in the class structure can violate it

Adaptive Programming - DATAKON'2004 11

3. Example of Evolution

Ministry of Education Ministry of Education

University

University
Faculty

Faculty School

Department Department

Teacher Teacher

Evolution
of

OO-schema

Aggregation
hierarchy

Adaptive Programming - DATAKON'2004 12

Example of a Query

l A query of the minister:
“How many teachers do we have at universities?”

l The query implementation in C++ depends on the class
hierarchy.

l After every structural change, all queries must be
reprogrammed è VERY UNPLEASANT

l Structural changed in some political and organisation
systems are very frequent
n => very expensive maintenance
n => decreasing reliability

Adaptive Programming - DATAKON'2004 13

Example - Query before Evolution
MinistryOfEducation ß Minister (How many teachers do we have?)

TotalTeachers : = 0
P :- MinistryOfEducation . ListOfUniversties

For Each P.University do Universityß MinistryOfEducation (How many teachers do you have?)
Q :- University.ListOfFaculties

For Each Q.Faculty do Facultyß University (How many teachers do you have?)
R :- Facultyl.ListOfDepartments

For Each R.Department do Department ß School (How many teachers do you have?)
S:-Department.ListOfTeachers

For Each S.Teacher do TotalTeachers:=TotalTeachers + 1
EndFor

EndFor
EndFor

EndFor
Minister ßMinistryOfEducation(TotalTeachers)

Adaptive Programming - DATAKON'2004 14

Example - Query after Evolution
MinistryOfEducation ß Minister (How many teachers do we have?)

TotalTeachers : = 0
P :- MinistryOfEducation . ListOfUniversties

For Each P.University do UniversityßMinistryOfEducation (How many teachers do you have?)
Q :- University.ListOfFaculties

For Each Q.Faculty do Facultyß University (How many teachers do you have?)
R :- Faculty.ListOfSchools

For Each R.School do School ß Faculty (How many teachers do you have?)
S :- School.ListOfDepartments

For Each S.Department do Department ß School (How many teachers do you have?)
T:-Department.ListOfTeachers

For Each T.Teacher do TotalTeachers:=TotalTeachers + 1
EndFor EndFor

EndFor
EndFor EndFor
Minister ßMinistryOfEducation(TotalTeachers)

Adaptive Programming - DATAKON'2004 15

4. Adaptive Programming
l The object-oriented technology encapsulates data and

functionality in classes. The implementation has been
shielded for changing data structures and all changes
concern only the interface.

l Some applications suffer under frequently changes in class
hierarchy.

l Adaptive programming encapsulates class hierarchies using
traversal strategies and visitors.

l Adaptive programming enables the application to have an
interface to the class hierarchy, i.e. the application is not
sensitive to the changes in the underlying class hierarchy.

Adaptive Programming - DATAKON'2004 16

Adaptive Programming

l The sequence of messages in operations depends
on the class hierarchy.

l Should the class hierarchy be changed because of
the evolution, usually also the sequence of
messages must be changed, because some
navigation paths have changed.

l Very often only the operation of massage
propagation should be inserted or deleted. The goal
is they can be generated automatically.

Adaptive Programming - DATAKON'2004 17

Adaptive Programming

l In the given example, only the leaf-class contains
data that contribute in a nontrivial way to the
result. This class has a method that contains some
nontrivial semantics which must be explicitly
described (wrappers in language DEMETER).

l All other classes propagate the message to their
successors and bodies of their corresponding
methods contain only the trivial semantics of
propagation. This can be generated automatically
using the current class hierarchy.

Adaptive Programming - DATAKON'2004 18

Example in DEMETER

operation // operational clause
void accumulateTeachers(int& totalTeachers)

traverse // traversal clause
from MinistryOfEducation
to Teacher

wrapper Teacher // behavioral section
prefix
(@ totalTeachers = totalTeachers + 1; @)

Encapsulated class
hierarchy

What has to be done
when reaching nodes

Adaptive Programming - DATAKON'2004 19

Example Explained

l The program in DemeterJ (a propagation pattern)
says that all paths from the root-class
MinistryOfEducation to the leaf-class Teacher
should be used (no constraints).

l Every time an object of the class Teacher will be
reached, the counter totalTeacher will be increased.

l The segment between symbols @ will be
embedded in the body of the generated method for
class Teacher. In bodies of other methods, only the
propagation code will be placed.

Adaptive Programming - DATAKON'2004 20

Language DEMETER

l The programming language DEMETER supports
the idea of adaptive programming.

l A program in DEMETER will be translated into
C++ or Java.

Adaptive Programming - DATAKON'2004 21

5. The Law of Demeter
l To get the possibility of using adaptive programming

we have to accept some constraints for calling
methods, i.e. constraints concerning the goal object,
which we can send a message to.

l These constraints are described by the Law of Demeter
n It is a style rule for designing object-oriented

systems (Ian Holland, 1987)
n General form: “Each unit should have only limited

knowledge about other units. Only units “closely”
related to the current unit should be talked to.”

Adaptive Programming - DATAKON'2004 22

The Law of Demeter
l Law of Demeter – main idea
n Old Greek wisdom: “Don’t talk to strangers.”

l Each unit should
“Only talk to your immediate friends”

l When writing a method, one should not hardwire the
details of the class structure into that method

l We need a form of the Law of Demeter, which would
be efficiently computable

=> class form of the Law of Demeter defines
what does it mean “closely related”

Adaptive Programming - DATAKON'2004 23

The Law of Demeter – Class Form
l Closely related methods to method f:

– other methods of class of this/self of f
(inheritance) and other argument classes of f

– methods of immediate part classes of class of f
(aggregation)
l stored aggregation => data members
l computed aggregation

=> classes that are return types
of methods of class of this/self ()

Adaptive Programming - DATAKON'2004 24

The Law of Demeter – Object Form
l However, it is the Object Form of the Law of Demeter

which expresses the style rule we really want.
l Unfortunately, whether a program satisfies the object

form in undecidable at compile-time.
l However, we can run the program and check at run-

time whether violations occur.
l Rumbaugh summarizes the Law of Demeter as:

A method should have limited knowledge
of an object model.

Adaptive Programming - DATAKON'2004 25

The Law of Demeter
l To understand the meaning of one class, you need not

understand the details of many other classes.
l A method must be able to traverse links to obtain its

neighbors and must be able to call operations on them,
but

it should not traverse a second link from
the neighbor to a third class.

l Ideal class graph: all classes participating in the
operation are friends, even “far” away classes.

Adaptive Programming - DATAKON'2004 26

6. Class Dictionary
l A class dictionary defines the class structure of an

application; it defines the application's classes and the
relationships between them.

l In particular, it describes the inheritance hierarchy and
the reference hierarchy of classes. The reference
hierarchy consists of all binary relationships other than
the inheritance (is-a) relationship. This includes the
aggregation (part-of) and uses relationships.

l The Demeter tool will automatically take care of Java
class definitions. This results in higher flexibility when
changes occur.

Adaptive Programming - DATAKON'2004 27

Adaptive Design

l Key idea:
n Introduce an ideal class graph
nWrite current behavior in terms of ideal class graph

=> “as if all were friends”
nMap ideal class graph flexibly into concrete class

graph using traversal strategies
=> concatenation of methods (fixed navigation)

has to be substituted by
traversal strategies (adaptive navigation)

Adaptive Programming - DATAKON'2004 28

Adaptive Design

A

B

C

D

E

Closely
Related to A

Class A {public: B b;};
Class B {public: C c;};
Class C {public: D d;};
Class D {public: E e;};
Class E {public: void Goal();};

Class E is not a friend
=> a fixed navigation:

{this . b.c.d.e. Goal()}

=> it has to be substituted by

=> an adaptive navigation:
{traversal.CG(this,“from A to E“).Goal()}

violates the Law of Demeter

Description of the class graph

Dataflow and
Control flow

Adaptive Programming - DATAKON'2004 29

What if your friends are far away?

l You send an agent to them to collect the information
you need.
n Approximate Directions (adaptive design):

You give directions about what kind of information
to collect but you don’t care about accidental details
of the travel.

n Detailed Directions (object-oriented design):
You give detailed travel directions.

Adaptive Programming - DATAKON'2004 30

7. Traversal Strategies
l Traversal strategies along with visitor classes define

a specific behavior for a collection of classes.
l The behavior of the application as a whole is described

by a set of traversal strategies and a set of visitor
classes.

l The advantage of using this combination as opposed to
regular Java code is their adaptiveness.

Adaptive Programming - DATAKON'2004 31

Traversal Strategies
l Traversals with visitors help to decouple class structure

from the behavior of a program by not hard-wiring the
details of the class structure into the program.

l Consequently, the program's behavior is less prone to
change when the class structure is modified.

l In addition, programs written with traversals and
visitors are more concise since trivial structure traversal
code does not need to be specified and is again left to
the tool's code generator.

Adaptive Programming - DATAKON'2004 32

Traversal strategies create friends

l Class Traversal is an intermediate class between
classes that need to communicate

Traversal.Class-Graph(Object o, Strategy s)

A class hierarchy,
which can evolve

Adaptive Programming - DATAKON'2004 33

l Propagation pattern (adaptive method)
encapsulates the behavior of an operation into one
place, thus avoiding the scattering problem, but
also abstracts over the class structure, thus
avoiding the tangling problem as well.

l Behavior is expressed as a high-level description
of how to reach the participants of the computation
(called a traversal strategy), plus what to do when
each participant has been reached (called an
adaptive visitor)

8. Propagation Pattern

Adaptive Programming - DATAKON'2004 34

9. Visitor

l Actions to be performed:
n Generate a subgraph of the Class Dictionary Graph

– Specified by constraints
in the adaptive program

n Attach a method to each vertex in the subgraph
– Method signature given by the adaptive program

n Add a code to each generated method
– Primary class gets “Visitor” code, while others

get a call to children in subtree

Adaptive Programming - DATAKON'2004 35

Conclusion
l The main characteristic of adaptive programs is that

they define behavior without specifying the detailed
structure of the chain of participating objects.

l Therefore, programs are less dependent on a specific
class structure.

l Therefore, programs become more adaptive to
changes and evolution.

Adaptive Programming - DATAKON'2004 36

Benefits of Adaptive Programming

• Robustness to changes
• Shorter programs
• Design matches program (for an operation)
• More understandable code
• Partially automated evolution
• Keep all benefits of OO technology
• Improved productivity

