
Presented at the JaCC, Oxford, 25th March 2000.

Kevlin Henney
kevlin@curbralan.com

Curbralan Ltd
Phone 0117 942 2990 (UK) +44 117 942 2990 (International)
Mobile 07801 073 508 (UK) +44 7801 073 508 (International)
Fax 0870 052 2289 (UK) +44 870 052 2289 (International)

Interface
Based
Development

kevlin@curbralan.com
Kevlin Henney

2

Overview

• Interfaces
Technical view of interfaces

• Development
Development with interfaces

• Practice
Worked examples

Interfaces between components in software, whether at the function API level or
executable component level, define and constrain the possible relationships within the
software and the behaviour of its parts. This talk takes a broad view of development
based on defining and understanding software interfaces, focusing on concepts and
practices appropriate for C, C++, Java, CORBA and COM development.
It is often the case that developers slap an interface onto an implementation as an
afterthought. Such an approach stems from the view that an interface does not
actually "do anything", and therefore procedural code is more significant both in
terms of its effect and bulk. Hence less effort is invested by developers in writing the
interface.
Although an interface indeed requires much less code to express it than an associated
implementation, this is perhaps inversely proportional to its relative significance. The
interface is the point of agreement between a component supplier and consumer, and
should therefore be well considered, complete, comprehensible and stable. Such a
state of affairs cannot be reached through casual coding. Bugs in an implementation
may be irritating, but they are failures of a component to satisfy an interface, and they
can be fixed without adversely impacting clients. Modifications to poorly designed
interfaces, however, will break clients that have been written against (and worked
around) them; such changes will be seen as causing problems rather than fixing them.

Interfaces
Interfaces are about psychological chunking.

David Ungar

Object orientation offers us a convenient, if somewhat oversimplified, view of what
an interface is, in the sense that it is the publicly accessible set of features on an
object. Component-based development – in the sense of COM, CORBA, JavaBeans,
etc – goes further, explicitly formalising the concept as a class-like construct that
bridges to a more rigorously black box definition of implementation than OO
languages offer.
However, the term interface is heavily overloaded, and the metaphor it represents is in
many places throughout software: graphical user interface, device interface, function
interface, class interface, etc. In some ways the current trend towards component-
based development (CBD) has hijacked the term, restricting it to mean only a
platform independent construct associated with a deployable unit of code.
More generally an interface represents a boundary between two elements, and
describes the interaction across it. The focus here is on interfaces between parts of a
program as opposed to many of the other uses of the term interface.

4

Boundaries

• Architecture captures the arrangement of
structural elements in a system

From its gross structure to its detail
• Interfaces represent partitions

and introduce separations
Intent from realisation
Conceptual from concrete
User from author

It is possible to home in on a definition of software architecture by framing the
questions that must be asked of it [Dyson1998]:

An architecture is something that answers the following three questions:
1. What are the structural elements of the system, what are their roles, and how

do we share responsibility between them?
2. What is the nature of communication between these elements?
3. What is the overriding style or philosophy that guides the answers to these

two questions?
Architecture is recursive and in-depth, so it is not just about the big blocks: takes in
the structure and style from imposing load bearing pillars and elegant sweeping
arches to the architraves and door handles. In this sense it mirrors development (or
vice-versa), which must be concerned with production and process at all levels of
detail.
Architecture may be considered the result of a conscious design process, or simply a
post hoc description of a system configuration. Thus, in spite of its etymology
(architect is derived from the ancient Greek for chief builder), architecture can be
accidental rather than intentional.
In establishing a structure, boundaries are defined and there is a separation of inside
from outside. This boundary is an interface, and the metaphor extends to software
with a separation of executable constructs on either side of a software interface.

5

Partitioning

• Quality and qualities of separation
Coupling describes interconnectedness
Cohesion describes intraconnectedness

• Separation introduces connections
A structure of components and connectors

In managing complexity, partitioning a system allows work to be understood,
managed, and executed, and offers a scalability and security greater than a single
individual's mind at a point in time (i.e. gives a project a higher truck number, as
observed by Don Olson and Neil Harrison [Rising1998]).
Such a partitioning should be controlled rather than arbitrary, and guided by well
understood principles. This is where interfaces as elements of design become
significant; they form durable technical and political boundaries. They describe the
nature of interaction, i.e. of the connection, between different components in a
system. Coupling and cohesion are properties that can be observed of any
partitioning.
Note that the definition of component used in the context of Component-Based
Development (CBD) [Szyperski1998] is a specialisation of the more general term
used here. CBD uses the term more strictly to mean identifiable, executable unit of
deployment, i.e. COM, CORBA and the Java technologies.

6

Protocols

• Connection implies communication
• Interfaces name and express usage models

Play a role in communicating meaning within a
system as well as encapsulating its parts
Conformance to a published interface
implies particular behaviour

However, an interface does not simply set up static barriers in a system. Interfaces are
permeable, allowing flow of concepts – information and behaviour – across the
boundary. They establish and name models of usage. They represent the protocol used
to connect components together.
With any flow there is possibility of leakage, and this is true of interfaces. Interfaces
offer a separation of checkable usage from implementation, often with the intent of
encapsulating the implementation. However, unless care is taken, details of the
implementation can seep (or gush) through the interface, whether as pointers to
private state or usage that is clearly coupled to the otherwise private representation.
Interface communicate meaning in a system and therefore they should be clear and
expressive. A counterexample of expressiveness is the constructor for Java's
FileWriter class which requires a boolean to indicate whether or not a file
should be opened for appending. The use of such flags is inexpressive. A more
appropriate interface would be to offer named class Factory Methods [Gamma+1995]
openForAppending and openForWriting.

7

Mechanisms

• Common approach to defining interfaces is
to focus on a class's public operations

• Focusing on the interface alone leads to
further decoupling

Using interface in Java or IDL
Using interface classes in
C++, with only public pure
virtual functions are defined

The conventional notion is that an interface is the public section of a class. This is
what clients of its instances depend on, and in effect all they can call. Inheritance
introduces the idea of accumulation of interface, typically in step with accumulation
of implementation.
If the client wishes to depend on interface alone rather than implementation detail,
some form of interface decoupling is needed. If they specifically require runtime
polymorphism, reduced compile time dependencies, and dynamically allocated
objects, this is provided directly in COM and CORBA; alternative mechanisms are
not available. In Java an interface can be defined explicitly. In C++ an interface
class [Carroll+1995] can express the common capability of derived classes, i.e. a class
to represent the contract and many derived classes to fulfil it and express the
implementation detail. This class has no data and the only ordinary member functions
are declared public and pure virtual. If it is used as a mix-in class – albeit a
mix-in that provides protocol only – virtual inheritance should be considered to
avoid repeated inheritance issues.
Where an interface class represents the usage type, or some aspect of the usage, of an
object, the concrete class instantiated for the interface user represents a creation type
[Barton+1994]. This distinction can be made clearer, and the dependencies reduced in
a system, by enforcing such a model of use: the interface class is used only for
manipulation and the only time the name of the concrete class appears is at the point
of creation, i.e. in a new expression, which may itself be encapsulated within a
factory object.

8

Beyond Class

Scoping and packaging

Operator overloading

Template generic requirements

Function-based APIs

Non-public class operations

Markers and external frameworks

Interfaces are more than a concept based
only on public operations of a class...

Software interfaces go much further than class interfaces. In C an interface is
considered to be the type and functions deployed in a header file. In IDLs the
definition of interface seems self explanatory, but must also take into account file
partitioning. Java has explicit interfaces as well as classes, which have their own
public, package and familial interfaces. For C++, the Interface Principle [Sutter2000]
defines a class as a slightly more extended family :

For a class X, all function, including free functions, that both (a) "mention" X, and
(b) are "supplied with" X are logically part of X, because they form part of the
interface of X.

This takes into account Koenig Lookup which give namespaces stronger semantic
connotations than simply a name collision avoidance mechanism. The fact that class
interfaces extend outside the interface is further reinforced by styles statements made
in [Stroustrup1997] and [Meyers2000].
In Java the existence of reflection provides again a different view of interfaces and
conformance. The common use of marker interfaces, such as Remote and
Serializable, demonstrates again how class behaviour can exist outside the class
definition. The same is true in any framework, but it is the distinction is made in sharp
relief with marker interfaces because they are empty, tagging a type for a capability.
It is the helper classes in the framework that provide the full capability based on
inspection of the type.

9

Design by Contract

• An interface defines an agreement between
a component supplier and its users

Goes further than simply defining signatures to
include guarantees on behaviour

Interface
Contract

consumer

supplier

contract

Component
Client

Component
Implementation

«interface»
Component

Interface

Type systems provide part of the story when it comes to establishing interface usage,
but at best they can provide no more than compile time confidence in the structure; in
many systems there is plenty left to hit the fan at runtime if interface usage is well
formed but otherwise incorrect. A contractual view establishes further limits on an
interface by defining the legal requirements on the behaviour of operations.
Most methods concern themselves with only the functional requirements of a system,
i.e. what the system must do. Such requirements offer a high degree of traceability
through the lifecycle. However, it is often the case that there are a number of non-
functional requirements that are as important to a system, i.e. how a system does what
it does. Such requirements include quality of service, failure strategies, use of specific
technologies, etc. These can be harder to quantify and test for in a design, but are
nonetheless often of great importance. For instance, the non-functional behaviour of a
distributed system cannot merely be dismissed as an implementation detail. In C++'s
standard library many generic functions have complexity constraints placed upon
them.
Where quality of service requirements are significant, these must clearly be a part of
the contract. However, they are difficult to explicitly capture in code, as non-
functional concerns tend to cut across the component nature of a system. As with
other forms of contractual requirement, quality of service provided can exceed, but
not fall short of, the quality of service required.

10

Substitutability

• A measure of goodness of fit between
interface and implementation

Interfaces offer uniform treatment of
similarities between implementations
Conformance to interfaces by implementations

Express coordinate ideas in similar form
This principle, that of parallel construction, requires that expressions similar
in context and function be outwardly similar. The likeness of form enables the
reader to recognise more readily the likeness of content and function.

Strunk and White [Strunk+1979]

The Liskov Substitution Principle (LSP) [Liskov1987, Coplien1992] is often cited as
giving more detailed guidance on the use of inheritance. It make a clear separation
between type – an interface described in terms of the behaviour of operations – and
class – the realisation of the behaviour in programmatic detail – before establishing
the criteria for a subtyping relationships in terms of conformant behaviour:

A type hierarchy is composed of subtypes and supertypes. The intuitive idea of a
subtype is one whose objects provide all the behavior of objects of another type
(the supertype) plus something extra. What is wanted here is something like the
following substitution property: If for each object o1 of type S there is an object o2
of type T such that for all programs P defined in terms of T, the behavior of P is
unchanged when o1 is substituted for o2, then S is a subtype of T.

LSP is normally presented as an inheritance guideline, but taking a step back we can
see that it need not be so narrow: It is a relationship about types and not
implementations, i.e. subtyping and not subclassing. LSP relies on polymorphism; the
concept of structural relationship, such as conventional inheritance, need not enter
into it. Deserving of its name, polymorphism manifests itself in many forms
[Cardelli+1985].
In C++, substitutability can be found through conversions, overloading, derivation,
mutability and generics; Java does not have quite the same reach with conversions,
overloading or generics, but supports reflection, offering a different substitutability
mechanism in turn.

11

Choice

• An interface should represent reasonable
goals and present reasonable choices

• Additional options and features can lead to
confusion rather than clarity

Overachieving interfaces are
weaker and more complex
not stronger and simpler

The belief that "less is more" seems to be heeded more in the breach than in the
observance. It seems a common enough piece of advice from which we can learn and
shape our software [Strunk+1979]:

[Rule] 17. Omit needless words
Vigorous writing is concise. A sentence should contain no unnecessary words, a
paragraph no unnecessary sentences, for the same reason that a drawing should
have no unnecessary lines and a machine no unnecessary parts. This requires not
that the writer make all his sentences short, or that he avoid all detail and treat his
subjects only in outline, but that every word tell.
Many expressions in common use violate this principle.

Consistency in interfaces is important in meeting expectation and presenting
reasonable choices; C++'s basic_string and vector functions at and
operator[] break this principle. They differ in their bounds checking: at does,
and throws an exception if necessary, and operator[] does not. To use anything
other than the intuitive and idiomatic subscript operator takes a conscious effort, one
that must in this case be accompanied by a willingness to not write correct code –
"I'm using this because I have chosen to write code that will go out of bounds"!
A misguided quest for completeness often leads to unmanageable kitchen sink
interfaces that lack focus, e.g. C++'s basic_string template class. Design for
"flexibility" without goals leads to complex interfaces that perpetuate the goal-less
design decisions, e.g. C++'s allocator model.

Development
To achieve simplicity paradoxically
requires an enormous amount of effort.

John Pawson [Pawson1996]

In establishing the partitions that create a structure we can take a more useful view
than simply stating that the design must satisfy the user requirements ([Petroski1992]
quoting The Structural Engineer, the official journal of the British Institution of
Structural Engineers):

Structural engineering is the science and art of designing and making, with
economy and elegance, buildings, bridges, frameworks, and other similar
structures so that they can safely resist the forces to which they may be subjected.

This provides a useful starting point from which to view development of software
systems. In software, the principles and practices of development sometimes seem to
be as flexible as the medium of software itself... and sometimes just as rigid.
Whilst design should not be an end in itself, it is something that will assist in any
construction, large or small [Strunk+1979].

[Reminder] 3. Work from a suitable design
Before beginning to compose something, gauge the nature and extent of the
enterprise and work from a suitable design. Design informs even the simplest
structure, whether of brick and steel or of prose. You raise a pup tent from one sort
of vision, a cathedral from another. This does not mean that you must sit with a
blueprint always in front of you, merely that you had best anticipate what you are
getting into.

13

Design

• Design is a creational and intentional act
Conception and construction of a structure on
purpose for a purpose

• Interfaces provide a connection between the
conceptual and the concrete

Design is synthesis as opposed to analysis. In truth, much of what is considered to be
analysis in software development is design, and a separation of implementation from
design (or vice-versa) is also a false division [Lea1998]:

Sometimes, describing software is the same as constructing it.
Design embraces a more profound endeavour than simply elaborating a simple model
of the problem into a complex one, and then coding (Winograd and Flores quoted in
[Lea1998]):

The most successful designs are not those that try to fully model the domain in
which they operate, but those that are "in alignment" with the fundamental
structure of that domain, and that allow for modification and evolution to generate
new structural coupling.

Such a structural view is intertwined with a process [Coplien1999]:
Design is the activity of aligning the structure of the application analysis with the
available structures of the solution domain.

Thus, where architecture is a description of system structure, regardless of intention
(i.e. all systems have architecture, whether deliberate or not), design describes an
intentional activity. The word intentional has two meanings, both of which relate to
the view of design presented here: performed by or expressing intention, i.e.
deliberate; of or relating to intention or purpose.
Design has many foci, including dealing with conceptual interfaces in a problem,
describing the relationships between conceptual parts, and actual interfaces in a
solution, delimiting the constructed parts.

14

Models

• A model is an abstraction from a point of
view for a purpose

But don't confuse the map with the territory
• Interfaces embody purpose and usage

The designer and the user each
have conceptual models
Modelarity is degree of
alignment between
different views

Just as we can view a model as a bridge between the problem and solution domains
[Jackson1995], we can have separate models of the problem domain from models of
the solution. [Norman1989] further differentiates the relationship between the
solution domain and the user's interaction with it:

The design model is the designer's conceptual model. The user's model is the
mental model developed through interaction with the system. The system image
results from the physical structure that has been built (including documentation,
instructions, and labels). The designer expects the user's model to be identical to
the design model. But the designer doesn't talk directly with the user – all
communication takes place through the system image. If the system image does not
make the design model clear and consistent, then the user will end up with the
wrong mental model.

If a model gives you an understanding of the problem, try to put as much of that
understanding into the solution as possible. Don't go all programmatic! For example,
property style programming (typified by getters and setters) devalues the meaning of
a system; it becomes weakly defined rather than generally defined. There can be a
tendency to design interfaces that have just enough encapsulation [Box+1999],
leading to structification of objects [Taligent1994]. As an unquestioned habit it leads
to such ridiculous methods as setSpouse on a Person object and setBalance on an
Account object, which ignore the vocabulary, behaviour and constraints of the
original domain to no good effect.
Modelarity can be considered a measure of the correspondence between different
views, e.g. problem and solution, designer and user. At the same time, one must not
mistake the map for the territory.

15

Constraints

• Constraints bound the meaningful
behaviour of a system

Intended degrees of freedom
• Constraints can be liberating

Ensuring what's true is true and
what's not is not frees rather than
binds a developer

Design should observe and preserve constraints. A system that weakens them has the
illusion of being more flexible, but in truth is simply vaguer and less committed,
opening up more gaps in which bugs can breed.
A simple example of constraint preservation is the use of const in C++ to clearly
indicate to compiler and human alike something plays the role of a query function or
query only data. The preservation of such a constraint makes the system richer. In
Java a more inductive approach based on naming conventions, e.g. the JavaBeans
get* convention, immutable value objects, and final are used to achieve a similar
effect.
For another example, let us say that it has been established that a relationship between
two objects is mandatory, i.e. one-to-one, then implementation in Java using an object
reference or in C++ using a pointer allows the possibility of a null, i.e. one-to-zero-or-
one. It is the responsibility of the developer to ensure that nulls are recognised as
meaningless and handled appropriately, rather than to assume correct usage of a
cluster of classes. Also, where does such a relationship come from? If it can never be
null, this means a valid object cannot be created without being given a non-null
relationship at creation. This effect manifests itself in Java and C++ in the
constructors provided. If this cannot be achieved, is the constraint in the problem
domain correct? Or must it be loosened and enforced another way in the software?
One temptation in C++ is to attempt to use references to enforce non-nullness.
However, these convey a very different meaning to C++ programmers – and indeed
C++ compilers – and so more is lost than is gained by such an approach.

16

Affordances

• An interface affords particular usage
An interface represents intended use, but it does
not necessarily mean it will be used that way

• Constraints and affordances
should match up

The intended and actual degrees
of freedom should be similar
Minimise the possibility of
incorrect use

Affordances describe possible as opposed to intended usage [Norman1989]:
The term affordance refers to the perceived and actual properties of the thing,
primarily those fundamental properties that determine just how the thing could
possibly be used. A chair affords ("is for") support and, therefore, affords sitting. A
chair can also be carried. Glass is for seeing through, and for breaking....
Affordances provide strong clues to the operations of things. Plates are for
pushing. Knobs are for turning. Slots are for inserting things into. Balls are for
throwing or bouncing. When affordances are taken advantage of, the user knows
what to do just by looking: no picture, label, or instruction is required. Complex
things may require explanation, but simple things should not. When simple things
need pictures, labels, or instructions, the design has failed.

In essence, where possible, constraints should be communicated through affordances
and affordances should align with constraints. Any mismatch creates an opportunity
for misunderstanding and misuse.
For instance, a sign of weakness in a class interface design is that its users are
required to remember lots of particular and subtle conditions of use: "function a must
be called before function b, unless condition c is true, in which case function d
followed by e, etc". Such interfaces suggest that the design is incomplete because the
user of the class is doing most of the work that should be captured by a good design.
Their code is repetitive; writing it is error prone. The problem of intermediate states
and subtle sequential dependencies is a common problem in interface design.

17

Legislation and Litigation

• Contracts can be expressed formally
Using preconditions and postconditions to
define boundaries of correct behaviour

• Contracts can be expressed by example
A more empirical approach, often based on
specification by example
and unit tests

The signature level of an interface can be captured in many languages, but the full
semantics of the contract are less clear. Pre and postconditions offer one way of
reasoning about abstract behaviour [Meyer1997]:

• A precondition defines the conditions that must be met by the caller requesting
an operation. For instance, the permitted ranges of arguments, the required state
of the object, etc. If these conditions are not met, the operation cannot be
expected to perform its task correctly.

• A postcondition defines the conditions that must be met by an operation
assuming that the precondition has been met; it is the supplier's half of
obligations in the contract.

They establish a theory of correct behaviour of a system. The enforcement can range
from a fully robust, supplier checked approach based on exceptions to nothing.
assert is sometimes used in such cases, but suffers from such frequent misuse that
its use should often be questioned. Documentation can be used to express contracts
before the fact; after the fact, if no other enforcement is provided, violations lead to
undefined behaviour (i.e. debugging).
An alternative perspective is to specify by correct usage, so that the interface's
behaviour is expressed and checked through unit tests and sample code. This more
empirical and inductive approach underpins iterative development strategies
[Beck+1998, Beck2000, Fowler1999, Gamma+1999].
In effect these represent the two ends of the spectrum, with many developments – that
make a choice – lying somewhere between the hardline theoretical and the empirical
specification-by-example approaches.

18

Dependencies

• Partition to minimise dependencies
Low coupling and high cohesion

• Coupling and cohesion are relative rather
than absolute measures

Decoupling is with
respect to what?

One of the features that typifies any architecture driven approach is the management
of dependencies in a design [Lakos1996]. Dependencies should be managed
throughout the runtime, design time and construction time of a system. Coupling and
cohesion define, respectively, inter-connectedness and intra-connectedness of
components and their interfaces. It is these quantities that must be managed if an
architecture is to be stable and resilient in the face of change, supporting natural
growth and evolution, as well as out of the box fitness for purpose and buildability.
Interfaces may be established with respect to levels of abstraction, rate of change,
development skills, or organisational structure.
On the whole a designer should strive to minimise dependencies between elements of
a system. This should not be at the cost of making elements uncohesive. They should
be as loosely coupled as is meaningful, and this will lead to a more supple component
structure. In turn this should lead to a more maintainable and stable system. Where
something is stable it can be depended upon without concern.
A subtle, but nonetheless problematic, form of coupling comes in the form of cyclic
dependencies, where one component depends, directly or indirectly, on the contents
of another which in turn depends, directly or indirectly, on the first component.

19

Stability

• Dependencies should be on more stable
elements with the same rate of change

Put things together that change together
• Interfaces should be more stable

than their implementations
Either because of good design or
because of fear of change

One mark of success is how an architecture endures, how it responds to change, how
it suggests change, how it is accepted by developers, and so on. Thus an architecture
may also measured against change and the passage of time [Brand1994 , Dai+1999].
It is therefore tempting to program only in the future tense, adding complexity by
building for possibilities that may never happen, but it is also tempting to program
only in the here and now, ignoring the possibility of and processes for change, and
therefore being surprised and unprepared when change occurs. Thus we can see an
additional quality in an architecture [Coplien1999]:

A good architecture encapsulates change.
In addition to managing physical dependencies to minimise the effect of change,
architects must also be aware of what can and cannot change easily: interfaces that
are private to a component can be more volatile than those that are public, and
therefore part of more durable (and accountable) contracts. This can be considered a
distinction between public and published interfaces [Fowler1999]. [Martin1995]
outlines a metric that can be used to gauge the relationship between abstractness and
dependency, based on the principle that the more abstract something the more stable
it should or must be, i.e. program to interface not an implementation [Gamma+1995].

20

People and Technology

• Partitioning is not simply about abstraction
Additional forces create partitions with respect
to organisational and technical boundaries

• Interfaces have social and economic effects
Interfaces define development roles
Complexity management is
dependent on stakeholders
and investment

Carolyn Morris defines a framework, in the most general sense, as "a skeleton on
which a model of work is built", and this is no more true than it is in software. In
addition to the conventional idea of a code framework as a half finished application,
we can have conceptual frameworks. For the developer an architecture is such a
framework. It partitions the system both with respect to its code structure but also
with respect to responsibilities for developers. This has implications for organisations
when it is realised that an organisation also defines a model for communication. This
leads to patterns such as Conway's Law [Coplien1995] where organisation follows
architecture and vice-versa.
Therefore interfaces in a system will determine to a great degree how it is built, and in
terms of how developers organise around the tasks of development and each other.
This dynamic aspect extends beyond the initial idealism of green field development to
influence how a system responds and adapts over its lifetime. Regardless of whether
or not the architecture is explicitly articulated, it will affect how effectively
developers can modify a system, how easily such change can be managed, and how
long a system will live before outgrowing either its utility or its worth.

21

Context Sensitivity

• Solution structure is sensitive to details of
purpose and context

Problem and solution feed forward and back
• Context free design is meaningless

No universal or independent
model of design
Context can challenge and
invalidate assumptions

Design is not simply a feed forward process where an analysis is fed, a handle turned,
and a suitable implementation spat out. There are those who maintain such a view,
but close inspection of what they define as analysis reveals it to be synthesis:
construction detail and compromises relevant only to the solution and not an
understanding of the problem. The belief that a problem has a solution is also at the
root of this misconception; this is not school, and there are typically many solutions to
any given problem. The developer participates in a complex set of decisions and is
not merely a cog in the works or a hands-off analyst.
The degree to which a language or technology specifically supports certain
mechanisms will have an impact not only on the way that programmers will think
about a problem, but also on the way that a system should be designed. The
realisation that there is a two way flow between architecture and implementation is in
many ways not surprising, but is at odds with purist schools of thought that maintain a
system may be fully designed in the abstract, independently of its deployment
technology and engineering model.
On the compromise of design, David Pye is quoted in [Petroski1992]:

It follows that all designs for use are arbitrary. The designer or his client has to
choose in what degree and where there shall be failure. Thus the shape of all
design things is the product of arbitrary choice. If you vary the terms of your
compromise—say, more speed, more heat, less safety, more discomfort, lower first
cost—then you vary the shape of the thing designed. It is quite impossible for any
design to be 'the logical outcome of the requirements' simply because, the
requirements being in conflict, their logical outcome is an impossibility.

22

Re-entrancy

• Event notification from a component object
to its clients handled through callbacks

Client may then call in to component object

servantclient
register callback

callback on event
call in

Sequencing
and validity of
intermediate
states is not
easily captured
with pre- and
postcondition
contract model

How are events propagated out through an interface to interested parties? The
callback model allows clients to register an interest in specific – or all – events.
Typically inward calling interfaces in event driven environments are associated with
one or more outward interfaces. The Observer pattern [Gamma+1995] details the
basic callback form for one to many dependencies; Model/View/Controller
[Buschmann+1996] represents a more strategic pattern built on these principles.
The common contract model, based on pre and postconditions, works well for
conventional call-return procedural control flow. Limitations are, however, revealed
when describing asynchronous callback architectures [Szyperski1998].
Where the flow of control is downward and explicit, pre and postconditions can be
asserted about discrete and coherent states of an object. Where callbacks occur from a
component to a client in response to an event within the component, it is typically the
case that the client will then query or manipulate the component during the callback
(the pull model of notification). It is possible that intermediate states in the
component may be revealed (the converse is also true of the caller if a callback occurs
during registration).
Sometimes a simpler and more visible approach is to capture the constraints through
dynamic rather than static models. Sequence and state models are better used to
bound correct behaviour in the presence of callbacks by defining legal sequences of
actions. This can be seen, to some degree, to represent a conflict between static and
dynamic models of a system. An alternative view accommodates re-entrancy, and
also validity in concurrent execution contexts, by extension of the basic pre and
postcondition contract model. Operation invariants, in the form of guarantee and rely
conditions [D'Souza+1999], make assertions about the intermediate states of an
operation, thereby guaranteeing the conditions under which a callback may occur and
on what it may depend.

23

Concurrency as a Context

• Synchronisation is required to ensure
consistent and coherent state

• Property-style programming is inappropriate
E.g. MIDL properties, OMG IDL attributes, set
and get operation pairs, etc.

servantclient 1 client 2

Property style programming, whether through the use of attributes (e.g. OMG IDL's
attribute) or simple operations relating to attribute-like values (e.g. paired get
and set operations) often leads to sequences of operations which assume that an object
remains in the state the caller last left it. Without explicit locking this cannot be
guaranteed, and the absence of some kind of synchronisation might lead to surprising
behaviour.
Note that attempting to generalise concurrent programming practices from sequential
programming is the wrong way: sequential programming is a limited case of
concurrent programming, and not vice-versa. This means that techniques such
command/query separation and programming by contract [Meyer1997] do not
automatically translate as is into a new context.
[Mannion1999] attempts to argue that in Java class clients should use
synchronized explicitly in their code, i.e. it is not the class supplier's
responsibility to resolve concurrency issues, it is the class user's. Whilst such
devolution certainly leads to more complex and more error prone client code, with
notable loss of transparency and some efficiency, the crunch comes when it is realised
that it is not simply a matter of style preference to reject universal use of this
approach: there are common cases when it simply does not work.
Enforcing the separation works in simple cases where object communication is direct
(i.e. the reference used to communicate with an object is actually a reference to that
object) and reliable (e.g. not distributed); in the presence of proxies [Gamma+1995],
such as used in RMI, the use of synchronized blocks fails: the synchronisation is
on the proxy object and not the target object.

24

Distribution as a Context

• Concurrency is implicit
• Operation invocations are no longer trivial

Communication can dominate computation
Partial failure is almost inevitable

servantclient

Cost of communication

Concurrency and distribution introduce design contexts unfamiliar to many
developers, and ones fraught with subtleties. If the consequences of decoupled
execution are not fully appreciated (i.e. the developer must genuinely grok them
rather than pay lip service to them), the subtle design context becomes a subtle
debugging context.
Operation invocations are assumed, in most designs, to be instantaneous and reliable.
In a distributed system the process of delivering invocations across a network requires
extensive middleware support, meaning that the connection domain [Jackson1995]
can dominate the behaviour of the system.
In addition to all of the issues raised with concurrency, there is additional cost
involved in remote operation calls. When sketched out on a sequence diagram,
sequences of property gets and sets suffer the 'sawtooth' effect, spending more time in
communication than they do in performing useful work. The ratio of communication
to computation is a key consideration in distributed computing.
The scope for failure is even greater in a distributed system than in a local concurrent
system. Consider a failure during a sequence of queries of a server object by a client:
the client is left with an incoherent and partial view of a server object if an invocation
fails during a sequence of queries; likewise, and perhaps more damaging, is the event
of failure during a sequence of modifications which may leave a server object in an
incoherent state.
All of these issues extend the issues raised by concurrency. For large and complex
operation sequences involving the use of many objects, a transaction processor (e.g.
OMG's OTS, Java's JTS, Microsoft's MTS) is appropriate; for small common
operations on a single object, a TP is overkill.

25

Idioms

• Idioms are language, language model, or
technology specific patterns

Common conventions of style and usage
Dependency on or originating from specific
features of a technology

Idioms are what the locals speak. In this case techniques applied by the users in a
programming language culture and common execution contexts. They help to
stabilise language usage and create a common vocabulary of techniques, constraining
the potentially infinite possibilities of a language grammar and semantics. One of the
classic works on idioms is James Coplien's book on advanced C++ [Coplien1992].
More recently Kent Beck documented many Smalltalk patterns [Beck1997]. Idioms
can be considered low level patterns, being indigenous to a particular language,
language paradigm (e.g. procedural as opposed to functional), or technology (e.g.
distribution).
Some idioms, such as those for procedural control flow, can be transferred easily
across languages. Others depend on features of a language model and are simply
inapplicable when translated: strong and statically checked type system (e.g. C++ and
Java) versus a looser, dynamically checked one (e.g. Smalltalk and Lisp); reference
counting mechanisms for C++ are made inappropriate in Java and Smalltalk by the
presence of automatic garbage collection.
Sometimes idioms need to be imported from one language to another, breaking a
language culture out of a local minima. Idiom imports can offer greater expressive
power by offering solutions which have not otherwise been considered part of the
received style of the target language.
However, it is important to understand that this is anything but a generalisation and
the forces must be considered carefully. Many implementation and interface design
practices are often bound to an implied context rather than being truly general. For
example, concurrency invalidates practices appropriate for sequential code.

Practice
The history of all hitherto existing
society is the history of class struggle.

Karl Marx

It has been said that "in theory there is no difference between theory and practice, but
in practice there is". Applying a set of principles and practices is the natural
complement to presenting them. This section looks at two worked examples that
demonstrate some of the ideas presented so far.

27

Clock

• Example...
A simple clock class that can handle
queries and modal setting of time

• Forces...
Representation hiding
Thread safety
Expressiveness
Encapsulation of behaviour

A simple clock example in C++ can illustrate detailed design with a focus on
interface and the issues affecting interface, such as concurrency and dependency
management, can affect the exterior and interior design of a class. It is by no means
either a rocket science or realistic application class, but it serves to illustrate valid
interface-based decisions.

28

Cheshire Cat

• How can the representation of the class be
fully decoupled from clients?

• Remove everything until there is
nothing left but the smile...

Fully hidden representation
Same definition for
different implementations
Fewer build dependencies

class clock
{ ...
private:

struct body;
body *self;

};

Cheshire Cat [Murray1993] is one of the oldest recognised C++ idioms (also known
as the Pimpl idiom [Sutter2000]). It was found originally in the Glockenspiel class
libraries. C++'s model for encapsulation ensures that, from a written source
perspective, clients of a class are not – and cannot become – dependent on its internal
representation. However, although they cannot access the private section it is still
visible in the source code. This can create compilation and binary dependencies: the
types of its data members may differ and the sizeof an object may change.
In addition, it exposes some of the implementation to the user who may be able to
second guess the workings of the class, or gain access by more malicious means (e.g.
insert their own friend declaration or #define private public). As well as
being open to such terrorist action, it may be undesirable to distribute the exposed
internal workings of a product, e.g. where the same header file is distributed for
different releases or platform versions of a product.
The solution is to wrap up an opaque type within a class, using only a pointer to the
forward declared representation type. This removes the body from the class
definition, leaving only the 'smile'. The full definition of this private type is provided
in the relevant implementation source file where the member function definitions can
access it.
This idiom for representation hiding works well for concrete classes and supports
binary compatibility. If there is further abstraction required, such as the clock
representation could be one of many different forms, the encapsulation hides any
further generalisation to Bridge [Gamma+1995].

29

Combined Function

class clock
{
public:

struct time
{

short hours;
short minutes;

};
time now() const;
clock &set(

short hours,
short minutes);...};

class clock
{
public:

short hours() const;
short minutes() const;
clock &hours(short);
clock &minutes(short);
...

};

Sequential... Concurrent...

Property style programming can make
the use of a class awkward and unsafe...
Grouping functions and data together
gives a more coherent and efficient view

The overriding principle in concurrent operation design is to aim for complete,
transactional and stateless operations, i.e. operations that do not rely on sequence or
implicit state held between calls that is not actually part of an object's logical state.
This means that the emphasis should be in capturing common usage sequences as
atomic rather than individual attribute access.
Not only does this make interfaces implicitly safer with respect to concurrency, but it
also makes them more self descriptive: rather than being presented with a bucket of
attributes, the user is presented with a meaningful vocabulary for using objects
through that interface. The result is that it is easier to program to such interfaces than
larger and less cohesive kitchen sink interfaces.
The first fragment shows an interface with what might be considered a good primitive
interface. The next fragment shows alternative applications of the Combined Function
idiom to make it an appropriate design for concurrency; it is also appropriate for
distribution and exception safety.
Although the examples do not mix command and query semantics in a single
function, such combinations are an inevitable consequence of simplifying and shoring
up the safety of concurrent programming. This does not mean that command/query
separation is incorrect, just that it is a practice bound to a context, just as Combined
Function is. However, unquestioning adherence to a single viewpoint [Meyer1997,
Mannion1999] can lead to interfaces that are awkward and unsafe, defeating the
original objective.

30

Whole Value

class hour
{
public:

explicit hour(int);
int value() const;

private:
int hour_of_day;

};
class minute {...};
class time
{
public:

time(hour, minute);...
};

class clock
{
public:

time now() const;
clock &set(

hour, minute);...
};
...
clock system;...
time now = system.now();
system.set(

hour(12),
minute(30));

It is tempting, and indeed common, to represent value quantities in a program in the
most fundamental units possible, e.g. durations as integers. However, this fails to
communicate the understanding of the problem and its quantities into the solution and
shows a poor use of the type system.
The loss of meaning and checking can be recovered by applying the Whole Value
pattern [Cunningham1995] (also known as Quantity [Fowler1997]). In this, distinct
types are used to correspond to domain value types. This affords greater annotation in
the code and improved checking by the compiler, as illustrated in the example above.
It also provides a location for appropriate range checking to enforce constraints.
In C++ the distinction from fundamental types is further supported by ensuring that
there are no implicit conversions. For many whole value types it is intended that they
should be distinct from their fundamental unit type and should not cause any
ambiguous conversions. For this, use explicit to inhibit converting constructors.
Note that the temptation should be resisted to offer overloads that allow alternative
argument orderings: these are not reasonable choices, the interface trying to please all
the people all of the time instead of sticking to one clear and cohesive model of use.
A raw Whole Value can be expressed as a using function/constructor style notation,
which reduces the number of named temporaries cluttering code and increases the
code's expressiveness and richness of meaning.
Whole Value is similar to dimensional analysis in the physical sciences, and a
variation of Whole Value can be generalised for this purpose using templates
[Barton+1994].

31

Objects for States
displaying

time

setting
hours

setting
minutes

setting time

change mode cancel

increment

increment
change mode

change mode

mode

setting
time

clock

displaying
time

hours
minutes

change mode
increment
cancel

setting
hours

setting
minutes

Many objects have state on which their behaviour is based. The values of such state
can sometimes be grouped into significant modes, each of which corresponds to a
different set of behaviours, i.e. methods may behave significantly different in each
one. These modes (or states) can be modelled using a variety of notations, including
the Harel statechart notation used in UML. The modes and transitions between them
constitute an object's lifecycle. Clearly, this approach does not apply to stateless
objects.
How should such a lifecycle be implemented for an object? In some cases it is
appropriate to take the approach of using a flag to represent the state. However, in all
but the simplest cases this leads to a lot of conditional code: functions become
dominated by large switch or if statements. This is error prone and obscure – it
becomes hard to add new states, or to comprehend the behaviour in a particular state.
The Objects for States pattern [Gamma+1995], perhaps more commonly – but
misleadingly – known as the State pattern, offers a solution based on a direct
correspondence between the state model and a class model.
The context object, with which the client communicates, aggregates an object that is
used to represent the behaviour in one of its states. Calls on the context are forwarded
to the state object; responsibility for implementing behaviour in a particular state is
therefore delegated. Transitions between states can be managed either by the
behavioural objects themselves, or by a centralised mechanism, such as a table
lookup.

32

Cat Anatomy

class clock
{
public:

void change_mode();
void increment();
void cancel();...

private:
struct body;
body *self;

};

struct clock::body
{

class mode;
class displaying_time;
class setting_time;
class setting_hours;
class setting_minutes;

int hours, minutes;
mode *current;

};

Cheshire Cat has been used to fully
factor the representation out of the
main class definition...

The definition of the body includes not only the
data held for each instance, but also the definition
of any types required for the implementation

There are many ways of implementing the mode hierarchy for an Objects for States
configuration. It is just this motivation that suggests whichever route is taken should
affect the class user as little as possible. Cheshire Cat has already provided the most
appropriate way of hiding the representation of the class, and the Cheshire Cat body
also provides the best location to house the declarations of the classes to be used in
the mode hierarchy: away from the user. Now any changes to the state model will not
affect the user.
The fully encapsulated route also means that all the types used for object can access
each other, so there is no need for friend relationships, as is often the case with
C++ implementations of this pattern, e.g. [Gamma+1995].
Another consequence of this approach is the clear separation of an object's aspects
into corresponding types:

• Identity is represented by the main clock class, which sports the main interface
through which the user interacts.

• State (or, less ambiguously, data) is held in clock::body.
• Behaviour is represented polymorphically within the class hierarchy rooted in
clock::body::mode.

Thus scope and access are used to reflect the structure of the problem, establishing
interfaces on the inside as well as the outside of the main class.

33

Hidden Interface Class

void clock::increment()
{

self->current->increment(self);
}
class clock::body::mode
{ ...

virtual void increment(body *) = 0;...
};
void clock::body::setting_hours::increment(body *self)
{

++self->hours;
}

Even though the mode hierarchy is already private from the clock class, many of
the details can be further hidden behind an Interface Class [Carroll+1995] to simplify
the view from the main object and expose no more detail than is strictly necessary.
How does an object in the mode class hierarchy know about the main object it is
supposed to be operating on? There are two basic approaches to this:

• Each mode object holds a back pointer to the main object (or rather its body) with
which it is associated. This means that each main object needs to either
preallocate an object for each mode, or allocate each mode object when it is
required, presumably deallocating it when it is done with it.

• When they are required to execute a function, mode objects are passed the body
to operate on as an argument. Stateless objects can be shared, which eliminates
the need for subtle allocation strategies. The simplest route to sharing is to define
a static instance per concrete mode class. It is tempting to go to town on the
design and apply Singleton [Gamma+1995], but in truth this is rarely the right
solution; in this case it is definitely overkill.

One remaining issue is how to deal with state transitions. The responsibility can be
taken by the main class itself, either explicitly or by using a state transition table.
Alternatively, each state determines the next state – again either hardwired or looked
up – and either makes the transition itself or returns the suggested next state as a
result.

34

Queue

• Example...
A queue class to buffer work between
producers and consumers in different threads

• Forces...
Thread safety
Exception safety
Ease of use
Evolving requirements

To further demonstrate interface-based principles, consider a queue class. The
purpose of the queue is to buffer tasks supplied by one or more producers to
consumers that then execute the tasks. All the producers and consumers are executing
in different threads, requiring thread safe access of the queue. The control model is
push–pull, i.e. the producer pushes tasks into the queue and the consumer pulls them
from it.
Some of the design is a matter of refinement, but other changes are the result of
shifting requirements intended to demonstrate how design decisions may be taken
differently.
The queue is implemented as a concrete class in C++, queue. This should not be
confused with std::queue in the standard, which can be used as part of the
underlying implementation.

35

Command Interface Class

• A request can be encapsulated as an object
An interface class provided with the queue is
implemented for specific tasks

class task
{
public:

virtual void execute(receiver *) = 0;...
};

class specific_task : public task
{
public:

virtual void execute(receiver *);...
};

Interface abstracts
contract of behavioural
callback objects

Concrete derived class
provides behaviour and
state necessary for
callback

How can the selection of functionality be decoupled from its execution, so a producer
can select and deliver a task to be executed independently by a consumer?
C++ supports a much richer set of features than simply C-style function pointer
callbacks, which are rigid and not necessarily very type safe. In this case it is the
Command pattern [Gamma+1995] that is appropriate. It explicitly objectifies the
concept of method call as object:

Encapsulate a request as an object, thereby letting you parameterize clients with
different requests, queue or log requests, and support undoable operations.

The task is represented by an Interface Class, task, and derived classes realise the
detail – data and function – required for particular tasks. This can be generalised
further by using Function Objects and Adapters, but that is left as an exercise for the
reader.
One issue that must be resolved is that of lifetime and ownership: the producer creates
the command object, but who deletes it? Common best practice schemes, such as
Creator as Sole Owner [Cargill1996], do not work: this would mean that the
consumer had to send back the task once completed. For brevity and simplicity (of
exposition, as opposed to final system) it will be assumed that the consumer deletes
tasks once they have executed. A refinement to this would be the use of reference
counted smart pointers [Boost, Coplien1992].

36

Basic Locking

class mutex
{
public:

void lock();
void unlock();...

};

class queue
{
public:

void enqueue(task *);
task *dequeue();...

};

mutex guard;
queue tasks;...
guard.lock();
tasks.enqueue(new_task);
guard.unlock();

Common synchronisation primitive
Sequential object

Acquire lock and begin critical section

Release lock and end critical section
Serialised and safe action

In the presence of multiple threads, synchronisation of access to data is vital. A
number of primitives are typically available on a threading system. These primitives
are best wrapped up in classes, rather than used in their raw API form.
Mutexes and semaphores may be locked and unlocked, bracing a section of code
termed the critical section. The execution of this code must appear to be executed
atomically with respect to other threads, ie. although it may technically be pre-
empted, it is not re-entered until completed by a given thread. This term is not to be
confused with the Win32 CRITICAL_SECTION, which is simply a degenerate form
of mutex.
Mutexes offer mutual exclusion in terms of a single thread, ie. the thread that locks it
must be the thread that unlocks it. Binary semaphores are not quite so structured. It is
system dependent as to whether or not a mutex is re-entrant, i.e. whether or not a
locked mutex may be relocked by the locker. Some systems, such as Solaris, offer
locks that allow multiple-reader/single-writer access. These are more structured than
the other primitives. They may be faked up using condition variables or events and
mutexes, or pairs of counted semaphores. Win32 events are effectively "smart
blocking flags". Condition variables are like events, but they auto-lock a mutex.
The scope or reach of these primitives may be within a single process address space,
or may be system wide for synchronisation across processes.

37

{
locker critical(guard);
usage code

}

:mutexclient

«create»
lock

unlock

:locker

«destroy»

Execute Around Object

• Places control with a helper object
Lifetime of helper encloses usage

In C++ a constructor is called on creation of an object for the sole purpose of
initialising it, i.e. it describes the "boot sequence" for an object. Conversely a
destructor is automatically called at the end of an object's life to finalise or clean it up,
i.e. to shut it down in an orderly fashion. Importantly, in C++ the calling of a
destructor is deterministic: the life of a local stack variable is tied to its enclosing
scope; the life of an object allocated dynamically using the new operator comes to an
end by an explicit call to delete.
The former property, that of tying lifetime to scope, is what underpins the Execute
Around Object pattern. A helper object is declared with a reference to the target
object whose member functions must be paired around use. The helper object calls
back in to the target object on creation to acquire or initialise the resource. In its
destructor it automatically calls back to release or finalise the target's resource.
Such helper objects are good examples of the fine-grained helper objects that can
simplify an overall implementation, as opposed to the coarse-grain abstractions
apparent in the business model or user interface of a system.
The Execute Around Object pattern is found at the heart of the misnamed Resource
Acquisition is Initialization idiom [Stroustrup1997]; misnamed because the essence of
what makes this pattern work is the destructor. In many cases, resource acquisition
occurs independently of the Execute Around Object, as in the case of memory
acquisition. Perhaps Resource Release is Finalization would be a better name for the
resource-based applications of Execute Around Object.

The control structure pairing can be generalised to apply to the target resource object
itself. The queue class now supports its own lock and unlock functions, making
it more cohesive.
The appropriate generalisation for this is to use templates rather than tying the classes
together in a more committed inheritance hierarchy:

template<class lockee>
locker<lockee>::locker(lockee &to_lock)
: target(to_lock)

{
target.lock();

}

template<class lockee>
locker<lockee>::~locker()
{

target.unlock();
}

38

Lockable Object

class queue
{
public:

void lock() const;
void unlock() const;
void enqueue(task *);
task *dequeue();
size_t size() const;...

};

template<class lockee>
class locker
{
public:

locker(lockee &);
~locker();

private:
lockee ⌖

};

void enqueue(queue *tasks, task *new_task)
{

locker<queue> guarded(*tasks);
tasks->enqueue(new_task);

}

1
1.1

2

3 3.1

39

Locking Function Adapter
locked(tasks)->enqueue(new_task);
template<class lockee>
tmp_locker<lockee> locked(lockee *target)
{

return tmp_locker<lockee>(target);
}

template<class lockee>
class tmp_locker
{
public:

explicit tmp_locker(lockee *);
~tmp_locker();
lockee *operator->();

private:
lockee *target;
bool is_locked;

};

Set up target but do not lock yet

Unlock if locked

Lock when target dereferenced
and used through member
access operator

Locking is handled
by returning proxy

Simplified expression-
and statement-level
locking

Where single function calls are to be locked, the use of a temporary Execute Around
Object is clumsy. It is possible to offer a function that performs the locking and
unlocking for a single function call. In the example shown a function, named
locked, is responsible for acquiring a lock from its argument and returning it so that
it may now be dereferenced safely. However, the usage is outside the execution of
locked so how is the resource unlocked? The solution returns a proxy from
locked rather than a raw pointer:

template<class lockee>
class tmp_locker
{
public:

explicit tmp_locker(lockee *to_lock)
: target(to_lock), is_locked(false) {}

~tmp_locker()
{

if(is_locked)
target->unlock();

}
lockee *operator->()
{

target->lock();
is_locked = true;
return target;

}
private:

lockee *target;
bool is_locked;

};

40

Execute Around Pointer

template<class lockee>
class locking_ptr
{
public:

tmp_locker<lockee> operator->() const
{

return tmp_locker<lockee>(target);
}...

private:
lockee *target;

};

locking_ptr<queue> ptr(tasks);...
ptr->enqueue(new_task);

Smart pointers
provide the
simplest
approach for
users

Member access
operator
returns locking
proxy – calls to
member access
operator are
chained

However, although improved in convenience, the locking function is hardly
transparent. A smart pointer can be used to build on the temporary acquisition
concept. In the example shown, locking_ptr overloads operator-> to return a
tmp_locker that also overloads operator-> and performs the actual locking.
This idiom works because calls to operator-> are automatically chained by the
compiler until a raw pointer type is returned. Note that one consequence of the
language and this design is that operator* is not meaningfully supported.
The locking behaviour can easily be disabled for single threaded applications,
requiring only modifications to tmp_locker to make it a pass-through object, a
recompile, and a relink.
Programmers should be careful about attempting to access the same object twice in a
statement using locking_ptrs: this will cause deadlock if the synchronisation
mechanism is not re-entrant.

41

Self-Locking Function

class queue
{
public:

void enqueue(task *new_task)
{

locker<mutex> critical(guard);
contents.push(new_task);

}...
private:

mutable mutex guard;
std::queue<task *> contents;

};

Refined resource class

Member function now has
guarded semantics
The whole member
function is now effectively
a critical section

Synchronisation primitive
now embedded within the
resource class

If single function calls – i.e. single calls to enqueue or dequeue – are the norm, an
alternative approach simplifies the interface considerably from the perspective of the
user. The affordances and constraints are brought more comfortably into line, making
the interface more encapsulated (with respect to usage) and safer.
For objects that are known to be shared, and where operations are normally used in
isolation – rather than typically being used for a sequence of operations – it often
makes sense to provide the locking as part of the automatic behaviour, i.e. when a
public function is called it locks an internal synchronisation object. Objects of such a
class are said to be monitors or, in Ada 95 parlance, they are protected. In Java the
same facility is implemented using synchronized methods.
Classes with internally locked public functions simplify programming from the
class user's point of view. The class author must be careful not to call other public
member functions from within the class if the synchronisation object is not re-entrant.
Similarly, the class author must respect the fact that C++ supports class level rather
than object level encapsulation; it is possible for an object to access the private
members of another object of the same class and accidentally bypass the synchronised
interface ordinary class users would use.
A typical locked function will have the object locked for the whole scope of the
function. However, this need not always be the case and the lock scope should be as
small as possible, i.e. any local variables should be declared and initialised before the
section, and any further calculations and returns after.

42

Batch Function

• How can multiple tasks be enqueued or
dequeued together without interruption?

Provide a self locking function that operates on
sequences rather than just a single item

class queue
{
public:

template<typename task_iterator>
void enqueue(task_iterator begin, task_iterator end);

template<typename task_iterator>
void dequeue(task_iterator begin, task_iterator end);...

};

Internally locked functions support thread safe single calls, but there is no guarantee
that multiple calls from one thread will not be interleaved with calls from other
threads. There is also the issue that repeated locking and unlocking of an object is
costly.
If common usage of the queue requires that many tasks should be enqueued and
dequeued atomically, the self locking model can be extended to cope with this.
Additionally providing a Batch Function that handles multiple items effectively
provides a flattening of a loop into a repeated data structure, and ensures that
execution will be correctly locked.
This presents a safe and cohesive interface. It can be decoupled from the actual
representation of the sequence by using the Iterator Range idiom found in STL. For
enqueue the iterators are required to be at least Input Iterators. For dequeue they
are required to be at least Output Iterators.
This means that not only is the user free to use their own chosen containers, but that
no inclusion of container details is necessary in the queue header file, keeping the
physical aspect of the interface clean.

43

Composite Command
class composite_task : public task
{
public:

virtual void execute(receiver *);...
private:

vector<task *> sequence;
};

task *new_task =
new composite_task(begin, end);...

tasks.enqueue(new_task);...
task *to_do = tasks.dequeue();
to_do->execute(target);

Composite command class
allows many commands to
be grouped together and
treated as one

Insert individual
commands into sequence

Individual commands
executed together in
sequence

One issue that internally locked interfaces raise is how to group multiple actions
together without interleaving. For instance, given the queue class shown previously,
how can a sequence of task objects that must be executed together be placed in a
queue? A Batch Function allows multiple enqueuing and dequeuing, but the number
dequeued together need not be the number enqueued together.
Multiple actions that need to be grouped together, either as a result of scripting or for
transactional reasons, can be implemented using the Composite pattern
[Gamma+1995] with the Command pattern. Composite is a structural pattern that
deals with the issue of recursive composition of Whole–Part hierarchies
[Buschmann+1996] in which all components are treated uniformly. In this example it
means that a composite command may contain any command objects, including other
composite commands.
The most common composite command would be a sequence, although a concurrent
construct is possible where a thread is launched for each command.
The detail of the execution for a sequence would be as follows:

void composite_task::execute(receiver *target)
{

for(size_t index = 0; index < sequence.size(); ++index)
sequence[index]->execute(target);

}

This can be made more idiomatic by applying standard algorithms and function
objects.

44

Execute Around Function

• Places control within the resource
Usage is passed to the resource for execution

tasks.apply(
usage code encapsulated
as an object

);

:queueclient

«create»

apply
:usage

lock

unlock

call back
use

Execute Around Function (also known as Execute Around Method [Beck1997]) offers
an alternative to the external management of a resource as well as a more
sophisticated view of internal management. The code that must be enclosed by the
two calls to the resource is itself passed to the resource itself for execution: The code
may be encapsulated as a Command object [Gamma+1995]. The resource then
executes the necessary actions before and after calling the code itself. This guarantees
exception safety around resource-based tasks and atomicity of grouped operations.
There is a strong similarity with both Template Method and the double dispatch of
Visitor [Gamma+1995] in this pattern. Interestingly, the control and object structure
is effectively the inverse of that in Execute Around Object.

45

Function Object

• How can the usage code be passed in?
Represent usage as a function object

class queue
{
public:

template<typename unary_function>
void apply(unary_function callback)
{

locker<queue> critical(guard);
callback(this);

}...
};

A specialisation of the Command pattern in C++ is the Function Object or Functor
idiom [Coplien1992], where an object's type supports function call syntax, i.e.
overloading operator(). The style of generic programming makes use of operator
overloading and templates to make the distinction between use of a function object or
function pointer transparent:

void nibble(cookie &);
pointer_to_unary_function<cookie &, void> nibbler(nibble);
...
container<cookie> jar;
jar.apply(nibble);
jar.apply(nibbler);

When implementing an Execute Around Function in C++ there is often a case for
overloading the function with respect to const-ness:

class queue
{
public:

template<typename unary_function>
void apply(unary_function callback);

template<typename function>
void apply(unary_function callback) const;

...
};

46

Callback Target

• What should the callback object actually
call back on?

Should it be on publicly
available functions?
If not, should the interface
be privately inherited or
detached and on the body?

• Dependent on polymorphism
and decoupling requirements

There is still a question as to what the callback target should be. In the previous
example it was assumed that the current object would be the target. But does this
mean that the interface the callback occurs on is public to other users? If this is the
case, it means that in theory any public user can execute critical functions and avoid
locking. If, on the other hand, all such functions are self locking, there are efficiency
and deadlock considerations when the callback executes them, effectively relocking
an object that is already locked.
An alternative is to publish the usable interface as a separate Interface Class, and
privately inherit it. This means that the this pointer will be correctly converted to
the private base class on the callback, but that no public user can use it directly. The
constraints on this are that, because of runtime polymorphism, member templates
cannot be used for any of the functions. It also means that there may be name clashes
if the class also publishes self locking functions for common usage.
Yet another alternative is to introduce a Handle/Body split [Coplien1992,
Gamma+1995] and have the callback interface on the body. This introduces a
decoupling that was not there before, but also means that there is more object
management involved than before.

47

Summary

• Interfaces represents connection vocabulary
and units of obligation in a system

Interfaces establish terms of reference
Sometimes a truer expression of intent and
understanding than classes

• Interfaces play a part in system structure
Identification and preservation of constraints
Management and reduction of dependencies

A focus on interfaces is implicit in many approaches to software development,
whether function-based APIs, object orientation, component-based development, or
distributed computing. However, understanding interface-based development (IBD)
as a concept in its own right, making it an explicit approach demonstrates why many
attempts at these other styles fall at the first hurdle: reusability, plug and play
components, etc all remain mythical creatures until IBD is one of a number of key
pillars in place in a development culture.
Interfaces are first class citizens in development, not an afterthought to be tacked onto
an implementation. With interfaces comes the concept of aggressive dependency
management, identification of constraints and their communication and preservation
through affordances. Constraints and dependencies; semantics and connections;
meaning and structure – these represent the distillation of essential design practice,
and interfaces are part of the mix.

[Barton+1994] John J Barton and Lee R Nackman, Scientific and Engineering C++: An Introduction with
Advanced Techniques and Examples, Addison-Wesley, 1994.

[Beck1997] Kent Beck, Smalltalk Best Practice Patterns, Prentice Hall, 1997.
[Beck+1998] Kent Beck and Erich Gamma, "Test Infected: Programmers Love Writing Tests", Java Report, SIGS,

July 1998.
[Beck2000] Kent Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, 2000.
[Boost] Boost library website, http://www.boost.org.
[Box+1999] Don Box, Keith Brown, Tim Ewald and Chris Sells, Effective COM: 50 Ways to Improve Your COM

& MTS-based Applications, Addison-Wesley, 1999.
[Brand1994] Stewart Brand, How Buildings Learn: What Happens After They're Built, Phoenix, 1994.
[Buschmann+1996] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael Stal,

Pattern-Oriented Software Architecture: A System of Patterns, Wiley, 1996.
[Cardelli+1985] Luca Cardelli and Peter Wegner, "On Understanding Types, Data Abstraction, and

Polymorphism", Computing Surveys, 17(4):471-522, December 1985.
[Cargill1996] Tom Cargill, "Localized Ownership: Managing Dynamic Objects in C++", [PLoP1996].
[Carroll+1995] Martin D Carroll and Margaret A Ellis, Designing and Coding Reusable C++, Addison-Wesley,

1995.
[Coplien1992] James O Coplien, Advanced C++: Programming Styles and Idioms, Addison-Wesley, 1992.
[Coplien1995] James O Coplien, "A Generative Development-Process Pattern Language", [PLoPD1995].
[Coplien1999] James O Coplien, Multi-Paradigm Design for C++, Addison-Wesley, 1999.
[Cunningham1995] Ward Cunningham, "The CHECKS Pattern Language of Information Integrity",

[PLoPD1995].
[Dai+1999] Ping Dai, Ray Farmer and Alan O'Callaghan, "Patterns for Change", EuroPLoP '99, 1999.
[D'Souza+1999] Desmond D'Souza and Alan Cameron Wills, Objects, Components and Frameworks with UML:

The Catalysis Approach, Addison-Wesley, 1999.
[Dyson1998] Paul Dyson, "Patterns in Software Architecture", Patterns '98, February 1998.
[Fowler1997] Martin Fowler, Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997.
[Fowler1999] Martin Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999.
[Gamma+1995] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1995.
[Gamma+1999] Erich Gamma and Kent Beck, "JUnit: A Cook's Tour", Java Report, SIGS, May 1999.
[Jackson1995] Michael Jackson, Software Requirements & Specifications: A Lexicon of Practice, Principles and

Prejudices, Addison-Wesley, 1995.
[Lakos1996] John Lakos, Large-Scale C++ Software Design, Addison-Wesley, 1996.
[Lea1998] Doug Lea, "Christopher Alexander: An Introduction for Object-Oriented Designers", [Rising1998].
[Liskov1987] Barbara Liskov, "Data Abstraction and Hierarchy", OOPSLA '87 Addendum to the Proceedings,

October 1987.
[Mannion1999] Mike Mannion, "Concurrent Contracts: Design by Contract™ and Concurrency in Java", Java

Report, SIGS, May 1999.
[Martin1995] Robert Martin, "Object-Oriented Design Quality Metrics: An Analysis of Dependencies", ROAD,

SIGS, September-October 1995.
[Meyer1997] Bertrand Meyer, Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997.
[Meyers2000] Scott Meyers, "How Non-Member Functions Improve Encapsulation", C/C++ Users Journal,

February 2000.
[Murray1993] Robert B Murray, C++ Strategies and Tactics, Addison-Wesley, 1993.
[Norman1989] Donald A Norman, The Design of Everyday Things, paperback edition, MIT Press, 1988.
[Pawson1996] John Pawson, Minimum, Phaidon, 1996.
[Petroski1992] Henry Petroski, To Engineer is Human: The Role of Failure in Successful Design, Vintage, 1992.
[PLoP1995] Edited by James O Coplien and Douglas C Schmidt, Pattern Languages of Program Design, Addison-

Wesley, 1995.
[PLoP1996] Edited by John Vlissides, James O Coplien and Norman L Kerth, Pattern Languages of Program

Design 2, Addison-Wesley, 1996.
[Rising1998] Linda Rising, The Patterns Handbook: Techniques, Strategies and Applications, Cambridge

University Press, 1998.
[Stroustrup1997] Bjarne Stroustrup, C++ Programming Language, 3rd edition, Addison-Wesley, 1997.
[Strunk+1979] William Strunk Jr and E B White, Elements of Style, 3rd edition, Macmillan, 1979.
[Sutter2000] Herb Sutter, Exceptional C++, Addison-Wesley, 2000.
[Szyperski1998] Clemens Szyperski, Component Software, Addison-Wesley, 1998.
[Taligent1994] Taligent's Guide to Designing Programs: Well-Mannered Object-Oriented Design in C++,

Addison-Wesley, 1994.

